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Basin stability for burst synchronization in small-world networks of chaotic slow-fast oscillators
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The impact of connectivity and individual dynamics on the basin stability of the burst synchronization regime
in small-world networks consisting of chaotic slow-fast oscillators is studied. It is shown that there are rewiring
probabilities corresponding to the largest basin stabilities, which uncovers a reason for finding small-world
topologies in real neuronal networks. The impact of coupling density and strength as well as the nodal parameters
of relaxation or excitability are studied. Dynamic mechanisms are uncovered that most strongly influence basin
stability of the burst synchronization regime.
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I. INTRODUCTION

Collective phenomena in neuronal networks that exhibit
bursting oscillations have a particular meaning for under-
standing many vital processes in brain and cell cultures [1].
Burst oscillations consist of alternating periods of groups of
spikes and periods of quiescence. From a nonlinear dynamics
viewpoint, such oscillatory mode is a relaxation; i.e., it is
characterized by two different time scales, fast and slow.
Another dynamic feature that may be inherent to bursting
oscillations is their chaotic nature. When analyzing large-scale
neural circuits, one usually needs to use concepts and ap-
proaches of complex networks theory [2–5] considering these
circuits as sets of nodes coupled by links and studying their
interaction. One of the important collective effects in neuronal
networks exhibiting bursting is burst synchronization, where
spiking phases of different neurons start and end at the same
(close) moments, while single spikes within bursts appear
generally at different moments [6–10] (see also Refs. [11,12]).
It was shown in Refs. [13–15] that network mechanisms,
i.e., connectivity pattern and coupling strength, are significant
for burst synchronization, in particular, in such a class of
complex networks as small-world ones. The property of
“small-worldness” [16,17] is assumed to be very important
in nature, technology, and society due to its universality. Many
anatomical and functional networks of various brain areas are
confirmed to be small-world and at a first approximation can be
described as small-world Watts-Strogatz networks (see, e.g.,
Refs. [18–20]). It should be noted that the reason was unclear
for a long time why real networks have small-world features
holding an intermediate position between regular and random
ones. Only recently a reason was proposed in Refs. [21,22],
namely that small-world oscillatory networks display the
largest possible basin stability of the synchronization regime.
Basin stability characterizes the relative volume of phase space
containing initial conditions starting from which trajectories
tend to the attractor determining the synchronous state (see
also Ref. [23]). In Ref. [21] for small-world networks of
Rössler oscillators, it was shown that the basin stability of the
synchronization regime grows rapidly and then exponentially
declines as the rewiring probability increases.

In this work we consider small-world networks where the
node’s oscillators display chaotic spike-burst oscillations, i.e.,
fast-slow systems, one of the important oscillatory modes in

neuron networks. We study the basin stability of the burst
synchronization regime depending on topological features,
coupling strength, as well as on nodal dynamic properties.
In Sec. II the main properties of the nodal dynamics are
described, in Sec. III burst synchronization is introduced
and the procedure of estimating basin stability is explained.
Sections IV and V are devoted to studying the impact of
connectivity and nodal dynamics, respectively, on the basin
stability of burst synchronization. Finally, in Sec. VI we draw
conclusions and discuss our main results.

II. NODAL DYNAMICS

The dynamics of the nodes are described by a discrete-time
system [24,25]:

xi,n+1 = xi,n + FH (xi,n) − yi,n + Ii,n,
(1)

yi,n+1 = yi,n + ε(xi,n − Ji),i = 1,...,N.

Here n = 0,1,2, . . . is discrete time, the variables xi,n and yi,n

characterize the state of the ith oscillator at the moment of n.
The nonlinear function FH (x) = x(x − a)(1 − x) − βH (x −
d), where H (x) is the Heaviside step function, and the
parameters a, β, and d control the dynamical oscillatory
regime. The parameter ε determines the rate for the variable yi ,
Ji characterizes the excitatory properties of oscillator i, and the
term Ii is an external influence on the ith oscillator. System (1)
is constructed from a discrete version of FitzHugh-Nagumo
model with an additionally introduced discontinuity expressed
by −βH (x − d). Depending on parameter values it reproduces
a wide range of dynamical regimes displayed by real neurons,
for example, excitable regimes, periodic spiking, subthreshold
oscillations, spike-bursting, etc. The shape of signals generated
is controlled by a, and their period is determined by ε and Ji .
The discontinuity term allows one to obtain chaotic regimes
that are absent in standard FitzHugh-Nagumo-type systems,
namely chaotic spike-burst oscillations. This property is due
to the fact that the fast subsystem (i.e., where ε = 0) of the
basic model (1) is a Lorenz-type map for certain parameter
values. By varying β and d one can modify the amplitude and
number of spikes in bursts (for more details, see Refs. [24,25]).
An example of chaotic spike-burst behavior generated by
Eq. (1) is shown in Fig. 1, where a chaotic attractor and the
corresponding waveform are shown in Figs. 1(a) and 1(b),

1539-3755/2015/92(4)/042803(10) 042803-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.042803


MASLENNIKOV, NEKORKIN, AND KURTHS PHYSICAL REVIEW E 92, 042803 (2015)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-5

0

5

15

20 x 10-3

x

y

0 200 400 600 800 1000
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

n

x

(a)

(b)

10

FIG. 1. (a) Chaotic attractor of the single map (1) for a = 0.1,
β = 0.3, d = 0.45, ε = 0.001, J = 0.1, and I = 0. (b) Correspond-
ing spike-burst oscillations.

respectively. In this work we deal with oscillators exhibiting
such type of activity. Since we study, besides others, the
nodal effect on collective phenomena, one should know the
properties of individual bursting dynamics such as an average
period and number of spikes per burst depending on ε and Ji .
Figure 2 shows the average period of spike-burst oscillations,
the average duration of the active phase where spikes are
generated, and the average number of spikes per burst.
Depending on ε and J these characteristics are rather smooth,
which indicates that the properties of the chaotic attractor are
structurally stable with respect to parameter varying.

Now consider a small-world network of N node’s oscil-
lators expressed by Eq. (1) connected with each other by
undirected links. The small-world topology is constructed by
means of the Watts-Strogatz algorithm [16]. We start with
a regular ring-like network where each node is connected
to 2k neighboring nodes; i.e., the degree of each node is
equal to 2k. Then we look over all existing links and with
probability Prew the connection between node i and node
j breaks and a new connection is created between node i

and another randomly chosen node h. Note that the total
number of links (kN ) in the network does not change, and the
parameter Prew is thus a measure for regularity and randomness
of the network topology: Prew = 0 corresponds to a regular
network, Prew = 1 corresponds to an absolutely random one,
and networks with Prew between 0 and 1 have both features.
One of the problems we are interested in is what influence do

the topology parameters (Prew, k) have on the synchronization
properties of such networks in terms of basin stability.

The internodal interaction expressed by the term Ii in Eq. (1)
is modeled by the simplest coupling scheme where the nodes
are diffusively connected by the undirected links that have the
same coupling strength; i.e., the coupling term reads

Ii,n = c

N

N∑

j=1

Gi,j (xj,n − xi,n), i = 1, . . . ,N, (2)

where c controls the global coupling strength, and the elements
Gi,j of the matrix G determine the network topology: Gi,j = 1
if there is a connection between nodes i and j , and Gi,j = 0
otherwise.

It should be noted that we consider networks of nonidentical
oscillators that have different Ji-values and that are Gaussian
distributed with mean J0 and variance δJ . The waveforms
produced by the network dynamics of such oscillators are
shown in Fig. 3. It is seen that in a purely regular network
[Fig. 3(a)], the spikes of active phases appear in a shifted
manner, while in the case of a network with rewired links the
spikes emerge in closer instants [Fig. 3(b)].

III. BURST SYNCHRONIZATION AND BASIN STABILITY

A usual way to estimate burst synchronization [13,26,27] is
to introduce a phase variable for each oscillator and to compute
the complex order parameter in the Kuramoto’s sense whose
time-averaged magnitude characterizes phase synchronization
of bursts [28]. A possible method for defining a phase is to
assume the beginning of each burst as a moment for zero
phase and during the instants in between the phase increases
linearly from zero to one. Obviously for this method one
needs to know the oscillation period, which is varying and
is unknown a priori, and hence it is often difficult to define a
phase unambiguously. Here we use an alternative and rather
simple method proposed in Refs. [29,30] and developed in
Ref. [31], which gives similar results, however, does not
require introducing a phase and is based on finding coincident
active phases.

The procedure of estimating a burst synchronization degree
is the following. Since we deal with nonidentical oscillators
having different Ji values, we determine a minimum value of
this parameter in the network: Jmin = mini=1...N {Ji}. We say
that the ith oscillator is in an active phase if xi,n > Jmin, and it
is in a passive (or quiescent) phase otherwise. We describe
the state of the ith oscillator by the auxiliary variable χi ,
where χi = 1 for xi,n > Jmin and χi = 0 for xi,n � Jmin. For
a long enough time series {xi,n,i = 1 . . . N,n = 0 . . . T }, we
calculate the following quantity:

Tact = 1

N

N∑

i=1

T∑

n=0

χi,n, (3)

which measures the duration of all active phases averaged over
the network. Next, we calculate the quantity

Tcoin =
T∑

n=0

N∏

i=1

χi,n, (4)
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FIG. 2. Properties of chaotic spike-burst oscillations generated by Eq. (1): (a, b) their average period, (c, d) average duration of the active
phase, and (e, f) average number of spikes per burst, depending on (a, c, e) ε (for J = 0.1) and (b, d, f) J (for ε = 0.001). The other parameters
are a = 0.1, β = 0.3, d = 0.45, and I = 0.

which equals the time during which all the oscillators are
simultaneously in an active phase. It is clear that the ratio of
these two quantities,

σ = Tcoin/Tact, (5)

determines the average fraction of simultaneous generation
of active phases in a total duration of all active phases. In
other words, σ close to 1 corresponds to burst synchronization
when the active phases of different oscillators start and end
at close instants of time; the closer σ to 0, the lower the
burst synchronization degree is. We compared this method

with the phase approach to burst synchronization and found
a qualitative similarity of the results they gave (see also
Refs. [30,31]).

Basin stability of a synchronization regime gives infor-
mation about a relative volume of the attraction basin of
the attractor corresponding to this regime. By the relative
volume of the basin we mean that we do not calculate its
absolute value but we quantify it relatively to the phase-
space region where the dynamics under study occur after
long enough transients. This region is chosen as an area
for uniformly distributed initial conditions. Since we deal
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FIG. 3. Burst oscillations in small-world networks of N = 50
nodes for different rewiring probabilities: (a) Prew = 0; (b) Prew =
0.3. The other parameters are c = 1, k = 11, J0 = 0.1, and δJ =
0.015.

with burst synchronization of nonidentical oscillators, it is
necessary to define what we mean by a burst synchronization
regime. In other words, one should specify a threshold σth such
that when σ > σth then we say that there is the regime of burst
synchronization. For time series starting from different initial
conditions and (or) different structure configurations one usu-
ally obtains various values of σ due to the chaotic dynamics,
nonidentity, and topological variability. The distributions of
σ ’s shown in Fig. 4 for different values of ε indicate rather
strong differences of the widths as well as the maxima of these
curves. The choice of σth is rather arbitrary, however, as it
is seen from Fig. 4 that if one chooses, say, σth = 0.95, then
all σ ’s lie below this value and hence burst synchronization
with such a criterion is not reachable for any initial conditions.
In most cases we use σth = 0.85, which allows us to monitor
changes in the basin stability under varying parameters, and
in some cases we discuss what happens if one considers other
possibilities (e.g., σth = 0.9, 0.8).

To characterize a relative volume of the attraction basin of
the burst synchronization regime, we perform the following
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FIG. 4. (Color online) Distribution of σ values for different ε

values. The parameters are N = 50, Prew = 0.3, k = 11, c = 1,
J0 = 0.1, and δJ = 0.01.

procedure. For each set of network parameters we generate M

different realizations, and for each of them we compute the
value of σ . After that we calculate the number of realizations,
Ms , for which σ > σth, then the ratio of Ms to M gives an
estimation of the basin stability SB :

SB = Ms/M. (6)

Obviously, the value of SB changes within the interval from 0
to 1; and the closer SB to 1, the higher the basin stability, and it
is more likely that the network comes to the burst synchronous
state.

Note that for each of the M realizations, the initial
conditions for each oscillator are chosen randomly from
a uniform distribution within the area A = {−0.12 < xi <

0.5, − 0.005 < yi < 0.035}, i = 1 . . . N , where the chaotic
attractor is localized, and moreover, a new network config-
uration (if there are several of them) is generated for the
topology with the same characteristics. Thus, Eq. (6) takes
into consideration an averaging over the initial conditions of
(xi, yi) as well as over the ensemble of different networks with
the same topological parameters (N , k, Prew). It should be also
noted that when calculating σ , the first T0 values of xi,n are
skipped, and the remained T − T0 ones are taken.

IV. IMPACT OF CONNECTIVITY PARAMETERS

First, we examine the impact of the network connectivity
on the collective dynamics; i.e., we are interested in the role
of the rewiring probability Prew, the nodal degree k, and the
coupling strength c. Figure 5 shows SB(Prew) for different
small values of the parameter ε. One can see that three of the
curves have rather steep increasing parts below some critical
value P ∗

rew and flat decreasing parts above P ∗
rew. The other

two curves are considerably lower than the previous three;
however, one can distinguish similar but less pronounced
increasing and decreasing parts. These features of SB(Prew)
are qualitatively similar to the case of small-world networks of
Rössler oscillators in the sense that the curves have a maximum
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FIG. 5. (Color online) Basin stability versus rewiring probability
Prew for different values of ε. The parameters are N = 50, k = 11,
c = 1, J0 = 0.1, and δJ = 0.01.
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The parameters are N = 50, Prew = 0.3, J0 = 0.1, and δJ = 0.01.

corresponding to the rewiring probability providing the largest
basin stability. However, an important distinction in our case
is that the decay of SB(Prew) is not exponential, but it is close
to linear and there are no such pronounced peaks in the curves
like in Rössler networks. So there are rather wide intervals
of Prew for which SB takes its maximum value. Note that the
curves are sensitive to the nodal parameter ε. In particular, the
maximum of basin stability for ε = 10−3 is much larger than
that for ε = 4 × 10−3; the curve for ε = 5 × 10−3 is above
that for ε = 4 × 10−3 for all rewiring probabilities, and the
threshold for reaching a maximum in the case of ε = 5 × 10−3

is lower than that for ε = 10−3. Below we consider in more
detail the influence of nodal dynamics on the basin stability of
burst synchronization.

The next question is the influence of the network density
characterized by k. Figure 6(a) shows that for very sparse
networks the burst synchronous regime has a basin stability
near zero. Only above some threshold value of k, the basin
stability begins to grow rapidly. An important point is that
for very dense networks [see k > 20 in Fig. 6(a)] SB begins
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FIG. 7. (Color online) Basin stability versus (a) N and k (for c =
1) and (b) N and c (for k = 0.2 × N ). The parameters are J0 = 0.1,
δJ = 0.01, ε = 10−3, Prew = 0.3.

to decrease. With increasing number of links in the network
(while the other parameters are fixed), the coupling term Ii in
system (1) grows, the spike-burst oscillations are distorted, and
there appear outbursts from active chaotic phases to passive
ones. According to our criterion of burst synchronization, this
means that the duration of simultaneous generation of bursts
decreases; hence, σ also decreases and the synchronous state
may not be reached.

An analogous effect is observed for increasing coupling
strengths [see Fig. 6(b)]. In all the cases, there is a threshold
value of c above which SB gradually increases and reaches
its maximum value. Note that when the coupling strength
becomes sufficiently large, the basin stability decreases, which
occurs due to the same factors as previously discussed for
the effect of k. The larger c, the greater the coupling term,
and starting from some c there is a distortion of bursts, and
for a further increase of the coupling strength [not shown in
Fig. 6(b)], the coupling term Ii can be so large that individual
oscillators leave the partial chaotic attractors and go to infinity.

We checked these effects depending on the network size
and found that for N = 50 ÷ 150, the transition from low to
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high basin stability occurs near k ≈ 0.2N for a wide range
of parameters [an example is shown in Fig. 7(a)], while in
terms of the coupling strength this occurs at about c = 1.0
[Fig. 7(b)].

In order to relate a deformation of phase-space geometry
with network rewiring, we study probability density distri-
butions. We explore the motion of trajectories (xmean, ymean)
in the phase plane (x,y), where xmean = 1

N

∑N
j=1 xj , ymean =

1
N

∑N
j=1 yj . Similarly to the procedure described in Sec. III,

we compute time series of (xmean, ymean) for M different
realizations that characterize a certain network structure. We
place a partition grid with rectangles Rx,y with sizes �x × �y

onto the region A and compute how often phase points
fall into each Rx,y . The ratio of the number of points Nx,y

in a rectangle Rx,y to the total number of points M × T

(where T is the duration of time series) gives an estimate
of the probability for a trajectory to enter Rx,y . We define
the probability density as ρx,y = Nx,y/(MT �x�y) and plot
this for different networks comparing with corresponding
values of basin stability. Figures 8(a) and 8(b) show ρx,y

for two different rewiring probabilities Prew = 0 (a regular
network) and Prew = 0.3 (a small-world network). These
distributions have some similarities with the chaotic attractor
of an individual oscillator [cf. Fig. 1(a)], e.g., they have a
left-hand branch of slow regular motions and a right-hand
region of fast chaotic motions. However, the distributions ρ(1)

x,y

in Fig. 8(a) and ρ(2)
x,y in 8(b) differ from each other in some key

points. First, the distribution ρ(2)
x,y has more distinct stripes in

the chaotic region which correspond to phase-space regions
with the most likely trajectory visiting. This is supported
by Figures 8(c), 8(d), and 8(e), which show projections of

ρ(1,2)
x,y onto different vertical lines. Second, the distribution

corresponding to Prew = 0 has wider sizes in the y direction
of its regular and chaotic parts compared to that of the case
Prew = 0.3. Since Fig. 8(b) corresponds to the case with the
highest basin stability, those phase trajectories that move
mainly in ρ(2)

x,y determine the regime of burst synchronization
according to the definition given in Sec. III. Note that in the
case of ρ(1)

x,y , trajectories spend a long time moving in an
upper area that is beyond ρ(2)

x,y , and hence these trajectories
do not contribute to the burst synchronization regime and
the respective basin stability is close to zero. Comparing a
distribution ρx,y corresponding to some network topology with
ρ(2)

x,y , one can conclude whether this topology results in a high
basin stability for burst synchronization (if ρx,y is similar to
ρ(2)

x,y) or in low one (if ρx,y is close to ρ(1)
x,y).

V. IMPACT OF NODAL PARAMETERS

The next important question is about the influence of nodal
dynamics on the basin stability. An interesting problem is
what are the consequences of a change in the properties of
the chaotic attractor controlled by the parameters ε and J0.
As it follows from the previous section, the parameter ε has
a drastic impact on the basin stability (see Fig. 5). Now for
the fixed connectivity parameters Prew = 0.3 and k = 11 and
the coupling strength c = 1 we plot SB versus ε for J0 = 0.1.
Figure 9 (black squares) shows several pronounced maxima
and minima of SB(ε), e.g., two maxima at ε = 3 × 10−3

and ε = 5 × 10−3 and the minima at ε = 4 × 10−3 and ε =
8 × 10−3 (compare with Fig. 5). Note that in Fig. 9 shown are
also curves obtained for other burst synchronization criteria
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σth (red circles for σth = 0.8 and blue asterisks for σth = 0.9).
These two curves repeat the main properties of the first one
(corresponding to σth = 0.85), i.e., qualitatively indicate the
existence of ε values corresponding to low or high basin
stabilities. One can see that the greater σth, the less SB , i.e., a
less number of initial conditions come to the burst synchronous
state defined by the particular σth criterion.

We studied the effect of the network size and found that the
important properties of the basin stability remain the same for
larger networks. Figure 9 shows that for N = 100 the curves
shown by triangles for different σth criteria are very similar to
those corresponding to N = 50. They have their maxima and
minima at the same values of ε; however, for most of ε’s, the
basin stability of the larger network is lower than that for the
smaller ones.

Another nodal parameter J0 also controls the basin stability
as it follows from Fig. 10(a), which shows SB versus J0

for three different values of ε. While for ε = 10−3 the basin
stability gradually increases from small values and becomes
close to one, for the other two ε’s we observe oscillatory curves
SB(J0). It is interesting to note that changing ε from 4 × 10−3

just to 5 × 10−3, the J0 coordinates for maxima and minima
of the basin stability are shifted.

It should be noted that the influence of the parameter
δJ as a measure of similarity is to decrease basin stability
SB with increasing δJ as shown in Fig. 10(b). The figure
demonstrates that identical nodes as well as those with small
enough mismatch tend to have a larger basin stability for burst
synchronization than that of strongly mismatched nodes.

To understand the reason for the intricate behavior of SB

versus J0, we plot the characteristics of burst oscillations, the
average number of spikes per burst Nspb, and the average dura-
tion of the active phase Tact. Both quantities are averaged over
time and over all oscillators, i.e., they take into account the joint
effect of nodal dynamics and internodal complex interaction.
Figure 11 shows for two different ε’s the dependence of Nspb
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FIG. 10. (Color online) Basin stability versus (a) J0 (for δJ =
0.01) and (b) δJ (for J0 = 0.1) for different values of ε. The
parameters are N = 50, Prew = 0.3, k = 11, c = 1.

and Tact on J0, and by comparing these plots with SB(J0), we
find that the local maxima of the Tact(J0) appear near the same
values of J0 as the local maxima of SB(J0), and at these J0’s the
average number of spikes per burst changes abruptly. Hence,
the curves Nspb(J0) have a stair-like form. These facts mean
that the local increases of the basin stability are associated
with increasing active burst phases and, at the same time, with
the appearing of new spikes in the bursts.

Note that such characteristic as the average number of
spikes per burst calculated for individual nodal dynamics,
depends monotonically on J ; namely, in the region shown
in Fig. 11 individual Nspb increases monotonically with
increasing J (see Fig. 2(f)). However, if one considers another
quantity of individual nodal dynamics, the most likely value
of the number of spikes per burst, it has a stair-like form
analogous to those shown in Figs. 11(c) and 11(d). One can
conclude that the collective network effect, among others, is
to make the distributions more symmetric and, as a result,
to transform most likely characteristics to averaged ones. To
compare the network effect with individual dynamic features,
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we plot SB versus ε and J0 (see Fig. 12) and show the
curves which divide the (ε, J0) plane into regions where
a single oscillator with corresponding parameters generates
bursts with the most probable value of Nspb indicated in the
plane by numbers 1 . . . 10. It is seen that in general the borders
between different areas fall onto the local maxima of the basin
stability, however, this is not the case for small ε’s, in particular
ε < 2 × 10−3.

VI. CONCLUSION

We have studied properties of burst synchronization in
small-world networks of map-based chaotic neurons in terms
of basin stability. With increasing rewiring probability the
basin stability of the burst synchronization regime first sharply
increases, reaches its maximum value, and then gradually
decreases. The problem of stability of synchronization regimes
in neural networks has a particular meaning as far as in
large-scale complex neural circuits there are usually a variety

of possible oscillatory modes, and it is very important to know
how robust is a certain regime to external perturbations [32,33].
In particular, since most of neural networks are adaptive
systems in which the connectivity structure can evolve along
with cellular and synaptic dynamics, one has to study the
impact of topology rewiring on collective behavior. The
framework of basin stability has already allowed us to uncover
important mechanisms of dynamical networks’ behavior. In
Ref. [34] the authors showed that changes of basin of attraction
of the synchronization state underlies a hysteretic behavior at
the transition to synchronization. The authors of Ref. [35]
found that in networks with stochastically rewired links the
small-world topology leads to the largest sensitivity to dynamic
connections, i.e., the basin stability of the synchronization
regime in small-world networks starts to increase at lower
rewiring frequencies than that of random ones.

We have considered small-world networks containing a
few dozens oscillators, which is certainly not the case for
large-scale biological neural networks. However, in many
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FIG. 12. (Color online) Basin stability versus ε and J0. The
parameters are N = 50, Prew = 0.3, k = 11, c = 1, and δJ = 0.01.
The solid curves divide the plane into areas with different numbers
of spikes per bursts indicated on the plot by 1 . . . 10.

experimental in vitro studies neural cultures evolve to a
multicluster state where each densely packed cluster comprises
about one hundred cells (see, e.g., Ref. [36]). Our result
suggests that there is an optimal ratio between regular and
random features of the network structure corresponding to
the largest basin of stability of the burst synchronization state.
Another point is that unlike the networks of Rössler oscillators,
the basin stability remains relatively large if one increases
randomness in a network topology, i.e., bursting oscillators
display synchronization that is more reliable to rewiring in the
sense of basin stability.

We have also found that the coupling density and the
coupling strength influence the basin stability similarly, i.e.,
they have some threshold values, below which the burst
synchronization regime is hardly reachable, and above which
the basin stability grows up. Normally, the basin stability
slightly decreases with increasing coupling density or strength
for relatively large values of them. An intriguing dependence
of the basin stability on the parameters of individual nodal
dynamics is observed; i.e., there is a possibility to get either
small or large basin stability in the same network by only
varying the parameters of relaxation or excitability. We have
explained this effect revealing that the number of spikes per
burst plays a key role in such a collective phenomenon. We
have also discussed the impact of the network size and the
criterion of burst synchronization chosen.

An interesting point is that although we have considered
bursting oscillators and applied the specific synchronization
criterion we have found that the rewiring of links influences
the basin stability in a manner similar to small-world networks
of identical Rössler oscillators [21]. This result suggests the
generality of the effect in a quite wide class of complex
oscillatory networks. However, it is still needed to investigate
other kinds of oscillators and other types of synchronization.
Our calculation confirmed the usage of the basin stability ap-
proach as the most convenient way to explore synchronization
phenomena in large-scale systems where other methods are
hardly applicable due to nonidentical elements.
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