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ABSTRACT
Adaptive Resonance Theory does more than satisfy ‘hard criteria’ for ToCs.
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Hard criteria or explanatory scientific theory?

Doerig, Schurger, and Herzog list ‘hard criteria for
empirical theories of consciousness’. Their abstract
notes that ‘many Theories of Consciousness (ToCs)
have been proposed,’ ‘diverse in nature,’ that exhibit
a ‘lack of stringent criteria specifying how empirical
data constrains ToCs’. They ‘review 13 of the most influ-
ential ToCs’ and ‘their strengths and weaknesses from
a strictly empirical point of view’.

Listing ‘stringent criteria’ is not how scientific pro-
gress on developing theories of mind and brain usually
occurs. Typical humans have conscious experiences of
seeing, hearing, feeling, and knowing. Thousands of
psychological and neurobiological experiments about
vision and these other faculties have been carried out
for over a century. The psychological experiments clarify
how visual stimuli cause conscious experiences of visual
qualia – including perceived form, color, brightness,
depth, and motion – and when consciousness fails.
Many neurobiological experiments have correlated con-
scious experiences with brain dynamics.

To understand these data, theorists discover organi-
zational principles that are embodied in a small number
of equations. In mind/brain studies, these equations
help to define modules, or microcircuits, which are spe-
cialized in modal neural architectures, where ‘modal’
stands for different modalities of biological intelligence,
including vision. An integrated self with a conscious
mind is possible because it builds on a shared set of

equations and modules within modal architectures that
can interact seamlessly together to generate emergent
properties that mimic detailed properties of conscious
psychological experiences (Grossberg, 2017b).

The foundational equations describe short-term
memory, or STM; medium-term memory, or MTM; and
long-term memory, or LTM, that were introduced in
Grossberg (1968, 1969); see Grossberg (2013b) for
a review.

In Section 1, Doerig et al. write about ‘whether we can
close the explanatory gap or whether it is impossible for
principled reasons’. This gap actually started to be closed
40 years ago (Grossberg, 1980). They mention only a few
data, and write that ‘maybe the plethora of ToCs simply
reflects the fact that we have too few experimental
constraints’ (Section VI), despite the existence of huge
databases about conscious experiences that have been
getting explained and simulated on the computer for
many years. Their underconstrained analysis cannot lead
to mechanistic understanding.

All conscious states are resonant states, but not
conversely

Humans also have conscious experiences of hearing, feel-
ing, and knowing, and huge interdisciplinary databases
describe them. In all these areas, the interdisciplinary com-
putational neural theory called Adaptive Resonance
Theory, or ART, links brain mechanisms to their emergent,
or interactive, properties that embody psychological
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functions andconscious experiences. ART showshowadap-
tive resonances enable us to be conscious of all these kinds
of experiences, while binding them together into coherent
moments of unified conscious awareness. ART provides
detailed mechanistic explanations of all the issues and
data mentioned by Doerig et al., as sketched below.

ART has been incrementally developed since it was
proposed in Grossberg (1976) to explain and predict
how humans learn to attend, recognize, and predict
objects and events in a changing world. ART was not
derived to explain consciousness. However, as its unify-
ing explanations became increasingly mature, it became
clear that ‘all conscious states are resonant states, but
not conversely’. For recent reviews, see Grossberg
(2013a, 2017b, 2018, 2020, 2021). For a summary of
resonances that support different conscious experi-
ences, see Figure 1.

A thought experiment shows that ART solves
a universal problem of error correction

ARTdesignprinciples andmechanisms canbederived from
a thought experiment that asks the question: How can
a coding error be corrected in a changing world if no
individual cell knows that one has occurred (Grossberg,
1980)?

Using only familiar environmental facts as hypoth-
eses, every step of the thought experiment is translated
into processes operating autonomously in real time with
only locally computed quantities. Thus, when familiar
environmental constraints on incremental knowledge
discovery are overcome in a self-organizing manner,
then ART circuits naturally emerge as a universal solution
to correcting errors in a changing world.

Resonances that are not conscious

Resonant states that are not conscious include parietal-
prefrontal resonances that trigger selective opening of
basal ganglia gates to enable the read-out of contex-
tually-appropriate thoughts and actions (Brown et al.,
2004; Buschman & Miller, 2007; Grossberg, 2016b) and
entorhinal-hippocampal resonances that dynamically
stabilize the learning of entorhinal grid cells and hippo-
campal place cells during spatial navigation (Grossberg
and Pilly, 2014; Kentros et al., 2004; Morris & Frey, 1997).
These resonances do not include feature detectors that
are activated by external senses, such as those that
support vision or audition, or internal senses, such as
those that support emotion.

Figure 1. Some known conscious resonances and their psychological functions.

2 S. GROSSBERG

steve
Cross-Out



Why did evolution discover consciousness?
Seeing is for reaching

Evolution may have discovered conscious states because
multiple processing stages carry out three functionally
distinct processes of ‘hierarchical resolution of uncer-
tainty’ to construct brain representations that are suffi-
ciently complete, context-sensitive, and stable to control
effective actions (Grossberg, 2017b). The visual represen-
tation on the retina is noisy and incomplete. For exam-
ple, the large blind spot and retinal veins prevent the
processing of connected objects that are registered by
the retina at their positions. Multiple stages of boundary
completion and surface filling-in complete the retinal
representation.

How do our brains select sufficiently complete visual
representations to control actions? My answer is that
brain resonance, and with it conscious awareness, is trig-
gered at complete representational stages to escape the
disastrous consequences that could occur were actions
based on incomplete representations at earlier proces-
sing stages. For example, we consciously see in order to
look and reach based upon a surface-shroud resonance
(Figure 2) that occurs between cortical area V4 and the
posterior parietal cortex (PPC). The selected V4 represen-
tations attend objects to act upon via PPC (Grossberg,
2017b, 2019). We consciously recognize what we see
using a feature-category resonance V4 and the inferotem-
poral cortex (IT); see Figure 3. These two resonances

synchronize when we see and know about a familiar
object.

Explaining mental disorders using ART

Resonances can fail or be degraded due to anatomical
lesions or improperly functioning neuromodulators. ART
provides neural explanations of psychological symp-
toms and neurobiological data about how conscious-
ness is altered during mental disorders like Alzheimer’s
disease, autism, amnesia, Fragile X syndrome, and
neglect, including a key role for acetylcholine neuromo-
dulation in regulating the vigilance with which cognitive
learning, attention, and consciousness occur (Franklin &
Grossberg, 2017; Grossberg, 2017a, 2017b; Grossberg &
Kishnan, 2018; Grossberg & Seidman, 2006).

Rivalry, change blindness, crowding, masking,
attentional blink, and Hermann grid

Doerig et al. mention several visual phenomena, notably
those in this section’s title, that have all been explained
by interactions between model visual cortical processes
that preprocess visual inputs and the surface-shroud
resonances that support consciously seeing them; e.g.,
binocular rivalry and percepts of unimodal vision
(Grossberg et al., 2008); change blindness, motion-
induced blindness, masking, and attentional blink
(Grossberg, 2017b); crowding (Foley et al., 2012); and

Figure 2. Seeing and knowing. A surface-shroud resonance that supports conscious seeing and a feature-category resonance that
supports conscious knowing, or recognition, can occur simultaneously and be supported by a synchronous resonance that bridges the
What and Where cortical streams. [Adapted with permission from Grossberg (2017b).].
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Hermann grid (Grossberg and Todorovic, 1988). Scores
of additional visual percepts have also been explained in
a unified way; see sites.bu.edu/steveg.

Cortical synchronization, gamma and beta
oscillations, and wakefulness and sleep

The authors mention gamma oscillations in Section IV.4.a.
In spiking laminar thalamocortical ART models, faster
gamma oscillations emerge during a good enough
match between bottom-up and top-down signals, as dur-
ing a feature-category resonance, whereas a big enough
mismatch causes slower beta oscillations (Grossberg &
Versace, 2008), a prediction with subsequent support
from neurophysiological experiments on V1, V4, and
hippocampus.

ART clarifies how brains switch between wakefulness
and sleep, and explains UP and DOWN sleep states
(Grossberg, 2017a).

Gaze direction and social cognition

How gaze direction enables us to ‘infer the mental state
of others and to predict their behavior’ (Section IV.4.b) is
explained by how joint attention supports goal-oriented
orienting, reaches, and tool use during social cognition
(Grossberg & Vladusich, 2010).

Unfolding and large and small networks

The authors note that ‘any function can be implemented
by different physical systems’ (Section III.4). However,
sufficiently rich multiplexed combinations of functions
cannot be so implemented. Indeed, ART uniquely fol-
lows from a thought experiment about a universal pro-
blem about error correction in a changing world
(Grossberg, 1980).

ART feedback circuits that functionally link
Consciousness, Learning, Expectation, Attention,

Figure 3. During a feature-category resonance, a bottom-up input pattern activates a distributed pattern of feature-selective cells
which send bottom-up signals to a category coding level. These bottom-up signals are multiplied by adaptive weights, or long-term
memory (LTM) traces, that are tuned by learning. An activated category reads out a top-down expectation. These top-down signals are
also multiplied by LTM traces. These expectations help to focus attention upon expected combinations of cues, called critical feature
patterns, that control learning and action. If a good enough match occurs between the top-down expectation and a currently active
bottom-up feature pattern, then a feature-category resonance begins to form between them via the active bottom-up and top-down
excitatory pathways. This resonance supports conscious recognition of the object that is represented by the attended critical feature
pattern. [Reprinted with permission from Grossberg (2019).].
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Resonance, and Synchrony – the CLEARS processes –
cannot be unfolded into a feedforward network
(Grossberg, 2019).

Classifying biological neural models like ART as either
small or large is unhelpful because, to explain why we
are conscious, ART’s multiple processing stages carry out
a ‘hierarchical resolution of uncertainty’ in a particular
order.
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