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The relationship between spiking and bursting dynamics is a key question in neuroscience, particularly
in understanding the origins of different neural coding strategies and the mechanisms of motor command
generation and neural circuit coordination. Experiments indicate that spiking and bursting dynamics can
be independent. We hypothesize that different mechanisms for spike and burst generation, intrinsic neuron
dynamics for spiking and a modulational network instability for bursting, are the origin of this
independence. We tested the hypothesis in a detailed dynamical analysis of a minimal inhibitory neural
microcircuit (motif ) of three reciprocally connected Hodgkin-Huxley neurons. We reduced this high-
dimensional dynamical system to a rate model and showed that both systems have identical bifurcations
from tonic spiking to burst generation, which, therefore, does not depend on the details of spiking activity.
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The appearance and timing relationship of oscillatory
activities with strongly different frequencies in complex
nonlinear systems is one of the key problems of nonlinear
dynamics. Burst generation in lasers [1], mode competition
in gyrotrons [2], and time-modulated oscillatory convec-
tion [3] are just a few examples illustrating the generality
of this problem. In neuroscience, many experiments indi-
cate that spiking and bursting dynamics are involved in
different ways in neuronal microcircuit functions [4]. In
particular, spiking (temporal) and bursting (rate) activity
can be independent and code for different entities or sen-
sory variables [5]. What is the dynamical origin of this
independence? We showed here that over a large dynami-
cal range the bursting dynamics does not depend on exact
spike timing or detailed spiking activity if it results from
the network interaction of spiking neurons. We are par-
ticularly interested in the class of dynamical systems that
describe typical motifs (building blocks) of complex neural
circuits, the most common one a circuit of three coupled
inhibitory neurons [6]. For the first time we have observed
a sequence of bifurcations that leads to the appearance of a
heteroclinic cycle [7] in the high-dimensional phase space
of a system built of elements with complex intrinsic dy-
namics. This heteroclinic cycle consists of saddle limit
cycles (reflecting the spiking activity of neurons) and
heteroclinic orbits that connect them cyclically. The heter-
oclinic structure is robust against finite changes of control
parameters.

We compared the bifurcation sequence from tonic ac-
tivity to burst generation in a network of Hodgkin-Huxley
(HH) spiking neurons with the sequence of bifurcations
that leads to the appearance of a heteroclinic cycle in the
framework of a time-averaged (rate) model of the same
network. We found that these sequences are the same.

The motif network consists of three HH neurons recip-
rocally connected by inhibitory synapses. The neurons are
described by standard HH equations,

 C
dVi�t�
dt

� �INa � IK � Ileak � Isyn � Istim; (1)

where i � 1, 2, 3 denotes the number of the neuron, the
leak current is given by Ileak�t� � gleak�Vi�t� � Eleak�, and
INa�t� and IK�t� were [8]
 

INa�t� � gNami�t�3hi�t��Vi�t� � ENa�;

IK�t� � gKni�t�4�Vi�t� � EK�:
(2)

Istim is a constant input current to each neuron mak-
ing it tonically spiking with Istim-dependent fre-
quency. Each activation and inactivation variable yi�t� �
fni�t�; mi�t�; hi�t�g satisfied first-order kinetics

 

dyi�t�
dt

� �y�Vi�t���1� yi�t��� � �y�Vi�t��yi�t�; (3)

with nonlinear functions �y�V� and �y�V� given by
 

�n � 0:032��50� V�=fexp���5� V�=5� � 1g;

�n � 0:5 exp���55� V�=40�;

�m � 0:32��52� V�=fexp���52� V�=4� � 1g;

�m � 0:28�25� V�=fexp��25� V�=5� � 1g;

�h � 0:128 exp���48� V�=18�;

�h � 4=fexp���25� V�=5� � 1g:

(4)

The parameter values were C � 0:03 �F, gleak � 1 �S,
Eleak � �64 mV, gNa � 360 �S, ENa � 50 mV, gK �
70 �S, EK � �95 mV.
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The synaptic current onto neuron j is the linear sum of
the currents of all incoming synapses, Isyn;j �

P
iIsyn;ji

where the individual currents are (modified from [9])

 Isyn;ji � gjiSi�Vj � Vrev�; (5)

 �
dSi
dt
� �Ri � �Si�

Smax � Si
Smax

; (6)

 �
dRi
dt
� ��Vi � Vth� � Ri; (7)

where the threshold potential for transmitter release was
Vth � �20 mV, the synaptic time scale � � 50 ms, the
maximal fraction of postsynaptically bound transmitter
Smax � 0:045, the relative rate of transmitter binding and
unbinding � � 1=2, and � denotes the Heaviside step
function. Ri is a measure of the amount of neurotransmitter
released presynaptically and Si the fraction of postsynap-
tically bound neurotransmitter. In the following all indices
are cyclical. For visualization and analysis of bursting
dynamics we use Si, which is essentially a low-pass filtered
version of the spikes in the membrane potential Vi of the
presynaptic neuron.

Reduction to a rate model.—The presynaptic release of
transmitter Ri is driven by spikes, each spike contributing
just a little to the total value of Ri, such that we can
approximate the resulting average release ri of the presyn-
aptic spike train by a rate equation [compare to (7)] � dridt �
a�xi� � ri, where a is an unspecified function of xi, the rate
of spiking of the neuron i. We determine the function a by
requiring that ri � Ri for a tonic presynaptic spike train,
leading to

 �
dri
dt
�

1� exp���spike=��

1� exp��1=�xi���
� ri; (8)

where �spike is the spike width measured at Vi � 0 mV, in
our case �spike � 0:695 ms. Except during a spike, Vi is
approximately constant, such that we can substitute Vrest

for it (denoting the approximated Si by si):

 Isyn;j � �
X
i

gjisi�Vrest � Vrev� � �
X
i

ĝjisi; (9)

where the constant voltage difference was absorbed into
ĝji. Furthermore, the HH neuron model has a very clear
relationship of spike rate to input current, which can be
approximated excellently by

 xi � x0�maxf�Isyn;i � Idc � I0�=nA; 0g��; (10)

with I0 � 0:0439 nA, � � 0:564, and x0 � 0:185, a least
squares fit (Fig. 1), which is more precise than using linear
f-I curves [10] and leads to quantitative agreement of rate
and spiking model (see below).

Denoting ~gij � ĝij=nA, ~I � �Idc � I0�=nA, we obtain

 xi � x0

�
~I �

X
j

~gijsj

�
�

�
; (11)

with �. . .��� � �maxf. . . ; 0g��. Inserting (11) into (8) yields

 �
dri
dt
�

1� exp���spike=��

1� expf��x0�~I �
P
j

~gijsj�����
�1g
� ri

	 ~x0

�
~I �

X
j

~gijsj

�
�

�
�� ri; (12)

where we used exp�x� 	 1� x for small jxj, and ~x0 �

�1� exp���spike=���x0. We, thus, arrive at an approximate
rate model of the form

 �
dsi
dt
� �ri � �si�

Smax � si
Smax

; (13)

 �
dri
dt
� ~x0

�
~I �

X
j

~gijsj

�
�

�
�� ri; (14)

where ~x0 	 2:57
 10�3, ~I 	 Idc=nA� 0:0439, ~gij 	
20gij mV=nA, and (13) is the equivalent of (6).

Multistability.—The behavior of the dynamical system
(1)–(7) strongly depends on the level of symmetry of the
connections among the oscillatory elements of the network
(the autonomous activity of each neuron is a stable limit
cycle of tonic spiking). If the system is close to being
symmetrical (gij 	 gji) the bifurcations in the system
(1)–(7) shown in Figs. 2(a)–2(d) and the ensuing trans-
formations of the phase portrait depend only on one control
parameter, i.e., the equal strength of the couplings gij �
gji � g. For weak competition, all neurons are in a tonic
spiking regime [3D torus or a limit cycle on it in case of
spike synchronization in the original phase space, and a
stable node in the S � �S1; S2; S3� space [Fig. 2(a)]]; the
limit sets corresponding to a single or a pair of active
neurons do not exist. For stronger competition, the system
demonstrates multistability, i.e., the stable 3D torus or limit
cycle coexists with three stable 2D tori (or limit cycles in
case of spike synchronization) corresponding to simulta-
neous spiking dynamics of different pairs of two neurons.
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FIG. 1 (color online). Rate response x of the HH neuron model
(1)–(4) to dc input currents Idc (bullets). It is fitted almost
perfectly by (10) (thin line).
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In the S phase space, the boundaries of the basins of
attraction of these attractors are separatrices of saddles.
When the competition increases further [Fig. 2(c)] these
saddles that are close to the symmetric attractor merge with
this stable node (in S space), which after bifurcation
becomes a saddle itself. The observed phenomena are
identical to the bifurcations present in the 3-neuron ap-
proximate rate model (13) and (14) shown in Figs. 2(e)–
2(h), for which we know the exact location of all fixed
points and the bifurcations (Fig. 3).

Heteroclinic structure.—To understand the mechanism
of burst generation, we have to analyze the bifurcations
occurring for increasingly asymmetric connections be-
tween neurons. We denote the conductance of synapses
in one direction by g1 and in the opposite direction by g2

and change their relative strength. The corresponding se-
quence of bifurcations in the S space is shown in Fig. 2(c),
4(a), and 4(b). For increasing asymmetry the saddles in the
S space are moving closer to the stable nodes that corre-
spond to three different tonic spiking modes (one tonic and
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FIG. 3 (color online). Bifurcations of the symmetric rate
model (obtained with AUTO-07p [14]). Nodes are crosses and
saddle points circles. The control parameter g is color coded, and
increasing g moves fixed points along the arrows. The bifurca-
tions are (for increasing g) (a) three nodes and three saddles
appear at 1 (g � 35:1 nS), (b) the middle node merges with the
saddles coming from 1, becomes a saddle, and three new saddles
appear that move towards 3 (g � 41:58 nS), (c) the three saddles
reach 3, become nodes, and give rise to a pair of saddles each
(g � 46:3 nS), and (d) the saddles merge with the three fixed
points at 4, form three new saddles, and the nodes at 3 remain the
only stable fixed points (g � 51:5 nS).

 

FIG. 2 (color online). Bifurcations of the 3 neuron HH circuit (a)–(d) in comparison to the rate model (e)–(h) for symmetric
reciprocal interaction of increasing strength. The three displayed variables are the synaptic activation S of the synapses originating
from each of the three neurons, respectively. This quantity is a low-pass filtered version of the neuron’s spike train in case of the
spiking neurons and thus provides a ‘‘rate description’’ of the spiking activity. The bifurcations are identical in both cases and even the
exact critical values of g are very close. Synaptic conductances (a) g � 10 nS, (b) g � 30 nS, (c) g � 50 nS, (d) g � 60 nS,
(e) g � 30 nS, (f) g � 40 nS, (g) g � 51:4 nS, (h) g � 60 nS. 
 denotes nodes and + saddle points.

 

FIG. 4 (color online). Bifurcation of the HH model (a),(b) for
increasing asymmetry of the connections compared to the same
transition in the rate model (c),(d). We, again, find the same
structure: The saddle points move to the corners and eventually
merge with the fixed points, vanish, and give rise to a globally
attracting limit cycle of bursting dynamics. (a) g1 � 60 nS, g2 �
45 nS, (b) g1 � 80 nS, g2 � 35 nS, (c) g1 � 60 nS, g2 �
50 nS, and (d) g1 � 80 nS, g2 � 35 nS.
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two silent neurons). At a critical value of the ratio g1=g2,
the saddles merge with the stable nodes, which become
saddles themselves, leading to the appearance of a hetero-
clinic cycle [Fig. 3(c) and 3(d)]. The corresponding bifur-
cations in the phase space of the rate model (13) and (14)
coincide with the observed bifurcations in the complete,
complex system (1)–(7), like in the symmetric case. Thus,
the bursting dynamics does not depend on the details of
spike timing.

Stable heteroclinic sequence.—For high intrinsic spik-
ing frequency of the constituent neurons the synapses are
driven towards saturation which slows down their intrinsic
dynamics which, in turn, reduces the bursting frequency of
the circuit (Fig. 5). For sufficiently large intrinsic spiking
frequency of the neurons, the heteroclinic cycle becomes
attracting [11]: The bursting dynamics slows down indef-
initely [Fig. 5(c)].

Conclusion.—We found the origin of burst generation in
a motif circuit of three HH neurons which are reciprocally
coupled with inhibitory synapses. It is a modulation insta-
bility that leads to the appearance of a heteroclinic se-
quence in the high-dimensional phase space of the
corresponding dynamical system (see its projection to S
space in Fig. 4(a) and 4(b)]. Based on the similarity of the
bifurcations towards heteroclinic sequences in the original
complex system and in the time-averaged rate model we
introduced, one can conclude that bursting dynamics does
not depend on the details of neuronal spiking activity of

individual neurons. The dynamical image of rhythmic
bursting activity in S space is a stable limit cycle in the
vicinity of a heteroclinic sequence [12]. In addition, we
confirmed the validity of the time-averaged rate model for
the description of network bursting dynamics.

While we chose to investigate a minimal motif of three
neurons in this work, the phenomena of switching activity
between quasistationary states typical for a heteroclinic
structure have been observed in vivo in the much larger
cortex network (Fig. 2 in [13]).
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FIG. 5 (color online). (a)–(c) Time series of the membrane
potentials Vi of the three neurons. (a) Istim � 0:08 nA,
(b) Istim � 0:16 nA, and (c) Istim � 0:22 nA. The higher the
intrinsic spiking rate of the neuron (determined by Istim), the
closer comes the limit cycle to the heteroclinic cycle. For (c) the
heteroclinic cycle is attracting and the time series of bursts
continues to slow down infinitely. (d) Rate (S space) picture
of the dynamics in (c), approaching the heteroclinic cycle.
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