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ABSTRACT

We disclose the generality of the intrinsic mechanisms underlying multistability in reciprocally inhibitory 3-cell circuits composed of sim-
plified, low-dimensional models of oscillatory neurons, as opposed to those of a detailed Hodgkin–Huxley type [Wojcik et al., PLoS One 9,
e92918 (2014)]. The computational reduction to return maps for the phase-lags between neurons reveals a rich multiplicity of rhythmic pat-
terns in such circuits. We perform a detailed bifurcation analysis to show how such rhythms can emerge, disappear, and gain or lose stability,
as the parameters of the individual cells and the synapses are varied.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011374

Complex multistable bursting rhythms can arise even in simple
biological neural circuits. We employ a computational technique
combining phase-lag return maps and fast (parallel) Graphics
Processing Unit (GPU)-based sweeps of the phase and param-
eter spaces to identify multistable patterns, rhythm switching,
and attractor robustness in reciprocally inhibitory 3-cell circuits
composed of the proposed generalized Fitzhugh–Nagumo model
of “spike-less” bursters. With such maps, we can thoroughly
examine how internal and external factors such as the synaptic
strengths, network asymmetry, and externally injected currents
determine what stable rhythmic patterns can co-exist, emerge, or
disappear, as well as their underlying bifurcation mechanisms.
Depending on intrinsic mechanisms, such as release and escape
in individual cells, these networks can produce a variety of mul-
tistable rhythmic states, ranging from penta-stability with phase-
locked bursting pacemakers and traveling wave patterns, or stable
chimeras admitting recurrent phase slipping (PS) of one cell with
respect to the other two that remain phase-locked over time, to
more exotic behaviors such as a robust stable synchronous state
with all three cells oscillating together or a lack of phase locked
rhythmic states altogether. We present detailed transition mech-
anisms between such rhythms including saddle-node, pitch-fork,
and secondary Andronov–Hopf or torus bifurcations, as well as
the emergence of a transitive torus. Last, we introduce the concept

of 2θ-neurons to build even simpler neural circuits capable of
desired dynamics. Our qualification promotes the use of simpli-
fied, low-dimensional modeling of multistable bursting patterns
arising in oscillatory neural circuits in lieu of computationally
intensive high-dimensional Hodgkin–Huxley type models.

I. INTRODUCTION

A central pattern generator (CPG) is a small network of cou-
pled neurons that determines and autonomously controls rhythmic
oscillations underlying sensory, motor, or cognitive behaviors of an
animal. CPGs are implicated in a variety of functions ranging from
respiration, heartbeat, and circulation to sleep and locomotion.2–15

While many insights into the operational principles of CPGs have
been obtained from experimental and computational studies, the
basic principles of robustness and stability of many CPGs observed
in nature are yet poorly understood and cannot be inferred a
priori. The cooperative dynamics of coupled cells is an area of
active ongoing research, with both biological and phenomenological
approaches employed.8,16–23 The smallest building unit commonly
tied to many CPGs is a pair of bilaterally symmetric neurons that
mutually inhibit each other to produce anti-phase bursting, called
a half-center oscillator (HCO). The current study is focused on the
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rhythmic dynamics, transitions, and bifurcations occurring in the
context of a 3-cell neural network motif, made up of intercon-
nected HCO circuits. Various 3-cell biological circuits that form
constituent blocks or centers for larger networks have been reported
previously.24–30

Several modeling paradigms have been applied for studies of
such circuits, including biologically relevant Hodgkin–Huxley (HH)
type models, in which the individual parameters can be related to
specific ionic currents or concentration gradients. The high dimen-
sionality of the detailed HH-type models presents obvious difficul-
ties in performing a thorough dynamical and bifurcation analysis
to classify their generic properties. Such understanding is essen-
tial to reliably assemble and configure small neural networks with
common oscillatory characteristics. The simpler integrate-and-fire
models, which belong to the opposite end of the spectrum of mathe-
matical models, are often inadequate to connect their parameters to
biological mechanisms that may be directly manipulated or affected,
failing to capture nuances in the dynamic behaviors that intermedi-
ate systems can. In this paper, we employ the so-called generalized
FitzHugh–Nagumo (gFN) neurons to model 3-cell networks. This
2D gFN-neuron model presents a better description of some of the
pivotal properties of typical HH-type square wave bursters. We use
it to showcase the essential characteristics of the building blocks of
rhythmic circuits to stably generate the desired dynamics, regardless
of the specific models of neurons and synapses. The gFN-equations
are simpler and hence more practical for computational studies,
especially for intense GPU-based sweeping of parameters and initial
conditions.

This paper capitalizes on our previous work and the well estab-
lished principles in the characterization of 3-cell circuits made of
HH-type neurons (as depicted in Fig. 1).1,33,34 The goal is to present

novel findings using parameter sweeps that reveal how the multista-
bility of a 3-gFN motif is aligned with its parameter space. It also
serves as a tutorial blueprint, providing a complete framework for
interested researchers to borrow and employ our methods for the
analysis of similar oscillatory networks. We employ gFN-neurons
to study a variety of polyrhythmic dynamics arising in 3-cell cir-
cuits with symmetric and asymmetric connectivity, as well as various
fast, slow, and delayed effects. While maintaining generic behaviors,
this reduction in complexity allows for more extensive exploration
of key parameters in neural systems ranging from inherently qui-
escent or tonic spiking to intrinsic bursters. It also aids our search
for biologically plausible circuitries that ensure the robustness of the
rhythmic patterns observed in nature. One important aspect of the
so-called multifunctional CPGs is the ability of the same circuit to
produce more than one observable rhythmic outcomes, as well as
to switch between its rhythms.29,33,35–40 We examine how changes in
parameters can trigger transitions or bifurcations in the rhythms of
an otherwise robust network. We summarize the use of phase lags,
their corresponding Poincaré return maps, and fast GPU-based par-
allel simulations to characterize the state space of the 3-cell motif
and to identify its stable and unstable rhythms.

Specific results are presented in terms of two primary mech-
anisms underlying network rhythmogenesis—synaptic release and
escape.39,41 For each mechanism, we contrast the behaviors of sym-
metric networks with uniform all-to-all inhibitory connections, to
those observed in asymmetric motifs with one or several distinct
connections. We study how network circuitry influences the occur-
rence and stability of various rhythms with phase-locked states,
periodic phase slipping, or chimera-like behaviors. We determine
the ranges of network parameter values, specifically the synaptic
coupling strengths and the external current drives, that give rise

FIG. 1. (a) Snapshot depicting the current states (represented by the blue, green, and red spheres) of three weakly coupled cells at t = 0 and their further progressions at
t = 10, on the bursting orbit (gray) in the 3D phase space of the Hodgkin–Huxley type model of the leech heart interneuron.31,32 The plane 2syn represents the threshold
for the chemical synapses, which divides the active “on” phase (above it) and the inactive “off” phase; here, the active red cell inhibits the quiescent green and blue ones.
(b) Burst initiations in successive voltage traces generated by the 3-cell neural network allow us to define the relative delays τ ’s and hence the phase lags [given by Eq. (3)]
between its constituent bursters; see Refs. 1 and 33 and Sec. II for further details.
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to these behaviors and the underlying bifurcations. We also con-
nect overarching mechanisms and present the stages of transition
from the release to the escape mechanisms, in terms of bifurcation
sequences that the corresponding fixed points (FPs) in the Poincaré
return maps for the phase lags between the constituent neurons
may undergo due to network parameter variations. We elaborate on
several specific examples chosen for both relevance and novelty.

This paper is organized as follows: first, we discuss the gFN
models of neurons coupled in a network with fast inhibitory
synapses. Next, we introduce phase lags between oscillatory neu-
rons, followed by how 2D Poincaré return maps for such phase
lags are defined and the correlations between the fixed points of
these maps and the multiple phase-locked states of the correspond-
ing voltage traces. We examine several representative networks
to demonstrate the association between the repertoire of possible
rhythmic outcomes for a given motif and its parameter space. We
also discuss the role of non-local bifurcations and how these shape
the borderlines separating the attraction basins in the 2D Poincaré
map. This is followed by a discussion of some exotic motifs with-
out any phase-locked rhythmic states. Also of our special interest is
the case of the motif that opens up another possibility—the robust
synchronous state when all three cells oscillate together. Finally,
we introduce the concept of the reduced 2θ-neurons to build even
simpler multifunctional oscillatory motifs.

II. METHODS

Fitzhugh–Nagumo-like cells in biological sciences, or generic
relaxation oscillators, present a mathematical generalization that
captures some plain dynamical features often observed and reported
in detailed HH-type models. The generalized Fitzhugh–Nagumo
(gFN) model of neurons employed in this paper adds a set of
extra dynamical and temporal features to more realistically repli-
cate biological (endogenous) bursters in isolation and, what is more

important, under perturbations. We consider a fully connected
3-cell circuit of such gFN-neurons,39

V̇i = Vi − V3
i − hi + Iapp +

∑

j6=i

Gji(Vj, Vi),

ḣi = ε

[

1

1 + e−k(Vi−V0)
− hi

]

, i, j = 1, 2, 3.

(1)

Here, the state of the ith neuron is described by its activity variable
V, representing the membrane voltage, and a recovery voltage-gated
variable h, introduced in a way similar to the Hodgkin–Huxley for-
malism; ε is the reciprocal of some time constant and regulates
slow–fast dynamics (0 < ε < 1) in the gFN-neuron [see voltage
traces in Figs. 2(c) and 2(d)], while an applied current Iapp is used
as a bifurcation parameter for individual cells; V0 and k influence
the position and shape of the cubic and sigmoidal nullclines given

by V̇ = 0 and ḣ = 0, respectively [see Fig. 2(b)]. The default values
for the parameters are k = 10, ε = 0.3, and Vth = 0. By construc-
tion, active (Vi > 0) driving or pre-synaptic neurons slow down or
repress the recovery dynamics of the driven or post-synaptic oscilla-
tors via a fast inhibitory coupling given by Gji, modeled using a sig-
moidal coupling function employed via fast-threshold modulation
(FTM),42

Gji(Vj, Vi) = gji(Vrev − Vi)0(Vj),

0(Vj) =
1

1 + e−100(Vj−Vth)
.

(2)

The FTM-formalism can sharply differentiate the active “on”
state of the neuron, when its voltage Vj is above the synaptic thresh-
old Vth = 0, and hence, 0(Vj) = 1, from the inactive “off” state with
0(Vj) = 0, when Vj < Vth, provided that 0 is stiff enough (due to
the factor 100 in its equation). The strength of coupling is controlled
by the maximal conductance gji; its default value is set to 0.001,
unless otherwise specified, to ensure weak coupling in the network.

FIG. 2. (a) Symmetric 3-cell circuit with inhibitory synapses. (b) The (h, V)-phase portrait of the three coupled cells governed by Eq. (1), depicting two stable periodic orbits:
relaxation-like and round-shaped (shown as gray solid and dotted curves), at ε = 0.05 and ε = 0.3, respectively, which are superimposed with the fast cubic nullcline (dark

purple curves—solid unperturbed and dashed in the inhibited case) labeled as V̇ = 0 and the slow sigmoidal nullcline (orange curve), ḣ = 0. Blue, green, and red dots on
the clockwise periodic orbit represent the time-evolution of the phases of the corresponding cells, 1, 2, and 3, coupled in the network. (c) and (d) Voltage traces generated by
the network at ε = 0.05 and ε = 0.3; see the corresponding limit cycles in panel (b).
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The choice of Vth = 0 and Vrev = −1.5 that makes (Vrev − Vi) < 0
defines the inhibitory synapse projected from the active neuron j,
with 0(Vj) = 1, to neuron i, which slows down the rate V̇i in Eq. (1).

Geometrically [see Fig. 2(b)], the term gji(Vrev − Vi) shifts and skews

the fast nullcline V̇i = 0 closer to the slow nullcline ḣi = 0 of the

inhibited post-synaptic neuron in the phase space. As depicted in

Fig. 2(b), an individual gFN-neuron has a single unstable equilib-
rium state at the intersection of the fast cubic V-nullcline (V̇ = 0)
and the slow sigmoidal h-nullcline (ḣ = 0), surrounded by a stable
limit cycle producing the relaxation oscillations shown. Note that
strong inhibition or negative applied current Iapp, which, respec-
tively, induces temporary or permanent shifts of the V-nullcline,
can make it cross the h-nullcline near the lower knee to give rise
to another stable equilibrium on the lower-hyperpolarized stable
branch of the cubic nullcline, at which the inhibited neuron will rest
(described further in Fig. 6). If inhibition is not strong enough, it
slows down the recovery or, equivalently, extends the inactive “off”
state of the post-synaptic neuron by bringing the lower knee of the
fast V-nullcline closer to the sigmoidal h-nullcline and narrowing

the gap between them. This is in accordance with the famous bottle-
neck effect of the saddle-node bifurcation, where the dwelling speed,

estimated as

√

[V̇]
2
+ [ḣ]

2
, decreases further closer the nullclines

approach to tangency.
In what follows, we will show that 3-cell gFN networks can

produce various stable phase-locked rhythms including the travel-
ing waves, in which the cells fire sequentially one after the other
[see Figs. 2(c), 2(d), and 3(b)], as well as the pacemakers, in which
one cell effectively inhibits and fires in anti-phase with the remain-
ing pair [see Fig. 3(c)]. The symmetric connectivity in this network
implies the coexistence of multiple rhythms that result from cyclic
permutations or relabeling of the cells. In order to analyze the stabil-
ity of various recurrent rhythms produced in a network, we employ
the approach of Poincaré return maps. First, we introduce the notion
of phase lags between the constituent cells, defined at specific events
in time when the cells cross the threshold voltage from below, sig-
naling the burst initiation. The phase lag of a cell is then defined as
the delay in its burst initiation with respect to that of the reference
cell 1, normalized over the bursting period. We define the nth phase

FIG. 3. (a1) 2D torus wrapped around a Poincaré return map for the phase-lags between the three cells. (a2) Flattened map on a unit square, revealing five stable fixed

points (FPs) (•), with their color-coded attraction basins that correspond to the phase-locked states to which the phase lags 1
(n)
13 and 1

(n)
12 converge in panels b1 and b2. (c)

Time-delays τ
(n)
21 and τ

(n)
31 between the upstrokes in the reference blue cell 1 and in cells 2 (green) and 3 (red), normalized over the network period, defining the phase-lags.

These traces exponentially converge to multiple phase-locked rhythms such as the clockwise traveling wave or the pacemaker, corresponding to the black and blue FPs in
panel a2.
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lags 1
(n)
12 and 1

(n)
13 of cells 2 and 3, respectively, as follows:

1
(n)
12 =

τ
(n)
2 − τ

(n)
1

τ
(n+1)
1 − τ

(n)
1

, 1
(n)
13 =

τ
(n)
3 − τ

(n)
1

τ
(n+1)
1 − τ

(n)
1

, mod 1, (3)

where τ n
i represents the time at which the ith cell reaches the thresh-

old voltage, Vth=0, for the nth time [see Figs. 3(b) and 3(c)]. The

sequence of phase lags
{

1
(n)
12 , 1

(n)
13

}

, defined for values between 0

and 1, gives the forward phase trajectory on a 2D torus [Fig. 3(a)].
The specific phase lag values 0 (or 1) and 0.5 represent in-phase and
anti-phase relationships, respectively, with the reference cell 1. We
examine the 2D phase space of the Poincaré return maps [Fig. 3(a)]
of the 3-cell networks, given by the phase lags 112 and 113, by initi-
ating multiple trajectories with different initial phase lags (on a grid
of size 50 × 50) and by following their evolutions for a large number
of cycles. As we compute long traces of firing activity of the circuit
and evaluate the corresponding phase lag trajectories, these phase
lags eventually converge to some attractor, which can be a fixed
point of the 2D map [with steady coordinates 1∗

12 and 1∗
13 in (3)],

which implies the existence of a stable rhythmic pattern in the circuit
with phase-locked bursting between the cells. All the phase trajecto-
ries that converge to the same fixed point are marked by the same
color and reveal the basin of attraction for the corresponding sta-
ble rhythm. The rhythmic characteristics of a CPG can be identified
by analyzing the phase space of the corresponding Poincaré map,
such as Fig. 3(a), which reveals the existence of penta-stability in
the circuit, composed of three pacemakers [blue—Fig. 3(c2), green,
and red] and two traveling waves [clockwise—Fig. 3(c1) and anti-
clockwise]. We depict stable fixed points with colored dots, saddles
with gray diamonds, and unstable fixed points with white dots in the
2D maps. The phase lag values (112, 113) at the fixed points (FPs)
corresponding to the blue, green, and red pacemakers (PMs) are
given by (0.5, 0.5), (0.5, 0), and (0, 0.5), respectively, while those for
the clockwise (black) and anti-clockwise (purple) traveling-waves
(TWs) are given by (0.33, 0.67) and (0.67, 0.33), respectively.

Alternatively, it is also possible that the forward phase-lag tra-

jectories
{

1
(n)
12 , 1

(n)
13

}

could converge to attractors other than FPs,

as demonstrated in Figs. 15(d′), 16(f), and 20(a), 20(b), and 20(e),
or the map has no attractors at all as in Fig. 24. One can also trace
down the backward trajectories, as shown in Fig. 24, to effectively
depict repelling fixed points and unstable phase-slipping orbits.

Numerical integration of the trajectories is performed using
the fourth order Runge–Kutta method, with a fixed step size.
Computation of voltage and phase lag trajectories across mul-
tiple initial conditions is parallelized on a Tesla K40 GPU
using CUDA, while visualizations are performed in Python.
The open source software toolkit developed is available at
https://github.com/jusjusjus/Motiftoolbox.43 GPU parallelization
allows the construction of typical phase sweeps such as one shown
in Fig. 3(a) within just a few seconds.

With detailed simulations of the Poincaré return maps for
phase lags, we can visualize and analyze their stable and unstable
fixed points (FPs) and other limiting sets such as invariant circles
(ICs). We can also detect various bifurcations including homoclinic
and heteroclinic and, therefore, can identify multiple possible rhyth-
mic patterns generated by the neural circuits. With changes in the

FIG. 4. The (g, Iapp)-bifurcation diagram in (e) for the fully symmetric 3-cell motif
[in Fig. 2(a)] has several (color-coded) regions where the network can produce
only pacemaker (PM) rhythms, or only traveling wave (TW) rhythms, or both
PMs/TWs. Panels a1–a4 give the snapshots of the Poincaré return maps for the
network due to the escape mechanism as they are sampled at the parameter
values (white dots) along the top horizontal line in panel (e). As the coupling
strength g increases, the map with 3 stable FPs: blue PM at (0.5, 0.5), green
PM at (0.5, 0), and red PM at (0, 0.5) in (A1) and gains two more stable FPs:
black TW at (0.33, 0.67) and purple TW (0.67, 0.33) in (A). The growing TW and
shrinking PM attraction basins are separated by the separatrices of the saddles
(gray �) in (A3). Each stable PM becomes a saddle through a pitch-fork bifur-
cation at larger g-values, after merging with two nearby saddles in (A4). Panels
(a1)–(d1) snapshot several maps as the network transitions from the escape to
the release mechanism as Iapp is decreased [along the left vertical dotted lines
in (e)]: from 3 stable PMs in (A1), to two stable TWs in (B1), to mixed dynam-
ics with both PM/TWs in (C1), and back to 3 stable PMs in (D1). Parameters
for (A1)–(A4): Iapp = 0.5886, g = (0.0015, 0.006, 0.019, 0.0225); parameters for
(B1)–(D1): g = 0.0015, Iapp = (0.493, 0.419, 0.393). The return maps sampled
along the horizontal dashed lines A′–D′ and A′′-D′′ at the bottom of panel (E) are
presented in Figs. 7 and 8 for the networks obeying the release mechanism.

bifurcation parameters of the network, the constructed phase-leg
sequences also vary, thus allowing us to determine the basins of
the coexisting attractors and to reveal bifurcations through which
FPs can emerge, disappear, or lose their stability. By varying two
bifurcation parameters of the circuit (typically, the external drive
Iapp and the coupling strength g) and identifying all the permis-
sible rhythmic states, we construct bi-parametric sweeps such as
one shown in Fig. 4(e). The given bifurcation diagram frames the
neighborhoods of the release and the escape mechanisms (described
later) in the parameter plane for the symmetric network [depicted
in Fig. 2(a)] over a wide behavioral range of the individual neu-
rons. We can characterize the parametric regions whose phase-lag
return maps contain only the pacemakers (PM), only the travel-
ing waves (TW), or a combination of both PM/TW. The return

Chaos 30, 072101 (2020); doi: 10.1063/5.0011374 30, 072101-5

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://github.com/jusjusjus/Motiftoolbox


Chaos REVIEW scitation.org/journal/cha

FIG. 5. Key asymmetric configurations analyzed in this study: (a) Mono-biased
motif where only the synapse g31 is manipulated, (b) Double-biasedmotif, in which
the reciprocal connections between cells 1 and 3 (g31 and g13) are manipulated
equally, (c) Driver-biased motif, in which both the outgoing connections from cell
3 (g31 and g32) are affected equally, and (d) Clockwise-biased motif, in which all
the clockwise connections (g12, g23, and g31) are affected equally.

maps shown in panels (a1)–(a4) and (a1)–(d1) in Fig. 4 reveal the
sequence of bifurcations that stable rhythms undergo near the bor-
derlines. Such bifurcation diagrams have proven useful for studying
the dynamics of small CPG circuits and other nonlinear systems.44–48

In addition to the fully symmetric motif in Fig. 2(a), we perform a
detailed bifurcation analysis of some other key asymmetric motifs
(see Fig. 5). They include (1) mono-biased motif, in which only a
single synaptic connection is varied, while all others are held con-
stant; (2) double-biased motif, in which the reciprocal connections
between two cells are manipulated equally, while all others are held
constant; (3) biased-driver motif, in which both the outgoing con-
nections from one cell are varied identically, while the rest are held
constant; and (4) clockwise-biased motif, in which all the clockwise
connections are changed simultaneously, while the anti-clockwise
connections remain fixed. This is followed by a brief description of
another asymmetric network configuration (see Fig. 24) without any
phase-locked rhythmic states but only quasiperiodic phase slipping
or an ergodic flow with neither FPs nor ICs.

III. RESULTS AND DISCUSSION

The terms “release” and “escape” mechanisms referring to anti-
phase oscillations in 2-cell networks were first introduced by Wang
and Rinzel.41 By construction, the release mechanism requires that
isolated cells are intrinsically bursting, while the escape mechanism

requires the cell to wait at the depolarized quiescent state, which
can also be associated with the tonic-spiking state in the case of
the “spike-less” gFN-burster. The initial state of the gFN-neuron
depends on the value of the applied current stimulus Iapp in Eq. (1),
which horizontally shifts the position of the fast V-nullcline given

by V̇ = 0, relative to that of the slow h-nullcline given by ḣ = 0;
see Figs. 2 and 6. In this study, we examine how these mechanisms
influence the dynamical behavior, rhythmic outputs, and bifurca-
tions in the 3-cell motifs with several distinct circuitries presented
in Fig. 2(a) and in Fig. 5, using the methodology outlined in Sec. II.

A weakly coupled network obeys the release mechanism when
the slow h-nullcline lies close enough to the lower knee of the fast
cubic V-nullcline in the phase space of an intrinsic HH burster in
Fig. 1 or in the (h, V)-plane of the gFN-neuron in Fig. 6(a). As
the value of the Iapp-parameter decreases, or alternatively, if a cell
receives an inhibitory synaptic current from its pre-synaptic cell(s),
its V-nullcline shifts horizontally leftward in the (h, V)-plane. In the
release case, this can lead to the occurrence of tangency of both the
nullclines near the lower knee of the V-nullcline. Further strength-
ening of inhibition causes the nullclines to cross locally twice, giving
rise to a new stable equilibrium state on the lower hyperpolarized
branch on the V-nullcline, which emerges through a saddle-node
bifurcation. This ceases oscillations in the cell, as it remains effec-
tively hard-locked in the hyperpolarized state. Otherwise, if the
inhibition is not strong enough to cause the saddle-node bifurca-
tion, it merely narrows the gap between the nullclines, which makes
the cell slow down due to the bottleneck effect preceding the saddle-
node bifurcation. After the presynaptic cell(s) traverses its active
on-state and becomes inactive on its lower hyperpolarized branch of
the fast V-nullcline below the synaptic threshold, the post-synaptic
cell is released from inhibition and its V-nullcline shifts rightward
back to its original position. This eliminates the stable hyperpo-
larized equilibrium state; therefore, the given cell can start a new
oscillatory cycle and during its active phase can in turn play the
opposite role of inhibiting its post-synaptic cells in the network.

The escape mechanism requires that (i) one of the unperturbed
gFN-cells, say the red cell 3, is initially locked at the stable depo-
larized equilibrium state at the transverse intersection of the slow
h-nullcline and the fast V-nullcline near its upper right knee, as
shown Fig. 6(b). The other condition (ii) is that meanwhile the other
cell(s) must transition along the perturbed hyperpolarized branch of
the V-nullcline until either the post-synaptic cell, say the green cell
2, reaches the lower knee from where it jumps up, switching from
the “off” to “on” states. As soon as its voltage goes over the synap-
tic threshold, cell 2 results in a fast inhibitory current that shifts the
V-nullcline of cell 3 leftward, away from the h-nullcline, and elimi-
nates the stable equilibrium state so that cell 3 jumps down onto the
inhibited hyperpolarized branch of the V-nullcline and so forth.

Below, we will show how inhibitory 3-cell networks can employ
the two generic mechanisms to synergistically orchestrate the shifts
in the positions of the nullclines of post-synaptic neurons so that
the constituent cells can alternate cyclically between their active
and inactive states, resulting in several stable rhythmic outcomes.
We reiterate that we only consider weakly coupled networks here
to ensure the visual continuity of the Poincaré return maps for
the phase lags. Our choice of the sigmoidal shape for the slow
h-nullcline ensures that the system can exploit the bottleneck effect
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of saddle-node bifurcations to produce a variety of rhythmic out-
comes. Increasing coupling strength causes faster non-smooth con-
vergence and hard-locking to stable FPs in the maps, correspond-
ing to phase-locked rhythms; see Fig. 8 illustrating the effect of
increasing inhibition in the symmetric motif.

In Secs. III A–III H, using Poincaré return maps and bifurca-
tion diagrams, we will demonstrate the onset of various rhythms and
their transitions in the fully symmetrical system, as we vary con-
trol parameters that can also be manipulated in neurophysiological
experiments. We will then show the behavioral ranges and tran-
sitions occurring in various asymmetrical network configurations,
otherwise impossible in the fully symmetric system. This is followed
by a brief discussion of the stable synchronous state with all three
cells oscillating together, as well as a special network configuration
without any phase-locked rhythms.

A. Symmetric motif

Figure 4(e) represents the so-called bi-parametric sweep, or the
bifurcation diagram, of the fully symmetric 3-cell motif depicted
in Fig. 2(a) as two parameters: the coupling strength g of all six
inhibitory synapses and the applied current Iapp are varied. One can
see that the parameter space has three color-coded regions where
the network produces either three stable pacemakers (PM), two
traveling waves (TW), or five coexisting rhythms: 3 PMs and 2 TWs.

The corresponding 2D Poincaré maps for the phase lags,
depicted in Figs. 4(A1)–4(A4), demonstrate the transitions and
bifurcations in the network due to the escape mechanism as the
inhibitory coupling is increased. The initial gap between the slow h-
nullcline and the upper knee of the fast V-nullcline is small enough
so that the modulating bottleneck effect makes either cell linger

longer in the active on-phase near the upper knee, while the other
two cells transition through the inactive off-phase, thereby promot-
ing pacemaker rhythms corresponding to the three stable FPs: blue
at (0.5, 0.5), green at (0.5, 0), and red (0, 0.5). As the synaptic cou-
pling g is increased in strength, the gap between the nullclines of the
post-synaptic cells widens [see Fig. 6(b)], thus weakening the bottle-
neck effect so that the circular motion on the limit cycles in the phase
plane becomes more uniform. As we increase g further, the unstable
TWs at (0.33, 0.67) and (0.67, 0.33) become stable through a sec-
ondary Andronov–Hopf or torus bifurcation [Fig. 4(a2)], with the
TW attraction basins gradually increasing, while those of the PMs
diminishing in size [Fig. 4(a3)]. Note that there are an even number
of saddle FPs (labelled by gray �s) in the maps: their (separatrices’)
role is to separate the attraction basins of the coexisting stable FPs.
With a further increase in g, a pair of nearby saddles approach each
stable PM fixed point and merge with it through a pitch-fork bifur-
cation. The three new saddles now equally partition the attraction
basins of the two remaining TWs in Fig. 4(a4).

The maps depicted in Figs. 4(a1)–4(d1) illustrate the bifurca-
tion stages as the symmetric 3-cell motif transitions from the escape
to the release mechanism (Fig. 6). This occurs as Iapp is decreased
along the vertical dotted line in the bifurcation diagram in Fig. 4(e).
Decreasing Iapp shifts the fast V-nullcline leftward and, therefore,
gradually increases the gap between its upper knee and the slow h-
nullcline, while simultaneously decreasing the gap near the lower
knee of the V-nullcline. As seen in the corresponding return maps
in Fig. 4, the network transitions from stage A1: a motif producing
only three stable PMs; to stage B1: a motif producing only two stable
TWs, after the pitch-fork and torus bifurcations; to stage C1: a motif
with co-existing TWs and PMs (as PMs re-emerge after reverse
pitch-fork bifurcations). Finally, reverse torus bifurcations make the

FIG. 6. Phase portraits of the gFN-neuron given by Eq. (1), demonstrating the release (a) and escape (b) mechanisms of rhythmogenesis in the 3-cell circuit. The clusters
of the colored dots representing the phases of the coupled cells on the periodic orbit, at the lower-left and upper-right knees near the tangencies of the fast cubic and slow

sigmoidal nullclines V̇ = 0 and ḣ = 0, respectively, are indicative of the stagnation due to the saddle-node bottleneck effect underlying the release and escape mechanisms.
The solid (unperturbed) and dashed (perturbed) purple curves show the shifts in the V-nullclines for the pre- and post-synaptic cells, respectively. The intersection of the
fast dashed V-nullcline in (a) with the slow h-nullcline near the left knee corresponds to a newly formed stable fixed point that makes the post-synaptic cell “hard-locked” by

synaptic inhibition. In case (b), the post-synaptic cell escapes from the trap (hard or soft) of depolarization near the upper knee, after an inhibitory perturbation shifts V̇ = 0
leftward to create a gap between the nullclines, allowing the cell(s) to fall down onto the hyperpolarized branch, to start a new cycle of revolution.
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FIG. 7. Transformations in the 2D return maps corresponding to the fully symmet-
ric networks with the release mechanism as the inhibitory coupling g is increased
along the dashed white line (a′)–(d′) in the bifurcation diagram in Fig. 4(e). The
TW attraction basins decrease in size, while the PM basins increase from (a′) to
(c′). The TWs lose stability in (d′) through a secondary Andronov–Hopf/torus bifur-
cation. Less smooth trajectories are indicative of fast convergence to the attrac-
tors in the network, at greater coupling strengths. Parameters: Iapp = 0.4155,
g = (0.0005, 0.006, 0.015, 0.018).

TWs unstable again and restore the motif with only three stable PMs
at stage D1. This is due to the dominating bottleneck effect near
the lower knee, which substantially amplifies the slow–fast separa-
tion in the rate of circulation along the stable limit cycles in the
(h, V)-plane.

Figure 7 shows the transitions occurring based on the release
mechanism, as the synaptic inhibition is increased in the 3-cell net-
work. The initial gap between the slow h-nullcline and the lower
knee of the fast V-nullcline is chosen so that both stable PM and TW
rhythms can coexist for the given coupling strength. As the synaptic
inhibition g is gradually increased, this gap narrows, thereby slow-
ing the progression of the post-synaptic cells near the lower fold
(dwelling time here is inversely proportional to the square root of the
size of the gap between the nullclines). This makes the pacemaker
activity dominant in the network. Further increase in g can lead to
hard-locking, as the nullclines intersect at the lower branch, after
crossing the knee. This results in the gradual shrinking of the attrac-
tion basins of TWs and a corresponding increase in those of PMs,
as seen in Figs. 7(a′)–7(c′). TWs finally become unstable through a
secondary Andronov–Hopf/torus bifurcation in Fig. 7(d′) and hence
not observable in the network anymore.

Let us now consider another bifurcation pathway in the bifur-
cation diagram in Fig. 7(e), for a lower value of Iapp = 0.3956, and,
therefore, displaying a more pronounced release mechanism in the
network. The return maps with increasing synaptic inhibition are

FIG. 8. Poincaré return maps corresponding to the fully symmetric 3-cell motif
with another example of the releasemechanism for the parameter values sampled
along the line (a′′)–(d′′) in the bifurcation diagram [Fig. 4(e)]. As g is increased, the
unstable TWs in (a′′)–(b′′) become stable in panel c′′ through a torus bifurcation.
The TWs again lose stability with a further increase in g, leading to hard-locking
in the system that results in the quick and jagged convergence to the three PMs
in (d′′). Parameters: Iapp = 0.3956, g = (0.0005, 0.005, 0.007, 0.015).

presented in Fig. 8. As g is gradually increased, the network bifur-
cates from the dominant PM case in Figs. 8(a′′) and 8(b′′) to a
configuration that supports both PMs and TWs in Fig. 8(c′′), fol-
lowing torus bifurcations. A further increase in the value of g leads
to hard-locking in Fig. 8(d′′), due to the tangency or the intersection
of the nullclines near the lower knee, for the temporarily inhibited
post-synaptic cells. This can be seen in the jagged phase-lag trajec-
tories in the return map, which quickly converge to the pacemaker
fixed points.

Finally, we can conclude that increasing coupling strength leads
to pronounced pacemaker behaviors in the networks featuring the
release mechanism. In contrary, traveling waves become more dom-
inant at stronger coupling values in networks featuring the escape
mechanism. This means that symmetry per se is insufficient to pre-
dict a priori what rhythmic outcomes a given network can produce,
without knowing the qualitative mechanisms of rhythmogenesis,
escape, or release and the quantitative strength of synaptic connec-
tivity. This knowledge is vital to make testable predictions regarding
possible dynamics in various biological systems of coupled oscilla-
tors and neurophysiological experiments with CPG circuits.

B. Mono-biased motif

We will now investigate the effect of a single asymmetric con-
nection within an otherwise fully symmetric, weakly coupled system
[see Fig. 5(a)]. While we focus on asymmetric increase or decrease
in the strength of a single connection (g31), the results can be
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extended to any of the other connections by symmetry and inter-
preted accordingly without loss of generality. As seen previously
with the symmetric motif, the rhythmic behaviors of this network
also vary depending upon the gap between the nullclines, the transi-
tions between soft and hard locking, as well as the release and escape
mechanisms of the cells. Here and in subsequent discussions of
other asymmetric motifs, we will show a bifurcation diagram vary-
ing the parameters g (or g31 in this case) and Iapp, which effectively
depicts a range of rhythmic behaviors exhibited by the network. We
then pick a few parameter values to demonstrate detailed phase lag
return maps and their transitions for cells obeying the release mech-
anism, as the synaptic strength is gradually increased (Fig. 10). This
is then followed by a similar demonstration for cells obeying the
escape mechanism. For these asymmetric network configurations,
we observe asymmetric bifurcations in which only one or two pace-
makers may appear or disappear, rather than all pacemakers (or
all traveling waves) simultaneously, as seen in the fully symmetric
network for any given parameters.

Figure 9 represents the bifurcation diagram for the mono-
biased motif [shown in Fig. 5(a)], as the parameters Iapp and g31 are
varied, while the remaining synaptic connections are held constant
at gall = 0.001. The network can produce several distinct multistable
behaviors composed of just pacemakers (PM), just traveling waves
(TW), just phase slipping (PS), or a combination of pacemakers

FIG. 9. (g31, Iapp)-bifurcation diagram of the mono-biased motif presented in
Fig. 5(a) shows five distinct regions corresponding to PM, TW, and PS rhythms
along with the combinations PM/PS and PM/TW. Transitions between these
regions are governed by saddle-node (SN) bifurcations that eliminate or restore
FPs in the return map. The points A–F and A′–F′ highlighted near the top dot-
ted and bottom dashed lines, respectively, indicate the parameter values used for
the return maps with the escape and release mechanisms elaborated in Figs. 10
and 11, respectively. The vertical line given by g31 = gall = 0.001 corresponds to
the fully symmetric network where all g-values are identical.

with phase slipping (PM/PS) or traveling waves (PM/TW). Transi-
tions between these regions are due to saddle-node (SN) bifurcations
eliminating or restoring FPs to the map. The points A–F highlighted
along the dotted line near the top of the bifurcation diagram indicate
the parameter values used for the phase lag return maps for the cells
obeying the escape mechanism (Fig. 11), while the points A′–F′ on
the dashed line near the bottom highlight the parameter values for
the cells obeying the release mechanism (Fig. 10). The vertical dot-
ted line represents the parameter values where the network retains
full symmetry, with g31 = gall. As such, the rhythmic behaviors and
the transitions as we move along this line are identical with the fully
symmetric motif.

For cells obeying the release mechanism shown in Fig. 10, we
initially disable the synapse g31 = 0, while all other synaptic con-
nection strengths are held constant at gall = 0.001. In this case, we
observe that the network is dominated by the green PM rhythm with
the largest basin of attraction, while the blue PM rhythm is also sta-
ble although with a smaller basin [Fig. 10(a)]. One may observe the
presence of two saddle nodes (gray diamonds) and an interesting
pattern of whorls in the phase space near the original location of
the purple TW (0.66, 0.33), which is currently not seen in the net-
work. Restoring the missing synapse g31 = 0.000 81 in Fig. 10(b′)
increases the blue PM basin and also leads to the formation of the
purple TW pattern through a saddle-node bifurcation, which gives
rise to a third saddle around the purple TW FP. Strengthening of
this synapse at g31 = 0.001 08 leads to the appearance of another
saddle node and a fixed point corresponding to the red pacemaker
rhythm, both of which rapidly diverge [see Fig. 10(c′)]. With further
increases in the strength of g31 through 0.001 35, 0.004, and 0.008 in
Figs. 10(d′)–10(f′), the purple TW becomes the dominant rhythm of
the network via a series of saddle-node bifurcations where the red,
green, and blue PM FPs, respectively, merge with the three saddles
surrounding the purple TW and disappear one after the other.

Figure 11 shows the evolution of Poincaré return maps for
cells obeying the escape mechanism as g31 gradually increases. In
Fig. 11(a) with g31 = 0, the network is dominated by a single clock-
wise TW (black FP). Figure 12 shows four identical panels [the same
as Fig. 11(a)] stitched together to aid the visual inspection of the
trajectories and their convergence. A saddle (gray diamond) exists
very close to the black TW FP in the phase space, which gives rise
to interesting dynamics such that two trajectories (red lines) starting
from very close initial conditions (on either side of the blue line) take
entirely different paths but ultimately converge to the same fixed
point (black TW). Figure 13 shows a similar alignment of four iden-
tical return maps for this network, but at a slightly higher value of
Iapp = 0.5875, chosen within the phase slipping (PS) region of the
bifurcation diagram in Fig. 9, close to the parameter values corre-
sponding to the map depicted in Fig. 11(a). Comparing this with
Fig. 12 shows that the black TW FP and the saddle merge and disap-
pear following a saddle-node bifurcation and give rise to a stable PS
pattern in Fig. 13. The network has no phase-locked rhythms in this
state, and all the trajectories from different initial conditions con-
verge onto the red stable PS invariant circle, after an initial transient.
Conversely, the blue line represents an unstable PS pattern. If a tra-
jectory starts with initial conditions exactly on this blue line, it will
continue to move along this unstable PS pattern, but slight pertur-
bations would lead to diverging paths that then ultimately converge
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FIG. 10. Poincaré return maps corresponding to the mono-biased motif with
the release mechanism and their evolution as g31 gradually increases, while the
remaining synaptic strengths (gall) are held constant. When g31 = 0 in Panel (a′),
the green PM [stable FP at (0.5,0)] dominates the dynamics, coexisting with the
blue PM [FP at (0.5,0.5)] having a smaller attraction basin. Increasing g31 leads
to the formation of the purple TW pattern [stable FP at (0.6,0.3)] through a sad-
dle-node bifurcation, while the blue basin increases in Panel (b′), followed by the
appearance of the red PM in (c′) due to a saddle-node bifurcation, after the motif
partially restores the anti-clockwise symmetry. Increasing g31 further leads to a
single dominant anti-clockwise purple TW rhythm in the network, after all other
attracting FPs vanish via a series of saddle-node bifurcations in Panels (d′)–(f′).
Parameters: Iapp=0.412, gall=0.001, g31=(0, 0.000 81, 0.001 08, 0.001 35, 0.004,
0.008).

onto the stable red PS pattern. Note that within these PS patterns,
cells 2 and 3 remain nearly phase-locked, while cell 1 undergoes
phase-slipping and so runs at a different frequency compared to the
other two cells. Due to the existence of such subpopulations of cells
that run at distinct frequencies, PS has also been referred to as a
chimera state. Stable and unstable PS patterns are elaborated further
in Secs. III C–III H.

As the coupling strength g31 increases from 0 to 0.000 27 in
Fig. 11(b), the unstable PS pattern first undergoes a saddle-node
bifurcation, giving rise to an unstable fixed point (white dot) and

FIG. 11. Poincaré return maps corresponding to the mono-biased motif with the
escape mechanism as g31 gradually increases. At g31 = 0, there is a single dom-
inant clockwise (black) TW FP in panel (a); this is elaborated further in Figs. 12
and 13. (b) As g31 increases, the unstable IC (the blue line in Fig. 12 ) first under-
goes a reverse homoclinic saddle-node bifurcation, giving rise to a repelling fixed
point (white dot) and a saddle, which then undergoes a pitch-fork bifurcation that
makes it stable – the blue PM, with two additional saddles. The red and green
PMs then emerge following additional saddle-node bifurcations, see panels (c)
and (d). The green PM disappears through a saddle-node bifurcation, while the
black TW at (0.3, 0.6) becomes repelling via a torus bifurcation, giving rise to a
stable invariant circle (IC) in panel (e), and finally gets annihilated after merging
with a nearby saddle. Parameters: Iapp = 0.5825, gall=0.001, g31=(0, 0.000 27,
0.000 676, 0.000 81, 0.001 49, 0.004 05).

a saddle. The saddle then undergoes pitch-fork bifurcation to give
rise to the blue pacemaker rhythm, as well as two additional saddles.
Further increases in g31 give rise to the red and green pacemak-
ers, following their respective saddle-node bifurcations in Figs. 11(c)
and 11(d). The basin of attraction of the black TW continues to
diminish and undergoes an additional torus bifurcation in Fig. 11(e),
creating an invariant circle, while the green PM rhythm is lost fol-
lowing a saddle-node bifurcation, resulting in a larger red PM basin.
In Fig. 11(f), the invariant circle and the black TW rhythm are finally
lost as the black repellor converges with a saddle, and the system is
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FIG. 12. Four identical panels from Fig. 11(a) stitched together for a better under-
standing of the trajectories wrapping around the phase torus. The network is
dominated by a single black TW around (0.3, 0.6). The saddle, located in a close
proximity, causes two trajectories from close initial conditions to traverse different
paths (red lines) to converge to the same FP. Shown in blue is the repelling invari-
ant circle (IC), see also Fig. 13. Parameters: Iapp = 0.5825, gall = 0.001 except
g31 = 0.

dominated by just the red and blue PMs, with very rapid conver-
gence for many initial conditions (exemplified by large white regions
on the return map, where convergence is so rapid that traces are not
apparent in these areas).

C. Double-biased motif

In this section, we study the dynamics of the double-biased
motif [Fig. 5(b)], where asymmetry in the network is achieved by
simultaneously altering a pair of connections, g31 and g13 between
cells 1 and 3. Figure 14 shows the bifurcation diagram for this
motif, with the sampled parameter values for the release (Fig. 15)
and the escape (Fig. 16) mechanisms highlighted along the bot-
tom dashed and top dotted lines, respectively. The vertical dotted
line represents symmetric network configuration as described previ-
ously. The bifurcation diagram reveals that the network can produce
just pacemakers (PM), just traveling waves (TW), just phase slip-
ping (PS), or any combination of a pair of such rhythms (PM/PS,
PM/TW, TW/PS). Pacemaker behavior dominates at weak coupling,
while phase slipping does so at strong coupling. Other rhythms
exist primarily near the mid-ranges of values for Iapp or close to full
symmetry for the values of g.

Figure 15 shows the evolution of the Poincaré return maps for
the release mechanism as the synaptic strengths of both g31 and g13

increase from 0.0 to 0.0045, while all other synaptic strengths remain

FIG. 13. Four identical panels stitched together to better visualize the trajecto-
ries wrapping around the phase torus, as a stable PS pattern emerges following
the disappearance of the black TW and the nearby saddle of Fig. 12, through a
homoclinic saddle-node bifurcation. The network has no phase-locked rhythms
and all trajectories converge on to the stable invariant curve (red). The blue
line marks an unstable invariant curve. Parameters: Iapp = 0.5875, gall = 0.001
except g31 = 0.

constant at 0.001. When both the synapses are absent or very weak
(g31 = g13 = 0.0005) in Fig. 15(a′), the network produces a single
stable rhythm of the green PM. This could be inferred from the fact
that only cell 2 (green) has outgoing inhibitory connections to the
other two cells. As we strengthen the coupling (g31 = g13 = 0.001) in
Fig. 15(b′), following a series of saddle-node and pitch-fork bifurca-
tions, the blue and red PMs emerge along with multiple saddles and
two repelling FPs corresponding to unstable TWs. Further increase
in the synaptic strength (g31 = g13 = 0.0012) in Fig. 15(c′) causes
the unstable TW FPs to disappear through saddle-node bifurcations
and the corresponding increase in the blue and red PM basins. In
Fig. 15(d′) with g31 = g13 = 0.0015, the blue and red PMs disappear
and give rise to a stable invariant circle (gray) through a heteroclinic
saddle-node bifurcation. This invariant circle corresponds to a PS
rhythmic pattern that wraps around the torus and coexists along
with the green PM. Hand-drawn lines in black are sampled to illus-
trate the attraction basins bounded by the incoming separatrices of
the saddles.

Figure 16 illustrates the dynamics and the corresponding
return maps for the escape mechanism as the synaptic strengths
g31 and g13 are gradually increased through (0, 0.000 676, 0.001,
0.001 28, 0.001 55, 0.003 31) at the points from A through F. When
both the synapses are turned off in Fig. 16(a), the network produces
a single stable rhythm with the green PM, as described previously.
Figure 17 shows four identical panels [the same as in Fig. 16(a),
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FIG. 14. The (g31/13, Iapp)-bifurcation diagram of the double-biased motif. The
network can produce just pacemakers (PM), just traveling waves (TW), just phase
slipping (PS), or any combination of a pair of such rhythms: PM/PS, PM/TW,
and TW/PS in the color-mapped regions. The PM and PS behaviors dominate
at weak and strong coupling, respectively. Points A′–D′ and A–F indicate the
sampled parameter values for the release (Fig. 15) and the escape (Fig. 16)
mechanisms, respectively. The vertical line is where the network is symmetric at
g31=gall = 0.001.

with greater detail] placed next to each other to aid visual inspec-
tion of the trajectories and their convergence. Sample trajectories
are shown in black, along with the green pacemaker, two saddles,
and an unstable fixed point. In Fig. 16(b), the two saddles undergo
pitch-fork bifurcations to give rise to the blue and red PMs, as
well additional saddles. As the synapses are further strengthened
in Figs. 16(c) and 16(d), the two TWs emerge and then disappear
through saddle-node bifurcations. Further increases lead gradually
to the disappearance of the green pacemaker in Fig. 16(e) via a
saddle-node bifurcation and of the red and blue PMs in Fig. 16(f)
through a heteroclinic saddle-node bifurcation that gives rise to a
single invariant circle of the gray phase-slipping pattern that wraps
around the torus.

D. Driver-biased motif

Another type of asymmetry we investigate is the driver-biased
motif, where the two outgoing synapses from cell 3 (g31 = g32) are
manipulated, while the remaining connection strengths are held
constant. Figure 18 shows the bifurcation diagram and the sampled
values in it, corresponding to the release and escape mechanisms, as
described previously. As can be expected from this asymmetry, for
sufficiently strong synaptic coupling for the outgoing connections
from cell 3 (red) that acts as the driver, the network is dominated by
the red PM rhythm. For weaker coupling strengths, one can observe

FIG. 15. Poincaré return maps corresponding to the double-biased motif with the
release mechanism. When the synapses g31 and g13 are weak, there is only the
green PM in the map shown in panel (a′). As their strength is increased, the blue
and red PMs emerge through a series of saddle-node and pitch-fork bifurcations,
along with multiple saddles and two repelling FPs corresponding to the unstable
TWs in panel (b′). Further increase in the synaptic strengths causes the unstable
TW FPs to disappear through a heteroclinic saddle-node bifurcation in panel (c′).
The blue and red PMs also disappear through a heteroclinic saddle-node bifur-
cation, thus giving rise to a stable “phase-slipping” invariant circle (shown gray),
coexisting with the green PM in panel (d′). Their basins are partitioned by the
incoming separatrices (black curves) of the saddles. Parameters: Iapp = 0.399,
gall = 0.001 except for g31 = g13= (0.0005, 0.001, 0.0012, 0.0015).

TWs, PS, and a combination of PMs with TWs or PS. At weaker
coupling, one may also see the blue and green pacemaker rhythms.

Figure 19 shows the return maps for the cells obeying the
release mechanism. For small values of g31 = g32 in Fig. 19(a′), the
blue and green PMs coexist. As the synaptic strengths are increased
in Fig. 19(b′), the red PM and the two TWs emerge following a
series of saddle-node bifurcations. Further increases in the synap-
tic strengths lead to the disappearance of the original blue and green
PMs in Fig. 19(c′), as well as the disappearance of the two TWs in
Fig. 19(d′) through saddle-node bifurcations, resulting in a single
red PM rhythm of the circuit, under the control of the biased-driver
cell.

Following the return maps for the escape mechanism in
Figs. 20(a)–20(f) as the values of g31 and g32 are simultaneously
increased shows that the network is initially dominated by a single
PS rhythm in Fig. 20(a). A red PM rhythm then emerges following a
saddle-node bifurcation in Fig. 20(b). A series of saddle-node bifur-
cations then gives rise to the blue and green PMs, as well as the two
TWs in Fig. 20(c). With further increase in synaptic strengths, the
blue and green PMs first disappear in Fig. 20(d), followed by the
loss of the two TWs in Fig. 20(e), through saddle-node bifurcations,
resulting in a phase slipping pattern that coexists with the red PM.
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FIG. 16. Poincaré return maps corresponding to the double-biased motif with the
escape mechanism. When both synapses g31 = g13 = 0, the network produces
only the green PM rhythm in panel (a) (elaborated further in Fig. 17). The blue
and red PMs emerge following pitch-fork bifurcations of the saddles in panel (b).
The two TWs emerging in panel (c), disappear through saddle-node bifurcations
in panel (d). Next, the green PM disappears via a saddle-node bifurcation, after
merging with a nearby saddle in panel (e). The red and blue PMs finally disappear
through a heteroclinic saddle-node bifurcation, which gives rise to the only stable
invariant circle (gray) in panel (f), moving in the opposite direction compared with
Fig. 15(d′). Parameters: Iapp = 0.5716, gall = 0.001, except for g31 = g13= (0,
0.000 676, 0.001, 0.001 28, 0.001 55, 0.003 31).

Finally, for very strong coupling in Fig. 20(f), the phase slipping pat-
tern also disappears, giving rise to a single red PM rhythm for the
circuit, driven by the dominant cell.

E. Clockwise-biased motif

The next asymmetric network configuration examined is the
clockwise-biased motif, in which all the clockwise connections:
g12, g23, and g31 are manipulated simultaneously, while the anti-
clockwise connections are held constant. Figure 21 shows the bifur-
cation diagram for this motif, which reveals that the TW rhythms

FIG. 17. Four identicals panels from Fig. 16(a) stitched together to continuously
visualize trajectories wrapping around the 2D torus. This network is monostable
with a single PM rhythm—the green FP at (0.5,0), to which some trajectories
converge along quite a long path, as its attraction basin is shaped by complex
interactions of the separatrices (black lines) of the two saddles (black �).

dominate this network. A single TW is seen at either end of the cou-
pling strength spectrum, as can be expected from such asymmetry,
while both the TWs are seen in between these two regions. PMs and
PM/TW combinations are also seen in parametric regions close to
the fully symmetric network configuration, for both the escape and
release mechanisms.

Figure 22 shows the return maps at parameter values sampled
for the release mechanism, as the clockwise synapses are gradually
strengthened. Initially, the network is dominated by a single clock-
wise TW (black) in Fig. 22(a′). Following a series of saddle-node
bifurcations, the three PMs emerge in Fig. 22(b′). This is followed
by the emergence of the anti-clockwise TW (purple) in Fig. 22(c′)
and the disappearance of the clockwise TW (black) in Fig. 22(d′),
through their respective torus bifurcations. The three PMs then
disappear via saddle-node bifurcations in Fig. 22(e′), leading to a
single anti-clockwise TW rhythm dominating the network. Further
strengthening of the synapses in Fig. 22(f′) leads to hard locking,
with a single TW rhythm.

Figure 23 depicts the dynamical transitions for the escape
mechanism and looks almost identical to that of the release mecha-
nism shown in Fig. 22. The transition from the black clockwise TW
in Fig. 23(a) to the purple counter-clockwise TW in Fig. 23(f) occurs
via the formation of the three PMs, the disappearance of the black
TW, the appearance of the purple TW, followed by the disappear-
ance of the three PMs. The escape mechanism is more conducive
to permitting the transitory limit cycle behavior following torus
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FIG. 18. (g31/32, Iapp)-bifurcation diagram for the driver-biasedmotif. The network
is dominated by the red PM for strong synaptic coupling, as expected from the
asymmetry. The network also produces TWs, PS, and a combination of PMs with
TWs or PS at weaker coupling, along with the blue and green PMs. The vertical
line represents the network symmetry where g31 = g32 = gall = 0.001. Sam-
pled parameter values for the release and escape mechanism are as described
previously and elaborated in Figs. 19 and 20, respectively.

bifurcations, and therefore, these can be observed in finer detail here
in Fig. 23(c).

F. Emergence of a transitive torus

In this section, we describe a route to the emergence of a transi-
tive torus without any fixed points or invariant circles in the return
map. For the asymmetric network under consideration (Fig. 24,
top), this would correspond to a lack of any phase-locked or period-
ically varying rhythmic outcomes. Such a transitive torus has what is
called the everywhere dense covering, and a trajectory starting from
any initial condition fills in the entire phase portrait over time.

Figure 24 (top) shows the asymmetric network, where cells
1 and 3 have weak inhibitory coupling (g13 = g31 = 0.0003), cells
2 and 3 have a slightly stronger coupling (g23 = g32 = 0.0005),
while cells 1 and 2 have stronger asymmetric coupling (g12 = 0.001,
and g21 = 0.0051). Unlike the previous examples, we maintain the
synaptic strengths constant in this case, while varying the exter-
nal current drive Iapp for all the cells simultaneously through 0.4,
0.46, 0.5, 0.572 982, 0.594, and 0.61 from panel A through panel F
in Fig. 24, transforming individual cells gradually from the release
to the escape mechanisms. In order to effectively demonstrate both
the stable and unstable fixed points, invariant circles, as well as their
transitions, we compute both the forward (gray) and backward (red)
trajectories and plot them in the Poincaré return maps.

FIG. 19. Poincaré return maps corresponding to the driver-biased motif with the
release mechanism. For small g31 = g32-values, the network produces both the
blue and green PMs in panel (a′). As their value is increased, the red PM and the
two TWs then emerge via a series of saddle-node bifurcations in panel (b′). Next,
the green and the blue PMs disappear in (c′), as well as the black and purple trav-
eling waves in (d′), via saddle-node bifurcations, resulting in the single dominant
red PM. Parameters: Iapp = 0.426, gall = 0.001 except for g31 = g32=(0.0001,
0.001, 0.001 15, 0.0015).

In Fig. 24(a), the network produces a single stable invariant cir-
cle or a phase slipping pattern, shown in gray. In addition, the red
trajectories show the presence of an unstable fixed point as well as
a saddle, both of which disappear after undergoing a saddle-node
bifurcation in Fig. 24(b) to give rise to an unstable PS pattern, which
coexists with the stable PS. Also, note that the stable and unstable
PS patterns run in opposite orientations. In Fig. 24(c), the stable PS
pattern is lost due to a saddle-node bifurcation, giving rise to a stable
fixed point and a saddle. The network therefore has a single stable
rhythm (the black TW rhythm, shown in previous examples) that
coexists with an unstable PS pattern. The fixed point and the saddle
then gradually move further apart from each other, wrap around the
torus, and then merge and disappear through a saddle-node bifur-
cation in Fig. 24(d), again giving rise to a stable PS pattern, which
runs along the same orientation as the unstable PS pattern. The PS
patterns then start disappearing via torus breakdown49 as the stable
and unstable invariant circles start merging in Fig. 24(e) and finally
give rise to the transitive torus in Fig. 24(f). Only a single long tra-
jectory is plotted in Fig. 24(f), and it retraces the entire phase space
over time, without any fixed points or invariant circles.

G. Invisible heteroclinic bifurcations

Here, we illustrate the “invisible” role of some heteroclinic
bifurcations of the saddles and how they determine the structure
of the 2D Poincaré return maps and specifically how they shape
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FIG. 20. Poincaré return maps corresponding to the driver-biased motif with the
escape mechanism: with weak synapses g31 = g32, the network is dominated by
a single phase-slipping rhythm in panel (a). As they become stronger, through
a series of saddle-node bifurcations, the red PM first emerges in (b), followed
by the blue and green PMs and the two TWs in (c). Furthermore, the blue and
green PMs then disappear in (d), followed by the loss of the two TWs in (e), via a
heteroclinic saddle-node bifurcation, giving rise to a stable PS pattern—the sta-
ble IC (gray basin) that coexists with the red PM. The IC then disappears and
the network becomes mono-stable with the single dominant PM rhythm corre-
sponding to the red FP in (f). Parameters: Iapp = 0.57, gall = 0.001 except for
g31 = g32=(0.000 01, 0.000 65, 0.001, 0.0011, 0.001 36, 0.0025).

the attraction basins of the co-existing stable FPs. Let us examine
the transformation of the attraction basins depicted in Fig. 25. In
both the cases, the map has two stable FPs, green and blue, cor-
responding to the pacemaker rhythms with phase lags ∼ (0.5, 0)
and ∼ (0.5, 0.5), respectively. In addition to the persistent repeller
at the origin, there are three more saddle FPs (labelled by �’s) so that
the total number of hyperbolic FPs on the torus is even. Of special
interest here is the saddle to the left of the stable (blue) FP around
(0.5, 0.5). More specifically, let us follow its left outgoing (unstable)
separatrix (set) to find its destination, or the ω-limit set, as the num-
ber of iterates increases. As the map on the torus is defined on mod
1, the separatrix disappears when it reaches the left wall given by

FIG. 21. g�, Iapp-bifurcation diagram of the clockwise-biased motif. The network
is dominated primarily by traveling wave rhythms as expected from this asymmetry.
A single TW is seen for both small and large g�-values, while both the TWs are
seen for moderate values. PMs and PM/TWs are also seen close to symmetry
in the network, indicated by the vertical dotted line where g� = gall = 0.001.
Parameter values sampled for the release and the escapemechanisms in Figs. 22
and 23 are also shown.

112 = 0 and comes back into the map from the right wall given
112 = 1. Next, it slides above the incoming separatrix of the other
saddle (to the right of the blue FP) to converge to the blue FP—its
ω-limit set [Fig. 25(a)]. As g31 is slightly increased from 0.0071 to
0.0072, this separatrix first merges with the incoming separatrix of
the other saddle (right) to form a one-way heteroclinic connection,
which is followed by its shift further downwards below the saddle to
switch to another ω-limit set—the stable FP around (0.5, 0), which
corresponds to the green PM [Fig. 25(b)]. This heteroclinic bifurca-
tion drastically repartitions the sizes of the attraction basins of the
co-existing FPs: the blue FP is no longer dominant as a majority of
initial conditions would now converge to the green FP. This example
highlights the pivotal role of homoclinic and heteroclinic bifurca-
tions that underlie major reconstructions of the phase space, while
preserving the existence and stability of FPs in these return maps
and other systems, in general.

H. Stable synchronous state

In this section, we discuss the unexpected case of a stable
synchronous state, where all the cells oscillate together, which has
not been previously observed in 3-cell circuits coupled by the fast
FTM synapses. We note, however, that the discovery of the stable
synchronous state, in addition to several other exponentially sta-
ble polyrhythms, was recently reported in 4-cell inhibitory circuits,
made up of gFN-model neurons.44 So far, we have known that, as
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FIG. 22. Poincaré return maps corresponding to the clockwise-biased motif
with the release mechanism. The network is initially dominated by a single
stable clockwise TW in panel (a′), while the purple TW FP remains unsta-
ble. As the clockwise synapses are strengthened, the three PMs emerge in
panel (b′) via saddle-node bifurcations around the black TW FP. The purple
TW then becomes stable in (c′), while the black TW in (d′) loses stability,
via torus bifurcations. The three PMs disappear via saddle-node bifurcations
in panel (e′), resulting in the single dominant purple TW rhythm that finally
becomes hard-locked in (f′) as indicated by the rapid, non-smooth convergence
of trajectories to it. Parameters: Iapp = 0.4, gall = 0.001 except g12 = g23 = g31
= (0.0005, 0.000 65, 0.001, 0.001 35, 0.0016, 0.002).

soon the fast inhibitory connections in 3-cell motifs are replaced
with excitatory ones,1 all the attractors of the map become repellers,
the incoming (stable) separatrices (sets) of the saddles become out-
going (unstable) and vice versa. This is also true for half-center
oscillators made up of two reciprocally inhibitory cells. It was shown
previously50 that the synchronous state in such a HCO made up
of two plain FN-oscillators is unstable, in the case of FTM or sim-
ilar inhibitory coupling. Note that we say a synapse is fast when
the corresponding current is only slightly delayed compared to the
timing of the spike or the burst that initiates it and decays quickly
after the voltage of the pre-synaptic cell lowers below the synaptic
threshold. A synapse is slow when the decaying current generated

FIG. 23. Poincaré return maps corresponding to the clockwise-biased motif with
the escape mechanism look almost identical to those with the release mecha-
nism shown in Fig. 22. The network transitions from a single dominant black TW
in panel (a) to purple TW in panel (f). Along the way, the three PMs emerge via
saddle-node bifurcations in (b), the black TW loses stability in (c), while the pur-
ple TW becomes stable in panels (d) and (e) via torus bifurcations (resulting in
the transitory invariant circle shown), and the three PMs are lost via saddle-node
bifurcations (f). Parameters: Iapp = 0.5886, gall = 0.001 except g12 = g23 = g31
= (0.0005, 0.000 743, 0.001, 0.001 16, 0.001 32, 0.002).

by the pre-synaptic cell lasts much longer; therefore, its duration
can be compared with the inter-spike/burst period and not with the
spike/burst duration as in the case of fast synapse. This property
of long decay is key to understanding how two neurons coupled
reciprocally with slow inhibitory synapses can suppress in-phase
oscillations.51 Basically, if both are given a “window of opportunity”
to start together, they will continue oscillating in phase. Otherwise,
if the initial conditions are different and the neurons do not start
within this window, either one may surpass the other if the coupling
is strong enough and the decay is long enough. As such, there is no
asymptotic convergence to the synchronous state but to the anti-
phase rhythm. This is not the case when one examines HCOs made
of endogenous bursters with weak inhibitory coupling, using the fast
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FIG. 24. Six maps demonstrating the stages in the emergence of a transitive
torus in the given asymmetric motif (top). By increasing Iapp, the network migrates
from the release to the escape mechanisms. Both forward (gray) and backward
(red) trajectories elucidate the unstable FPs and ICs. Step 1: The network initially
has a single stable phase-slipping pattern (vertical gray IC with the decreas-
ing 113-direction) in panel (a), along with a repelling FP near the origin and a
saddle. Step 2: both merge and vanish through a homoclinic saddle-node bifur-
cation to give rise to an additional repelling PS pattern (red IC with the increasing
113-direction) in panel (b). Step 3: the stable IC breaks down via a homoclinic
saddle-node bifurcation as two FPs, a stable one and a saddle, emerge on it
so that the outgoing separatrices of the saddle end up on the stable FP around
(0.3, 0.6). The gap between both FPs increases, which makes them closer to
each other after crossing the boundary 113 = 0 = 1. Step 4: The FPs disap-
pear via a reverse homoclinic saddle-node bifurcation, and the stable PS pattern
re-emerges with the opposite direction, matching the orientation of the unstable
IC in panel (d). Step 5: the distance between the stable and the unstable ICs
decreases, as they start tomerge and vanish in panel (e). This completes the bifur-
cation sequence giving rise to a transitive torus in (f), without any FPs or ICs such
that a single trajectory densely fills its surface. Parameters: g13 = g31 = 0.0003,
g23 = g32 = 0.0005, g12 = 001, g21 = 0.0051, Iapp= (0.4, 0.46, 0.5, 0.572 982,
0.594, 0.61).

FTM-synapses, provided that the level of the synaptic threshold goes
through the fast spikes within bursts; if the level is below the spikes,
the burster effectively becomes a FN-neuron or a gFN-neuron. It
was demonstrated in Refs. 52 and 53 that in-phase synchrony of two

FIG. 25. 2D return maps showing how the outgoing and the incoming separa-
trices (gray lines wrapping around the torus) of the two saddles (labelled with
gray �) shape the boundaries and the sizes of the attraction basins of the stable
FPs, green and blue. The direction in which the heteroclinic connection between
the two saddle FPs splits determines which stable FP has the largest attraction
basin: blue in panel (a) at g31 = 0.0071 or green in panel B at g31 = 0.0072; other
parameters: g12 = g32 = 0.0038 and g21 = g23 = g13 = 0.0041 and ε = 0.3.

inhibitory coupled HH-like bursters can be stable and asymptotic
for three different models of the fast inhibitory synapses. More-
over, such busters can also converge to other close synchrony-like
states, with one or several spikes apart, due to the spike timing and
interactions, which make inhibition act like excitation; the reader
can find further details in the above references. Increasing the cou-
pling strength breaks down the synchrony arising from weak spike
interactions; therefore, the neurons start bursting in alternation.

One can see from Fig. 26 that the FP at the origin in the depicted
2D maps is no longer a repeller, unlike all the previous cases, where it
corresponds to an unstable synchronous rhythm with 112 = 113 =

0. For the given parameters values, the origin becomes an asymptotic
attractor with a relatively large basin (shown in yellow), to which the
nearby initial conditions converge. Depending on the gap between
the nullclines, the fast V′ = 0 and the slow h′ = 0, this newly formed
attractor co-exists with the stable PMs (green, red, and blue) in
Fig. 26(a1) or with stable PMs and TWs (black and purple spirals)
in Fig. 26(a2).

This figure also introduces another concept incorporated into
MotifToolbox43 to reveal the attraction basins of the co-existing
stable FPs (labelled by color-matching dots) in greater details, as
presented in Fig. 26(b1) and 26(b2). Using these diagrams, we can
identify the locations of the repellers in the (112, 113)-plane at the
junctions of three distinctively colored regions. For example, in
Figs. 26(a1) and 26(b1), one can spot such repellers at the locations
of the TW FPs at

(

1
3
, 2

3

)

and
(

2
3
, 1

3

)

, as well as six more repellers
(white dots) and six new saddles (gray diamonds). The number of
repellers in Figs. 26(a2) and 26(b2) provides an explanation as to
how the synchronous FP at the origin becomes stable. Due to its
location and symmetry on the 2D torus, it undergoes a degener-
ate pitch-fork bifurcation simultaneously along the lines 112 = 0,
113 = 0, and 112 = 113 and becomes stable in all three directions.
This bifurcation gives rise to six new saddles and six new repellers
nearby. Given that the return maps are defined on a phase torus in
modulo 1, the particular visualization approach stitching together
four identical panels can be employed to magnify the vicinity of the
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FIG. 26. (a)–(c) Snapshot of MotifToolbox43 panels showing the Poincaré return maps with an additional stable “synchronous” FP at the origin (0,0) (yellow), along with three
stable PMs in panel (a1) (parameters: gij = 0.0035, I = 0.409, V0 = −0.113, ε = 0.3) or three stable PMs and two stable TWs in panel (a2) (parameters: gij = 0.0021,
I = 0.406, V0 = −0.113, ε = 0.3). Panels (b1) and (b2) reveal the attraction basins of the coexisting FPs in greater detail and allow us to determine the locations of the
repelling FPs, at the junctions of three distinct color-coded regions. Traces in panel (c1) demonstrate an asymptotic convergence to the synchronous rhythm corresponding
to the FP at the origin. (d) Magnification of a neighborhood of the stable synchronous state (yellow) in the return map presented in (a1), by stitching together four identical
panels, to disclose its structure with six repellers (white dots) and six saddles (gray diamonds) surrounding the stable FP (yellow) at the origin (0,0).

origin, as shown in Fig. 26(d). This panel reveals how the boundary
of the attraction basin of the synchronous state at the origin is geo-
metrically determined by the stable and the unstable separatrices of
the saddles, which emerges through this bifurcation sequence.

IV. BOTTOM UP APPROACH: A 2θ-BURSTER FOR

3-CELL MOTIFS

The 2θ-neuron model is motivated by the dynamics of endoge-
nous bursters, with two characteristic slow phases: tonic-spiking
and quiescent. Similar to the notion of the relaxation oscillator
vs the FN-neuron, the equation describing the so-called “spiking”
θ-neuron54 in the context of neuroscience was known for a long
time since it was introduced in the classical mathematical theory
of synchronization.55 Its core is a homoclinic saddle-node bifurca-
tion on a torus or on an invariant circle, or the SNIC bifurcation,
which occurs on the V-shaped boundaries of synchronization zones,
also known as Arnold tongues, in the parameter plane; see Fig. 30.
The θ-neuron capitalizes on the pivotal property of the saddle-
node bifurcation—the phantom bottleneck effect that gives rise to

slow and fast time scales in the dynamics of systems ranging from
simple 1D to higher-order models. In the gFN-model, the saddle-
node bifurcation occurs at the quadratic tangency of the nullclines,
V′ = 0 and h′ = 0, in the phase plane (Fig. 6). Figure 1 illustrates
the same principle in the 3D phase space of the reduced leech
heart interneuron, where the quiescent phase of bursting can be
controlled by varying the gap between the slow nullcline and the
right hyper-polarized knee. Recall that a similar saddle-node bifur-
cation in this model, which controls the tonic spiking phase and the
number of spikes per burst, is associated with the famous blue-sky
catastrophe.32,56–58

A key feature of the 2θ-neuron is the occurrence of two saddle-
node bifurcations, which introduce two slow transitions into its
dynamics, with two fast switches in between. Similar to endogenous
bursters with two slow transient states—the active tonic-spiking and
the quiescent phases that can be controlled independently, we can
manage the durations of the two analogous states in the 2θ-neuron:
“on” at π and “off” at 0, using the same bottleneck post-effects of
the two saddle-node bifurcations. This allows us to regulate its duty
cycle, which is the fraction of the active-state duration compared
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FIG. 27. Unit circle represents the phase space
of a θ -neuron with a single “quiescent” saddle-n-
ode phantom at 0 (near the quadratic tangency at
the bottom) (a) and a 2θ -neuron with two single
saddle-node phantoms at 0 (quiescent phase) and
π (tonic-spiking phase) in (c), where the coun-
ter-clockwise rotations slow down as illustrated
by the spheres representing the phase points on
S
1. Varying the gaps or the distances from/to the

saddle-nodes let one control the inter-spike/burst
interval (b) or the duty cycle (d) of bursting traces.

to the burst period; see Fig. 27. As seen in this figure, the θ-model phenomenologically depicts spiking cells, while the 2θ-neuron can be
treated as a “spike-less” burster, similar to the gFN-neuron discussed previously. Below, we demonstrate that the network dynamics pro-
duced by a 3-cell motif composed of inhibitory 2θ-bursters preserve all the key features seen in a motif composed of the three gFN-neurons
as well.

A 3-cell motif comprising 2θ-neurons, coupled with fast inhibitory FTM-synapses, is given by the following system:































θ ′
1 = ω − cos 2θ1 + α cos θ1 −

(

β21

1 + ek cos θ2
+

β31

1 + ek cos θ3

)

·

[

1 −
2

1 + ek sin θ1

]

,

θ ′
2 = ω − cos 2θ2 + α cos θ2 −

(

β12

1 + ek cos θ1
+

β32

1 + ek cos θ3

)

·

[

1 −
2

1 + ek sin θ2

]

,

θ ′
3 = ω − cos 2θ3 + α cos θ3 −

(

β13

1 + ek cos θ1
+

β23

1 + ek cos θ2

)

·

[

1 −
2

1 + ek sin θ3

]

,

mod 1. (4)

One can observe that the phase dynamics of an individual
2θ-neuron are governed by the terms ω − cos(2θ). As long as the
frequency 0 < ω ≤ 1, there are two stable and two unstable equi-
libria: at the bottom around θ ' 0 and at the top near θ ' π ; they
are associated with the hyperpolarized and the depolarized quiescent
states of the neuron. When ω > 1, the 2θ-neuron becomes oscilla-
tory through two simultaneous saddle-node bifurcations (SNIC) on
a unit circle S

1, where θ is defined on modulo one. Moreover, when-
ever ω = 1 + ε, where 0 < ε � 1, this new “burster” possesses two
slow phases: the active “on” state near θ = π and the inactive “off”

state near 0 on S
1, alternating with fast counter-clockwise transitions

that are referred to as the upstroke and the downstroke, respectively.
For greater values of ω, the active and inactive phases should be
defined by π/2 < θ ≤ 3π/2 and 3π/2 < θ ≤ π/2, respectively. The
latter phase is below the synaptic threshold, which is set by θth = π/2
so that cos(θth) = 0, thus equally dividing the unit circle. The duty
cycle of the 2θ-neuron is controlled by the term α cos θ , provided
that it remains oscillatory as long as ω − |α| > 1. Note that when
α = 0, the duty cycle is 50% and the oscillations are even. The active
or inactive phases can be extended or shortened, respectively, with
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FIG. 28. (a) Phase lags between the three
2θ -neurons are recorded when the phase/voltage
reaches the synaptic threshold θsyn = 0 from
below. (b) Phase progressions of the coupled
2θ -neurons and their color-coded phase points on
a unit circle S

1.

α < 0, making the duty cycle greater or vice versa—the duty cycle of
individual neurons can be decreased with α > 0.

The 2θ-neurons are coupled in the 3-cell network using the

fast inhibitory FTM42 synapses. The “sigmoidal” term
1

1 + ek cos θi
,

ranging between 1 and 0, rapidly triggers (here, k = 10) an influx
of inhibition flowing from the ith pre-synaptic neuron into the jth
post-synaptic neuron, as soon as the former enters the active on-
phase above the synaptic threshold cos(θth) = 0, i.e., π/2 < θi <

3π/2. The strength of the inhibitory coupling is determined by the
maximal conductance βij that slows down the rate of increase of θ ′

j

in the jth post-inhibitory neuron because of the negative sign of the
coupling term. To translate the synaptic input into qualitative inhi-
bition, the sign of the input is switched upon crossing the values
θ = 0 and θ = π . This is achieved by multiplying all the coupling

terms of each ODE by
[

1 − 2

1+ek sin θ

]

. When 0 < θ < π , the inhi-

bition is a negative input to slow the transition into bursting. When
π < θi < 2π , the inhibition is a positive input making the transition
out of bursting toward quiescence faster. This is logically consistent
as, in general, inhibition should shorten the duration taken for the
post-synaptic neuron to leave its active phase. Optionally, one can

replace this term with
[

1 − 1

1+ek sin θ

]

, which breaks the symmetry

well.
Figure 28 shows the snapshots of the phase progressions of the

three calls on the unit circle S
1 and depicts how phase lags between

the three 2θ-neurons are introduced (here, the reference cell is cell
1, in blue), just like in the case of the 3-cell gFN motif in Fig. 3. One
can see from Fig. 28(b) that the active green neuron in the active
phase near θ = π , above the synaptic threshold, inhibits and pushes
the other two closer to each other, near the bottom quiescent state
at θ = 0, by accelerating the red neuron on the downstroke and by
slowing down the blue neuron on the upstroke.

Following the same approach used in the weakly coupled
HH and gFN models, we use a uniform distribution of initial
phase conditions, and hence the phase lags between the three
2θ-neurons, and determine the phase locked states that they can
converge to, with increasing number of cycles. This approach is
illustrated in Fig. 29(a) (compare with Fig. 3) for the symmetric 3-
cell motif composed of identical 2θ-neurons and equal inhibitory
synapses. The corresponding 2D Poincaré return map, with the

co-existing fixed points and saddles, is shown in Fig. 29(d), defined
on mod 1. By stitching together the opposite sides of this flat map,
we wrap it around a 2D torus shown in Fig. 29(b), color-coded
accordingly.

One can see that the 2D return maps for the gFN-neurons
and 2θ-neurons are nearly identical. This implies that our descrip-
tions and modeling approaches to reveal the intrinsic properties of
individual neurons and their phenomenological interactions at the
network-level are generic and universal. We would like to under-
line that the proposed concept of 2θ-bursters bares a great promise
for studies of collective dynamics exhibited by larger and modular
networks with a combination of inhibitory, excitatory, and electric
synapses, as well as for modeling biologically plausible circuits such
as central pattern generators. To conclude this section, we point out
another helpful feature of the 2θ-neuron paradigm, namely, the abil-
ity to find repelling FPs, if any, in the 2D Poincaré map, by reversing
the direction of integration of the system (4), i.e., integrating it in
the backward time by multiplying the right-hand sides in Eq. (4) by
−1. Unlike the gFN and other HH-like dissipative neural systems
where the backward integration will make solutions run to infinity,
it is not the case for 2θ-bursters, as the phases on S

1 will just reverse
the direction and spin clockwise on the unit circle.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The goal of this paper is to de facto illustrate that 3-cell
and larger neural networks can universally produce the same
emergent behaviors in response to parameter variations, pro-
vided that the dynamical properties are properly chosen for the
synapses and the constituent neurons, whether those are biologi-
cally plausible Hodgkin–Huxley type bursters, reduced generalized
Fitzhugh–Nagumo neurons, or toy 2θ-bursters. In all these cases,
we can employ the reduction to the visually evident Poncaré return
maps for phase lags, solely derived from multiple voltage traces. This
presents a potent computational approach for the thorough analysis
of rhythmic behaviors arising in a range of symmetrical and asym-
metrical neural networks. By taking advantage of the latest GPU
computing paradigms, we perform fast parallel computations of
numerous network trajectories and construct the return maps, such
as Figs. 7 and 8, within just a few seconds. We demonstrate how the
reduced 2D gFN neuron model, given by Eq. (1), in conjunction with
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FIG. 29. (a) Time progression of multi-
ple initial conditions exponentially converg-
ing to several phase-locked states [four
of them shown in (c1) and (c2)], gen-
erated by a symmetric 3-cell motif [see
Fig. 2(a)]. These phase-locked states cor-
respond to the co-existing stable FPs of
the 2D Poincaré map depicted in panel (d),
wrapping around the 2D torus in panel (b).

these computational techniques, allows for comprehensive examina-
tions of rhythmic behaviors arising in these networks, their under-
lying mechanisms of release and escape, as well as the construction
of detailed bifurcation diagrams [Fig. 4(e)] to study rhythm transi-
tions as the parameters such as the external current drive and the
strength of one or more synapses are manipulated. The parameters

are carefully chosen so they can also be controlled in neurophysio-
logical experiments with a dynamic clamp to replicate these behav-
iors in real animal CPGs.21,23 Symmetric and asymmetric 3-cell
configurations can produce a range of stable and unstable rhyth-
mic behaviors, including phase-locked bursting with pacemakers or
traveling waves, as well as the recurrent phase slipping chimeras. A
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rich set of bifurcations can be induced in these networks includ-
ing saddle-node, pitch-fork, and secondary Andronov–Hopf/torus
bifurcations through parametric changes, resulting in the emer-
gence/disappearance of rhythmic states and the gain/loss of their
stability. Finally, we also demonstrate how the 3-cell motif can lose
all its stable/unstable fixed points and invariant circles, causing the
emergence of a transitive torus, where the network can produce
voltage traces whose phase lags vary in a weakly chaotic manner.

We emphasize that 3-cell circuits composed of the gFN-type
neurons replicate the multiplicity of rhythmic behaviors and bifur-
cations seen in more detailed Hodgkin–Huxley type models,1 albeit
at much lower computational costs. The reduction of the analysis
of 3-cell network dynamics to 2D phase lag return maps allows for
the simple visual inspection of fixed points, invariant circles, and
their bifurcations. A stable FP representing a phase-locked bursting
rhythm also remains structurally stable under variations of net-
work parameters, as seen in biparametric scans such as Figs. 9
and 14. These scans show the regions of existence and stability
for the FPs, also referred to as synchronization zones,55 in the
2D parameter diagrams. The boundaries of such zones correspond
to homoclinic and heteroclinic saddle-node bifurcations of fixed
points or periodic orbits on an invariant circle; see Ref. 49 and
the references therein for more details about tori in neural mod-
els. Since there exist several controllable network parameters such as
the current drive for each cell, the connection strengths, and other
dynamical properties of individual synapses, the nested organiza-
tion of synchronization zones in the higher dimensional parameter
space is depicted in Fig. 30. Such zones have also been known as
Arnold tongues59,60 for weakly coupled oscillators and other complex
vibrating systems. Gradually changing a single parameter can cause

FIG. 30. Diagram outlining several nested synchronization zones in the parame-
ter space of a 3-cell neural network. Pairs of stable and unstable FPs in the 2D
return map are eliminated sequentially (see Figs. 10, 11, 15, and 16) when the
boundaries of these zones, corresponding to saddle-node (SN) bifurcations, are
crossed outwardly as the coupling 1gij between neurons i and j is increased.

a cascade of saddle-node bifurcations as the boundaries of the
Arnold tongues are crossed inward/outward, and rhythmic behav-
iors emerge/disappear as seen in Figs. 22 and 23. Although there
exist several controllable network parameters, we demonstrate that
many of these manipulations produce qualitatively similar dynam-
ics and transitions, highlighting the effectiveness of these reduction
tools.

The extension of these techniques to study larger neural net-
works with more than 3 cells as demonstrated in Fig. 31 would
require additional enhancements, including taking advantage of
unsupervised machine learning techniques to analyze the phase-lag
return maps in higher dimensions. The cons and pros of the visu-
alization approach applied for a 4-cell network are elucidated in
Fig. 32. One can observe that in contrast to 2D return maps, the
trajectory density undermines the clarity of the representation in
this case, and therefore, alternative ways should be used for thor-
ough studies of larger networks. We used a clustering approach
based on unsupervised machine-learning for the examination of 4-
cell inhibitory neural circuits44 and their repertoire of multistable
polyrhythms. Certain network topologies display a rich multiplic-
ity (due to permutation-phase shift symmetries65) of multistable [in
the motif depicted Fig. 31(a)] or bistable [in the uni-directional
motif shown in Fig. 31(b)] polyrhythms, while others can only

FIG. 31. Larger network configurations: The techniques in this study may be
extended to the analysis of larger network dynamics, including (a) the multistable
fully connected, (b) the bistable one-way inhibitory loop, and (c) the robust monos-
table mixed 4-cell inhibitory circuits,44 as well as (d) a 6-cell network composed of
two connected 3-cell motifs, reciprocally coupled with cross-inhibitory synapses
(dashed gray).
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FIG. 32. Cons and pros of 3D visualization: unit-torus with a return map for three
phase-lags between constituent cells in the 4-cell network depicted in Fig. 31(a).
The visible FPs (blue and green dots) correspond to stable pacemaker rhythms.

FIG. 33. Voltage traces depicting some of the stable rhythms seen in larger
inhibitory network configurations: 4-cell networks [see Figs. 31(a)–31(c)] can
produce four paired half-center rhythms in (a) or four traveling wave rhythms
in (b), among many other outcomes.44 A modular 6-cell network [sketched in
Fig. 31(d)], with 2 coupled 3-cell motifs, cells (1,2,3) and (4,5,6), can generate mul-
tiple pacemaker-like rhythms, depicted in panels (c) and (d), due to the reciprocal
cross-inhibition.

demonstrate monostability [the specific configuration presented in
Fig. 31(c)]. Figures 33(a) and 33(b) present two such stable rhythms
produced by 4-cell inhibitory networks: the so-called paired half-
center rhythm and the traveling wave. Future work could study
the dynamic behaviors arising in modular networks composed of
smaller motifs. An example is the 6-cell circuit shown in Fig. 31(d),
which is made up of two 3-cell motifs that are also bond together
via reciprocally inhibitory synapses. The rhythmic outcomes of the
larger network depend on the dynamics of individual motifs as
well as the connectivity between them. When each 3-cell motif in
Fig. 31(d) is configured to produce pacemaker rhythms only, the
cross-inhibition (between cells 1–6, 2–5, and 3–4) suppresses cer-
tain combinations of pacemaker patterns in the individual motifs,
while promoting others, like the one shown in Figs. 33(c) and 33(d).
Using the known principles and rhythmic outcomes of the smaller
CPGs, one might simplify the analysis of such modular networks.
Our analysis of phase-lags and return maps does not depend on
the underlying mathematical equations governing the system. As
such, the approach can be generalized to a variety of biological
and non-biological complex systems spanning across engineering,
economics, population dynamics, dynamic memory, and decision
making in animals,61 as well as the development of efficient robot
locomotion.62–64
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