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We suggest a new line of research that we hope will appeal to the nonlinear dynamics community,
especially the readers of this Focus Issue. Consider a network of identical oscillators. Suppose the
synchronous state is locally stable but not globally stable; it competes with other attractors for the
available phase space. How likely is the system to synchronize, starting from a random initial
condition? And how does the probability of synchronization depend on the way the network is
connected? On the one hand, such questions are inherently difficult because they require calculation
of a global geometric quantity, the size of the “sync basin” �or, more formally, the measure of the
basin of attraction for the synchronous state�. On the other hand, these questions are wide open,
important in many real-world settings, and approachable by numerical experiments on various
combinations of dynamical systems and network topologies. To give a case study in this direction,
we report results on the sync basin for a ring of n�1 identical phase oscillators with sinusoidal
coupling. Each oscillator interacts equally with its k nearest neighbors on either side. For k /n
greater than a critical value �approximately 0.34, obtained analytically�, we show that the sync
basin is the whole phase space, except for a set of measure zero. As k /n passes below this critical
value, coexisting attractors are born in a well-defined sequence. These take the form of uniformly
twisted waves, each characterized by an integer winding number q, the number of complete phase
twists in one circuit around the ring. The maximum stable twist is proportional to n /k; the constant
of proportionality is also obtained analytically. For large values of n /k, corresponding to large rings
or short-range coupling, many different twisted states compete for their share of phase space. Our
simulations reveal that their basin sizes obey a tantalizingly simple statistical law: the probability
that the final state has q twists follows a Gaussian distribution with respect to q. Furthermore, as

n /k increases, the standard deviation of this distribution grows linearly with �n /k. We have been
unable to explain either of these last two results by anything beyond a hand-waving argument.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2165594�
n the past few years, many researchers have become fas-
inated by a question that involves a fusion of nonlinear
ynamics with network theory. The issue is to explore
ow the synchronizability of a network of oscillators de-
ends on the way those oscillators are interconnected.
uch has been learned by studying this question from a

ocal perspective, using linearization to examine how the
tability spectrum for the synchronous state depends on
he network topology. Here we propose an alternative ap-
roach that focuses on a more global property of phase
pace: the basin of attraction for the synchronous state.
he size of this basin controls the likelihood that a net-
ork will fall into sync. We suggest that there are many

nteresting discoveries to be made here, especially if one
ixes and matches various networks and dynamical sys-

ems and conducts numerical experiments to explore how
hey affect synchronizability. To illustrate the sorts of
uestions one might ask, we present a case study of a ring

f identical phase oscillators, and find that even here,

054-1500/2006/16�1�/015103/8/$23.00 16, 01510
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intriguing patterns and puzzles pop up as soon as one
begins to look for them.

I. INTRODUCTION

Many of the most interesting problems in science today
involve large collections of dynamical systems connected to-
gether in complex networks.1–3 From molecular biology to
neuroscience, from condensed-matter physics to the Internet,
researchers are unravelling the structure of complex net-
works, learning how they evolve and function, and exploring
how their architecture affects the collective behavior they
can display. It is in this last area that nonlinear science has so
much to contribute.4–22

To take the simplest case, consider a network of dynami-
cal systems that are identical, or nearly so. Under what con-
ditions will such a network fall into sync, with all its ele-
ments acting as one? How does a network’s ability to self-

synchronize depend on its wiring diagram? And what is the

© 2006 American Institute of Physics3-1
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est topology for achieving synchronization—or for avoid-
ng it when it is undesirable?

From an applied perspective, a better understanding of
ow connectivity influences synchronization could yield
enefits in several fields. For example,

In computer science, Korniss et al.20 have recently sug-
gested a way to build a faster, more efficient architecture
for massively parallel discrete-event simulations. Their
analysis shows that the inclusion of a few random, long-
range communication links between processors, in addition
to the usual local connections, will help keep the distrib-
uted computation moving forward in step across the whole
network, thereby avoiding the data-traffic bottlenecks that
often plague such simulations.
In applied physics, a similar use of sparse random connec-
tions is predicted to foster the coherent operation of super-
conducting Josephson ladder arrays.21 On the other hand,
such long-range links were far less effective at synchroniz-
ing two-dimensional arrays.
In brain science, the different wiring patterns of two areas
in the hippocampus seem to determine which form of epi-
leptic activity they are more liable to exhibit.22 Specifi-
cally, the smaller number of recurrent synaptic connections
in the region known as CA1 makes it more prone to sei-
zures, whereas the region known as CA3, with its greater
recurrent connectivity, is more apt to show synchronous
bursts instead.

he moral in each of these cases is that a network’s archi-
ecture can strongly affect its propensity to synchronize.

The challenge now is to figure out the mathematical
echanisms at work here. One natural way to gain insight is

o look at linearly coupled systems of identical oscillators,
nd then ask how the local stability of the synchronous state
epends on the structure of the coupling matrix.4–12 As pio-
eered by Pecora and co-workers,4,5 this approach reveals
hat the synchronous state may or may not be stable, depend-
ng on where the eigenvalues of the coupling matrix �a topo-
ogical concept� lie in relation to the roots of the “master
tability function” �a dynamical concept�. In this sense, syn-
hronizability is indeed tied to network topology, as
xpected.

But because this framework is based on a local analysis,
t is unable to shed light on a key global question: How likely
s an oscillator network to synchronize, given that it has a
table synchronous state? This is a question about the basin
f attraction for the synchronous state, which �giving in to
emptation� we will refer to as the “sync basin.”

The point is that linear stability analysis tells us nothing
bout how large or small this basin might be. Synchrony
ould be very stable and yet very unlikely, much as a golf
all is very stable once it reaches the bottom of the 18th hole
n a golf course, but it is very unlikely to get there by fol-
owing a random trajectory.

Because of its global character, the question of the like-
ihood of synchrony is far less tractable—and far less
xplored—than the local stability problem. Indeed, the entire
opic of basins is something of an enigma in dynamical sys-

ems theory. We do know some numerical methods for ap-

Downloaded 09 Nov 2012 to 132.210.244.226. Redistribution subject to AIP lice
proximating their boundaries, even in high-dimensional
systems.23 We know that these boundaries can be smooth or
fractal, and we know that the basins themselves can be
riddled with points from the basins of other attractors.24 But
what we do not know is how to compute the total volume or
“measure” of a basin, which is what determines the probabil-
ity that a random initial state will be drawn toward the asso-
ciated attractor. Nor, for the problem of interest to us here, do
we have any idea how the sync basin might expand or con-
tract as the network topology is varied.

We first started thinking about the sync basin in the sum-
mer of 1999. At the time we were very interested in the ring
model of small-world networks,25 and we wondered whether
the likelihood of synchrony might increase, perhaps dramati-
cally, as the ring was progressively rewired from a lattice to
a small world. The thought was that by randomly changing
some local connections to long-range ones, the system might
act in a much more coordinated fashion, thanks to the newly
created communication channels spanning the whole net-
work. The synchronizing effect of sparse, long-range connec-
tions was already suggested by earlier work in
neuroscience,26,27 so our guess seemed intuitively plausible.

For a warm-up problem, we looked at a one-dimensional
ring of n identical phase oscillators, each coupled with equal
strength to its k nearest neighbors on either side:

�̇i = � + �
j=i−k

i+k

sin�� j − �i�, i = 1, . . . ,n , �1�

where n�1 and the index i is periodic mod n. This system
always has a stable synchronous state, given by �i=�t for all
i=1, . . . ,n. However, it was known that other attracting
states, in the form of uniformly twisted traveling waves,
were also possible under certain conditions.28 So our inten-
tion was to rewire this system, by independently changing
each edge to a random one with probability p or leaving it
untouched with probability 1− p, and then to study the like-
lihood of reaching the synchronous state as a function of p.
But we quickly realized that we did not even understand the
basin structure for p=0, the perfectly regular ring!

II. NUMERICAL EXPERIMENTS

A natural first question is to ask how the size of the sync
basin for �1� depends on the coupling range k. Figure 1
shows that for small values of k, only a small fraction of
initial conditions lead to synchrony. With increasing k, the
sync basin expands to fill more and more of the phase space
until eventually sync becomes the only attractor.

By zooming in on the transition more closely, we found
that the synchronous state becomes globally stable when k
�kc�n��0.34n, or in other words, when each oscillator is
coupled to about 68% of the others in the ring. In Sec. III we
derive this result analytically and show that the prefactor
0.34 is given as the root of a certain transcendental equation.
An exact result is possible here, because the critical value kc

can be obtained by a local analysis, even though the question
�which deals with basins� is global. The trick is that the
governing equations reduce to a gradient system in a suitable
rotating frame, so all attractors are necessarily fixed points
nse or copyright; see http://chaos.aip.org/about/rights_and_permissions
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corresponding to phase-locked periodic solutions in the
riginal frame�. When all of these, other than sync, are lin-
arly unstable, we know by default that sync must be glo-
ally attracting.

As k decreases below kc, other competing attractors are
reated. These take the form of uniformly twisted waves:

� j = �t + 2�qj/n + C ,

or j=1, . . . ,n. Here C is any constant and q is a winding
umber, an integer that measures the number of full twists in
hase as we go around the ring once. The simulations indi-
ate that the most gently twisted states, those with q= ±1, are
he first to become stable as k decreases. Then, with further
eduction in k, more highly twisted states are stabilized in
urn. �These results follow from a linear stability analysis
bout the q-twisted state, as shown in Sec. III.�

This raises the question of the relative sizes of the basins
or the stable q-twisted states, compared with the sync basin.
igure 2 shows that the probability that the system will settle

nto a final state with q twists closely follows a normal dis-
ribution in q. Furthermore, as k decreases, the distribution
roadens in a simple way: its standard deviation is well ap-

roximated by ��0.19�n /k−0.11, as shown in Fig. 3.
We have no explanation for these statistical patterns, and

e offer them as puzzles to the readers of this article.
The best anyone has come up with so far is the following

euristic argument, suggested by our colleague Jim Sethna.
y assumption, the oscillators’ phases are initially scrambled

andomly from site to site, so at t=0 the concept of winding
umber is meaningless. But almost immediately, lots of vio-
ent phase slippage occurs; the phase pattern coarsens and

IG. 1. Fraction of initial conditions that lead to perfect in-phase synchrony.
quation �1� was integrated numerically, starting from 100 000 uniformly

andom initial conditions, for various values of k and n. The circles, dia-
onds, and squares represent systems of size n=80,60, and 40, respec-

ively. Error bars are smaller than the markers themselves. Note that the data
ollapse onto a single curve when plotted with respect to the dimensionless
roup k /n, which measures the coupling range as a fraction of the system
ize. Although the plot seems to suggest that 100% of initial conditions
each the synchronous state for k /n=0.30, in actuality the percentage mea-
ured is 99.99%. We observe the full 100% result for the data points with
/n=0.35.
mooths out as neighboring oscillators try to align with their

Downloaded 09 Nov 2012 to 132.210.244.226. Redistribution subject to AIP lice
neighbors. Since each oscillator interacts with k others on
either side, a characteristic coherence length for the system at
this stage should be roughly of size k. So perhaps the entire
ring can now be viewed as a collection of n /k domains, each
with a reasonably well-defined number of twists in its phase
pattern. Assuming that the total number of phase twists in the
solution is conserved from now on, one can estimate the

FIG. 2. Distribution of basin sizes for the various twisted states. These states
are characterized by their winding number q. The data points represent
results obtained from numerical integration of �1� with parameters n
=80,k=1, starting from 100 000 uniformly random initial conditions. Be-
cause the winding number can only take integer values, we fit the data to a
one-parameter discretized Gaussian where the probability that the final state
has winding number q is defined by ��2���−1�q−1/2

q+1/2exp�−x2 / �2�2��dx. The
discrete distribution, shown as a dotted histogram, represents the best �least
squares� fit to the data and has a standard deviation of �=1.63±0.01. The
continuous curve reflects the corresponding continuous Gaussian distribu-
tion for that value of �.

FIG. 3. Standard deviation of the distribution of basin sizes for different
values of n /k. The circles, diamonds, and squares represent systems of size
n=80,60, and 40, respectively. Error bars on the points are smaller than the
markers themselves. The standard deviation � for each condition was cal-
culated using the procedure described in the caption of Fig. 2. As before,
100 000 random initial conditions were used to generate each data point.
The solid line represents a least-squares fit of the data to �=a�n /k+b, with

a=0.191±0.007 and b=−0.11±0.03.

nse or copyright; see http://chaos.aip.org/about/rights_and_permissions
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inding number by summing the twists contributed by each
f the n /k domains. By the central limit theorem, this total
wist should be normally distributed with a standard devia-
ion that grows like the square root of the number of do-
ains, that is, like �n /k. Obviously this argument leaves a

ot to be desired �for instance, aside from its lack of rigor, it
oes not account for the coefficient 0.19�. We hope that
omeone will come up with something better.

Finally, in Sec. IV we outline a research program for
xploring the sync basin and its dependence on network to-
ology in a much more general setting. We also elaborate on
hy we feel these questions may be fruitful and potentially

mportant.

II. ANALYTICAL RESULTS

From now on we are going to view �1� in a rotating
rame, so that phase-locked periodic solutions reduce to fixed
oints. Thus, let �i=�i−�t. Then �i satisfies

�̇i = �
j=i−k

i+k

sin�� j − �i�, i = 1, . . . ,n . �2�

Generalizing slightly, suppose the coupling strength be-
ween oscillators i and j is not necessarily either 0 or 1, but
s given by some weight Gij. To retain the rotational and
eflectional symmetry of �2�, suppose that the weights de-
end only on the separation 	i− j	 between the oscillators.
hen the system becomes

�̇i = �
j=i−n/2

i+n/2

Gi−j sin�� j − �i�, i = 1, . . . ,n . �3�

hrased in terms of the signed separation s= i− j, we assume
hat the weights Gs, for s=−n /2 , . . . ,n /2, are non-negative,
ymmetric about s=0, and decreasing as s increases out to
he maximum �diametrically opposite� separation of ±n /2.

Equation �3� is a gradient system. To see this, let � de-
ote the vector ��1 , . . . ,�n�. Then one can check that �3� is

quivalent to �̇=−�V, where the potential function is

V = −
1

2�
i=1

n

�
j=1

n

Gi−j cos�� j − �i� . �4�

hus all the trajectories of �3� flow monotonically downhill
n this potential surface and asymptotically approach fixed
oints. In particular, we need not concern ourselves with the
ossibility of more complicated long-term behavior, such as
imit cycles, attracting tori, or strange attractors for �3�. Note
hat the fixed points could be either local minima of V �in
hich case they are stable� or saddles or local maxima �in
hich case they are unstable�.

The function V also has a nice physical interpretation: it
ives the potential energy of an XY spin system at zero tem-
erature, with spin state � and interaction strengths and con-
ection topology dictated by G. Then the dynamics �3� imply
hat the spins reorient themselves so as to steadily lower the
nergy of the system.

Although the remainder of the analysis could be con-

ucted on the discrete system �3�, it is simpler and clearer to

Downloaded 09 Nov 2012 to 132.210.244.226. Redistribution subject to AIP lice
work with its continuum limit. The conclusions in either case
are essentially the same, once n becomes moderately large.
So from now on, consider the spatially continuous version of
�3�, given by

��

�t
= 


−�

�

G�x − y�sin���y,t� − ��x,t��dy , �5�

where ��x , t� is the phase of oscillator x at time t. The index
variable x runs from −� to � with periodic boundary condi-
tions. As above, the kernel G provides nonlocal coupling
between the oscillators. It is symmetric, non-negative, and
decreases with the separation 	x−y	 along the ring. For con-
venience G�x� is normalized to have unit integral. Our cou-
pling function −sin�x� is attractive, in the sense that it tends
to pull neighboring oscillators into phase with one another.

A. Twisted states

It is straightforward to verify that

��x,t� = qx

solves the continuum system �5� for any integer q. �This
relies on the evenness of G and the oddness of the sine
coupling function.� We will refer to this particular solution as
the “q-twisted state.”

We now analyze its linear stability. Let

��x,t� = qx + ��x,t� , �6�

where �	1. Keeping only linear terms in � produces the
following equation:

��

�t
= 


−�

�

G�x − y�cos�q�y − x�����y,t� − ��x,t��dy . �7�

Splitting the right-hand side into two terms yields

��

�t
= 


−�

�

G�x − y�cos�q�x − y����y,t�dy

− ��x,t�

−�

�

G�x − y�cos�q�x − y��dy . �8�

To simplify this equation, we define a new function H�x ,q�
=G�x�cos�qx�. Then �8� reduces to

��

�t
= H * � − Ĝ�q�� , �9�

where * denotes convolution and Ĝ denotes the Fourier

transform of G, defined as Ĝ�q�=�−�
� G�y�eiqydy.

Next we calculate the eigenvalues of �9�. Writing the
eigensolutions in the form e
teimx, one can check that the
eigenvalues are real and are given by


�m,q� =
Ĝ�q + m� + Ĝ�q − m�

2
− Ĝ�q� . �10�

Here m=1,2 , . . . is the mode number of the perturbation and
q is any integer. �We ignore the trivial case m=0, which
corresponds to a perturbation in which the same uniform

constant is added to all the phases. By rotational symmetry,

nse or copyright; see http://chaos.aip.org/about/rights_and_permissions
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uch a perturbation amounts to a time translation along the
-twisted solution, and hence has 
�0,q�=0 for all q, con-
istent with what we find from �10�.�

Thus we see that the q-twisted state ��x , t�=qx is linearly
table if and only if

Ĝ�q + m� − 2Ĝ�q� + Ĝ�q − m� � 0, �11�

or all m=1,2 , . . . . In this sense, stability is determined by a
ountably infinite set of conditions, which is not surprising,
ince the twisted state must be stable to perturbations of ev-
ry possible mode number m. Checking all these conditions
ould be difficult, in general, for an arbitrary kernel G. But
ortunately, for the special G of interest to us here, it turns
ut that one of these conditions is stricter than all the others;
f it is satisfied, all the others hold automatically.

. A sufficient condition for stability

The form of �11� resembles a finite-difference approxi-
ation to a second derivative. Thus it seems clear that the

tability of the q-twisted state and the convexity properties of
ˆ �k� must be strongly related.

Let us pursue this idea for the continuum analog of the
ystem �1�. In this special case, each oscillator is equally
oupled to all its neighbors, out to a certain range. We write
he associated kernel as

G�x� = � 1

2�r
, − �r � x � �r

0, 	x	 � �r ,

�12�

eaning that each oscillator is coupled to a fraction r of the
ing with strength 1/ �2�r� and does not interact with the
emaining portion of the ring. The Fourier transform is

Ĝ�q� =
sin��qr�

�qr
. �13�

Now we introduce several new variables to ease the no-
ation. If we let

f�z� =
sin��z�

�z
,

hen the stability conditions �11� become

1
2 �f�qr + mr� + f�qr − mr�� � f�qr�, m = 1,2, . . . . �14�

his can be cleaned up further by writing

Q = qr

nd

M = mr .

hen �14� becomes

1
2 �f�Q + M� + f�Q − M�� � f�Q�, M = r,2r, . . . . �15�

inally, set

SQ�M� = 1
2 �f�Q + M� + f�Q − M�� − f�Q� . �16�
Downloaded 09 Nov 2012 to 132.210.244.226. Redistribution subject to AIP lice
The stability question can now be reformulated in the
following way: given the values of the winding number q
and the coupling range r, the q-twisted state is stable if and
only if

SQ�M� � 0, M = r,2r, . . . , �17�

where Q=qr. So the next step is to extract enough informa-
tion about the function SQ�M� to determine under what con-
ditions these inequalities hold.

It helps to regard SQ�M� as a function defined on the
entire real line, even though we only need to evaluate it on a
discrete set of M values. The idea is that if the inequality
SQ�M��0 holds for all real M �0, then it certainly holds for
the discrete set of values �r ,2r ,3r , . . . 
, which is precisely
what we need to ensure stability. In other words, this ap-
proach will quickly give us a sufficient condition for stabil-
ity. �Obtaining a condition that is both necessary and suffi-
cient is slightly trickier and will come next.�

To gain intuition about the behavior of the function
SQ�M�, we have plotted its graph in Fig. 4 for two values of
Q. Observe that in both cases the graph has even symmetry
and passes through the origin with zero slope, facts which
follow immediately from �16�. For sufficiently small Q, say
Q=0.64 as in Fig. 4�a�, SQ�M� is negative everywhere except
at the origin. But when Q is increased to 0.70 �Fig. 4�b��, the
graph develops two positive bumps bracketing the origin.
Therefore, by continuity with respect to Q, the function
SQ�M� must lose its negative definiteness at a value Q=

somewhere in the interval 0.64�Q�0.7.

In fact, as these pictures suggest, SQ�M� remains nega-
tive definite until its graph becomes concave up at the origin,
which happens when SQ� �0� changes from negative to posi-
tive. From �16� we calculate that SQ� �0�= f��Q�. Furthermore,
one can show that the second derivative of f�Q�
=sin �Q / ��Q� is negative in the interval �−
 ,
� where


 � 0.6626.

Here 
 is the smallest positive root of f��Q� and can be
obtained by solving

tan��
� =
2�


2 − ��
�2 . �18�

Now remembering that Q=qr, we obtain the desired suf-
ficient condition for stability:

Theorem 1: Given r�0, the q-twisted state of �5� and
�12� is stable if 	q 	r�
.

To see what this means for the original system �1� with n
oscillators, each of which is coupled to its k nearest neigh-
bors on either side, we note that 2k /n plays the same role as
r; it expresses the fraction of the entire ring that a single
oscillator feels. Thus, setting r=2k /n, the sufficient condi-
tion becomes 	q 	k�
n /2. For example, if the coupling is
nearest neighbor �k=1�, twisted states are guaranteed to be
stable if they have no more than �
 /2�n�0.33n twists. Ac-
tually, slightly more twists can be tolerated before stability is

lost, as we will see next.
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. The critical first mode

To determine exactly where the q-twisted state changes
tability, we need to examine the behavior of the function

Q�M� more carefully.
Suppose that Q=qr is larger than 
, so that the graph of

Q�M� has two positive bumps on either side of the origin.
igure 5�a� shows such a case �for simplicity, only the right
alf of the bilaterally symmetric picture is shown�. Accord-
ng to the stability criterion �17�, the q-twisted state will be
nstable if and only if any member of the discrete set
r ,2r , . . . 
 lies inside the small interval where SQ�M� is posi-
ive. In the example shown in Fig. 5�a�, only the leftmost
oint M =r lies under the bump. This means that the twisted
tate would be unstable to perturbations along the first mode
=1; in other words, disturbances of the form �=e
teix

ould have 
�0 and hence grow exponentially.
Now consider what happens if we continuously decrease

IG. 4. Graphs of the function SQ�M� for two qualitatively different cases.
a� Q=0.64: The function SQ�M� is concave down at the origin and negative
verywhere except at M =0, where SQ�0�=0. �b� Q=0.70: The graph is now
oncave up at the origin, and there are two intervals on either side of M
0 where SQ�M� is positive.
he coupling range r, holding q fixed. Then the picture in Fig.

Downloaded 09 Nov 2012 to 132.210.244.226. Redistribution subject to AIP lice
5�a� will change in two ways simultaneously: Q=qr will
decrease, which pulls the bump in Fig. 5�a� downward and to
the left; meanwhile, all the points in the discrete set
�r ,2r , . . . 
 slide to the left. The race is on—will the shrinking
bump engulf the leftmost dot at M =r before it can scurry
away toward the origin? Yes, by continuity we know there
must be a critical r where the graph of SQ�M� passes through
the leftmost dot, since by the time Q falls below 
, the graph
has already become negative definite so all the dots surely lie
above it �Fig. 5�b��. Hence the critical value rc must corre-
spond to a value of Qc=qrc that is larger than 
.

This argument also shows that the first mode is always
the critical one; when the twisted state is stable to infinitesi-
mal perturbations along this mode, it is automatically stable
to perturbations along any other mode.

By demanding stability with respect to the critical mode
m=1, we can now boil the infinite number of conditions in
�14� down to the following single, necessary, and sufficient

FIG. 5. Visualization of the necessary and sufficient condition for stability
of the q-twisted state. The graph of SQ�M� �solid line� is shown in relation to
the discrete set �M =1r ,2r ,3r ,4r
 �black dots� for two different values of r.
In both examples, q=1. �a� r=0.70: Here Q=qr=0.70. Since Q�

�0.6626, the graph of SQ�M� is concave up at the origin and has a positive
bump to the right of the origin. The leftmost black dot, at M =1r, lies in the
interval where SQ�M��0; therefore the q-twisted state is unstable to pertur-
bations along the associated mode m=1, as explained in the text. �b� r
=0.65: Now Q=qr=0.65�
 and the graph is negative everywhere. This
picture remains qualitatively unchanged for any r�
; all the black dots lie
above the graph so the q-twisted state is stable. Thus the change in stability
between �a� and �b� must occur for some intermediate value r=rc at which
the graph of SQ�M� passes through the leftmost dot, creating a zero at M
=rc.
condition for stability of the q-twisted state:
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Theorem 2: Given r�0, the q-twisted state of �5� and
12� is stable if and only if

1
2 �f�qr + r� + f�qr − r�� � f�qr� . �19�

or a given value of q, this inequality becomes an equality
recisely at r=rc. Thus rc can be obtained by numerically
olving

f�qrc + rc� + f�qrc − rc� = 2f�qrc� .

able I lists rc as a function of q. Note that qrc�

0.6626, as expected from the argument above. But the dif-

erence is not as large as one might have expected. Indeed,
able I shows that the product qrc approaches 
 very rapidly
s q increases. The percentage difference between them is
hown in Table I as the relative error 	�qrc−
� / �qrc�	.

The most important number in Table I is rc=0.6809, the
tability boundary for the q=1 twisted state. This is the larg-
st value of the coupling range r at which any twisted state
an be stable. Once r exceeds that value, we strongly suspect
hat the only possible attractor is pure synchrony. Translating
ack to the finite-n system �1� by replacing r with 2k /n, this
ould mean that for

k � kc�n� � 0.34n ,

ync is globally stable. Note that this theoretical prediction
or kc�n� is consistent with the numerical results shown ear-
ier in Fig. 1.

But in making this claim, we have glossed over one little
hing. We are assuming that the only candidates for attractors
re pure synchrony and the uniformly twisted states. We
ave not quite managed to prove this. Although we know
rom the earlier gradient system argument that all attractors
ust be fixed points, we have not yet ruled out the possible

xistence of stable fixed points that are nonuniformly twisted.
t seems that some fixed points with spatially varying twist
ust exist—they are the only conceivable objects that could

ifurcate from the uniformly twisted states when the latter
ose stability—but so far we have not proven that all such
tates must be saddles. Nor have we ruled out more exotic
xed points, far from the uniformly twisted ones. We conjec-

ure that any of these, if they exist, will be unstable.

V. DISCUSSION

We hope that we have not exhausted your patience with
he minutia of the previous section. The analysis there is a

ABLE I. Computed values of rc �the maximum value of the coupling range
for which a twisted state is stable� as a function of q, the number of full

wists in the state. The value of Qc=qrc rapidly approaches 
�0.6626 as q
ncreases. The relative error is defined as 	�Qc−
� /Qc�	.

rc�q� Qc=qrc

Relative error
�%�

0.6809 0.6809 2.75
0.3333 0.6666 0.616
0.2214 0.6644 0.268
0.1659 0.6636 0.150
0.1326 0.6632 0.096
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standard local calculation, and we did it in part because we
could, and in part because it was the only way we could
think of to shed any light on the global questions that really
interest us. Specifically, the analysis goes a long way toward
explaining the numerical observation in Fig. 1 that sync is
globally stable for k�kc�n��0.34n. But this sort of result is
much weaker than what we want, which is a better under-
standing of the basin size distribution for the system �Fig. 2�
and how it changes with network architecture �a role played
in Fig. 3 by the ratio n /k�.

Why does any of this matter for science more generally?
There are a few reasons, both practical and theoretical. A
better understanding of the sync basin, even a very crude and
incomplete understanding, would be valuable in diverse
fields. For instance, a healthy human heart has at least two
competing attractors: the normal rhythm �analogous to sync,
and hopefully with a huge basin of attraction� and ventricular
fibrillation, a lethal arrhythmia that is stable once initiated
and which accounts for hundreds of thousands of cases of
sudden cardiac death every year in otherwise fit individuals.
Likewise, the power grid, the largest machine ever built, is
dynamically stable when functioning properly, but also when
blacking out. Knowing more about the basin structure in
both of these examples might help us develop heuristics for
staying in the desirable region.

Admittedly these two problems are formidable and may
not be the best place to start. So how about something as
idealized as a Petri dish full of the Belousov-Zhabotinsky
chemical reaction? The excitable version of this reaction �as
opposed to the spontaneously oscillatory version� has a
stable quiescent state of bland uniformity, colored rusty red
everywhere, coexisting with patterned spatiotemporal states,
adorned by one or more pairs of beautiful blue counter-
rotating spiral waves. Anyone who has ever played around
with this reaction knows that if you start it from a compli-
cated initial condition �say, by sloshing the liquid in the dish
to shear an existing pattern�, the system is much more likely
to settle into spiral waves than uniform quiescence. Why is
that? And how does the probability of uniformity depend on
the size of the dish?

The point is that hardly anyone is asking such questions,
and we have hardly any techniques for answering them or
even approaching them. This is a sign of opportunity. Any
work on basins in complex networks or spatially extended
systems is bound to uncover interesting things quickly.

There are so many natural questions to ask. Pick your
favorite dynamical system, any type of network topology,
any weighting scheme for the links, and ask how the prob-
ability of sync depends on those factors. Although we have
no strategies for making analytical headway, good ideas
might dawn on us after numerical experiments reveal the
basic regularities at work here.

In particular, it should be numerically straightforward to
check what rules �if any� govern the size of the sync basin. In
place of n /k in Fig. 1 or the rewiring parameter p we origi-
nally intended to use, you could plot your results versus
whatever parameter controls the network topology. For ex-
ample, random graphs with prescribed degree distributions1–3
can often be characterized by a single parameter, such as the
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ean of a Poisson degree distribution, the exponent of a
ower-law distribution, and so on.

With any luck, maybe the powerful methods of statistical
echanics can be brought to bear. This approach has already

roven useful for calculating the storage capacity of
ssociative-memory neural networks or exploring the basin
tructure of the Kauffman model of Boolean gene networks.
he promising questions here would be to investigate how
asin structure changes with network topology. Some work
n this direction have already begun to appear.29,30

We wish you happy hunting.
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