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a b s t r a c t

We study an array of activity rhythms generated by a half-center oscillator (HCO), represented

by a pair of reciprocally coupled neurons with post-inhibitory rebounds (PIR). Such coupling-

induced bursting possesses two time scales, one for fast spiking and another for slow quies-

cent periods, is shown to exhibit an array of synchronization properties. We discuss several

HCO configurations constituted by two endogenous bursters, by tonic-spiking and quiescent

neurons, as well as mixed-mode configurations composed of neurons of different type. We

demonstrate that burst synchronization can be accompanied by complex, often chaotic, inter-

actions of fast spikes within synchronized bursts.

© 2015 Published by Elsevier B.V.
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1. Introduction

Synchronization of coupled oscillators is a fundamental phenomenon in nonlinear systems that has been observed in a wide

range of diverse applications [1]. The mathematical concept of synchronization [2], first introduced and developed for periodic

oscillators has been further generalized for other aperiodic systems, including ones with chaotic dynamics. In life sciences, of a

keen interest is synchronization or phase locking among oscillators with multiple time scales. They may include mixed-mode

and slow–fast relaxation-type oscillators [3], whose interaction can give rise to the onset of a variety of synchronization patterns

[4–7]. In neuroscience, a plethora of rhythmic motor behaviors with diverse time scales, such as heartbeat, respiration, chewing,

and locomotion on land and in water are produced and governed by neural networks called Central Pattern Generators (CPGs)

[8,9]. The CPG is a microcircuit of neurons that is able to autonomously generate an array of polyrhythmic bursting patterns,

underlying various motor behaviors.

Endogenous (self-sustained) bursting and network (coupling-induced) bursting are composite oscillatory behaviors, featur-

ing active phases during which a neuron or a group of neurons generates trains of fast action potentials, which are alternated

with long interburst intervals during which it remains inactive or quiescent, until a new cycle of bursting occurs. In this pa-

per we examine synchronization of bursting patterns emerging through interactions of two interneurons coupled reciprocally

by fast inhibitory synapses. This study has been driven by two major motivations: first, a general one concerning questions on
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synchronization of mixed-mode oscillators. The second is a neuroscience related one, aimed at a progress in understanding of

intrinsic mechanisms of rhythmogenesis in CPGs, composed, often symmetrically, of such small networks of interneurons, as

outlined below. It is still unclear how CPGs can achieve the level of synergy, flexibility, and robustness to produce a plethora of

rhythmic patterns observed in nature.

Recent experimental and theoretical studies have disclosed a distinct role of CPGs in generation of adaptive and coordinated

motor activity of animals [9–12]. An important feature of CPGs is their ability to produce various types of rhythmic bursting

activity, what causes flexible and adaptive locomotion of an organism. To robustly govern motor patterns, CPGs are in a position

to flexibly adjust their oscillatory properties (such as bursts duration, frequency of spiking, phase relations of bursts) due to a

feedback from sensory inputs, for example, in response to changes of an environment [9,10]. Up to a certain extent, the flexibility

of CPG behaviors may be attributed to its multistability (of several coexistent attractors representing different bursting rhythms

in a phase space of the dynamical system) allowing for fast switching between operating modes [7,13].

From the theoretical point of view, a CPG is modeled as a small network of coupled oscillatory, or quiescent, interneurons,

each described by a system of nonlinear ordinary differential or difference equations (dynamical system) [11,14,15]. The study

of CPGs allows one to progress in a general understanding of synchronization patterns in mixed-mode oscillators, applicable to

systems of various physical and biological origin.

There is a growing body of experimental evidence that a universal building block of most identified CPGs is a half-center

oscillator (HCO) [16]. A HCO is a pair of reciprocally inhibitory interneurons bursting in alternation. Such a pair can be comprised

of endogenously bursting interneurons, as well as of intrinsically tonic spiking or quiescent interneurons that start anti-phase

bursting only when they are coupled. Theoretical studies [17–21] have indicated that the formation of an anti-phase bursting

rhythm is always based on some slow-time-scale dynamics. In the biophysically plausible models, the slow dynamics is firmly

associated with the slow membrane currents, such as persistent sodium or slow calcium-dependent current (e.g., potassium

after-hyperpolarization current [25]); following [22] we term currents associated with slow-varying concentrations and gating

variables as slow ones. There are three basic mechanisms to generate alternating bursting in the HCO: release, escape, and post-

inhibitory rebound (PIR). The first mechanism is typical for endogenously bursting neurons [4,6,23]. The other two mechanisms

underlie coupling-induced bursting in HCOs comprised of neurons, which are initially depolarized or hyperpolarized quiescent

in isolation [9,18,20,24–26].

The PIR mechanism uses reciprocal inhibition to maintain coupling-induced bursting in otherwise hyperpolarized quiescent

neurons. As such, either neuron of the HCO must receive a sufficiently strong pulse of some external negative current that initiates

the chain reaction in the coupled neurons. PIR triggers an onset of a single or a series of action potentials in the post-synaptic

neuron after it has been prolongedly hyperpolarized and abruptly released from inhibition generated by the pre-synaptic neuron

during an active, tonic spiking phase of bursting. After that, the neurons of the HCO swap their opposite roles to repeat the

PIR mechanism. PIR promotes the action potential generation after a period of sufficiently strong hyper-polarizing (inhibiting)

input, as illustrated in Fig. 2. PIR is often caused by a low-threshold activated calcium current in neurons and their biophysically

plausible models.

Formation of the antiphase dynamics in inhibitory coupled neurons forming homogeneous HCOs has been extensively studied

in Refs. [17–19,21,27] where the primary scope is focused on the dynamics of identical neurons, which are either intrinsically

excitable or tonically spiking neurons represented by phenomenologically reduced models. Much is yet unknown about the

rhythmogenesis of an anti-phase coupling-induced bursting in heterogeneous HCOs described by biologically plausible models

derived within the framework of the Hodgkin–Huxley approach. We focus our study on the properties of the emergent bursting

in HCOs comprised of non-identical neurons, demonstrating qualitatively different activity types in isolation, i.e. initially chosen

at the opposite sides of the transition thresholds between bursting, tonics-spiking, and quiescent behaviors.

An examination of an set of non-identical neurons gives rise to the following issues: (i) the first one concerns with the dy-

namical robustness and the structural stability (in the parameter space) of the ensemble dynamics against perturbations in the

form of a heterogeneity in the ensemble; (ii) the second problem deals with the phase synchronization of a network of oscillatory

units. In the case of strong heterogeneity, one should expect possible emergence of additional dynamical phenomena occurring

in the system.

Therefore, in this paper, following and capitalizing on the previous studies of PIR mechanisms in homogeneous networks, we

examine how PIR contributes to formation, synchronization and robustness of multiple bursting rhythms in heterogeneous HCOs

with inhibitory coupled neurons. We focus our consideration upon the oscillatory dynamics occurring in a heterogeneous setup

with slightly non-identical neurons, as well as in various mixed-mode HCOs where constituent neurons are chosen to operate in

different dynamical regimes: bursting and tonic spiking, or hyperpolarized quiescence.

In this paper, we employ a modification of the Hodgkin–Huxley-type model introduced in [22] to plausibly describe the PIR

mechanism. Depending on its parameters, the model is known to produce an array of generic neuronal activities such as excitable

dynamics emerging from a hyperpolarized quiescent state, periodic spiking, and bursting.

First, we will examine the conditions that stably reproduce the PIR mechanism in the neurons. We will argue that the PIR

is a pivotal component that promotes an alternating bursting rhythm in the HCO made of intrinsically spiking and excitable

neurons. Finally, we will show that the PIR mechanism enhances anti-phase coupling-induced bursting that occurs in a pair of

endogenously bursting neurons.

Below in this paper we present different dynamical behaviors in coupled neurons, choosing the following structuring: we first

describe the dynamics of lumped neurons, and then separately present studies of pairs with different types of lumped dynamics.

So, we arrange the results not according to the resulting behavior of the CPG, but according to the properties of uncoupled
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units. The paper is organized as follows: in Section 2 we introduce the neuronal model, and discuss its dynamical properties

in Section 3. Section 4 is focused on synchronization properties of a pair of endogenous bursters, while Section 5 examines

anti-phase bursting onset in coupled tonic-spiking neurons. Sections 6 and 7 discuss the PIR-mechanisms of the HCO, and the

coupling-induced dynamics of mixed pairs (a tonic spiking and a hyperpolarized quiescent ones, or a tonic spiking and a bursting

one), respectively.

2. Basic model

In this study we employ a reduced modification of the conductance-based neuronal model proposed in [22] to model rhyth-

mic activity in the isolated thalamic reticular nucleus. The reduced Hodgkin–Huxley type model is a seven-dimensional sys-

tem of ODEs calibrated to accurately replicate the dynamics of the transmembrane voltage and of the gating variables of ionic

channels. The system contains fast Na+ and K+ currents responsible for the spike generation mechanism, along with additional

low-threshold activated calcium current IT, which accounts for the mechanism of voltage post-inhibitory rebound in the model.

The basic formulation of the coupled model (full details are given in Appendix A) is the following:

CmV ′
i = I(i)

ext − fi(Vi) −
N∑

j=1, j �=i

Isyn(Vi,Vj),

fi(Vi) = I(i)
leak

+ I(i)
Na

+ I(i)
K

+ I(i)
T

, i = 1, 2.

(1)

The variable Vi(t) describes evolution of the membrane potential of the ith neuron. The first two terms on the right-hand side

of Eq. (1) govern the intrinsic dynamics of the neuron: I(i)
ext stands for a constant external current applied to the neuron, while

term fi(Vi) represents the sum of intrinsic ionic currents. The sum of synaptic currents
N∑

j=1, j �=i

Isyn(Vi,Vj) describes the coupling

interactions between the neurons. In this study we assume that synapses are instantaneous and non-delayed as in the most CPG

networks, and hence we can model the synaptic currents using the fast-threshold modulation paradigm [28]:

Isyn(Vi,Vj) = G · S(Vj − θsyn) · (Vi − Esyn). (2)

In Eq. (2), G is the maximal conductance of synaptic current flowing from pre-synaptic jth neuron into the post-synaptic ith

neuron. For inhibitory coupling we set Esyn = −80 mV; the synaptic activity (coupling) function S(V(j)) is given by the following

Boltzmann function:

S(Vj) = 1

1 + e−100(Vj−θsyn)
, (3)

with the synaptic threshold θsyn = 20 mV is set at the middle of fast spikes (Fig. 1). It follows from Eqs. (2) and (3) that the

synaptic current flowing into the post-synaptic neuron attains a maximum when the voltage of the pre-synaptic neuron remains

above the synaptic threshold: Vj > θ syn, and it vanishes otherwise.

As the most Hodgkin–Huxley models, this neuron system (1) has currents (via gating variables) operating on fast and slow

time scales. The dynamics of such slow-fast systems is known to be determined by the geometry of the so-called slow motion

manifolds [15,29,30]. In the context of mathematical neuroscience, these manifolds are called tonic spiking and quiescent, as

they are made of periodic orbits and equilibria of the system, respectively. For the model under consideration, these manifolds,

labelled as Mlc and Meq, are shown in a 3D projection on the fast (V, n) and slow, hT, variables, see Fig. 1. Whenever the neuron

produces tonic spiking activity, there is a stable periodic orbit on the cylinder-shaped manifold Mlc. When the neuron remains

hyperpolarized quiescent, then there is a stable equilibrium state on the low branch (shown by the solid orange curve in Fig. 1,

whereas the unstable branch is shown by the dashed curve) of the S-shaped Meq below the knee-point. If there are neither stable

equilibria nor tonic-spiking periodic orbits on the corresponding manifolds, then the endogenous neuronal bursting is associated

with a stable periodic orbit (blue), which follows the tonic spiking and the quiescent manifolds Mlc and Meq, and switches

between them. In the case of PIR, a transient of the driven (post-inhibitory) neuron is forced by the driving (pre-synaptic) neuron

to make a single route along the “bursting orbit with fast spikes”, corresponding to turns around Mlc, before it comes back to the

stable hyperpolarized state. This (equilibrium) state is geometrically located at the intersection of the bottom branch of Meq with

the surface labelled by h′
T

= 0. This surface is called a slow nullcline: for the voltage values above/below it in the phase space,

the slow low-threshold Ca2+ current IT becomes in/activated. The slow motion manifold describing quiescence Meq, and the one

describing tonic spiking Mlc, were obtained using the parameter continuation technique developed for slow-fast systems in [30].

For computations we used the packages CONTENT and MatCont.

In opposite, IT is inactivated during the fast spiking phase, when the voltage values remain above the surface h′
T = 0, see

Fig. 1. The full details of the currents representation are given in Appendix A. More details on critical manifolds and bursting in

neuronal models can be found in Refs. [15,29,30].

There are two principal control parameters in this system. The first one is the external current, I(i)
ext, that governs the activity

type in an isolated, uncoupled neuron. The second parameter is the maximal conductance G of the synaptic current introduced

in Eq. (2): it controls the coupling strength. Hence, the constant G is the principle parameter determining the dynamics of the

coupled neurons.
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Fig. 1. Bursting orbit (in blue color) recursively switching between two slow-motion critical manifolds: (cylinder-shaped) tonic spiking Mlc , and quiescent Meq

(orange curve), projected onto the fast (V, n) and slow hT variables of the neuron model at Iext = 0; two other shown surfaces represent the synaptic threshold

�syn = 20 mV and the slow nullcline h′
T = 0, above/below which slow low-threshold Ca2+-current IT increases/decreases, respectively. The intersection point of

h′
T = 0 and Meq is an unstable equilibrium state (on the dashed segment) that becomes stable through a super-critical Andronov–Hopf bifurcation after being

shifted below the fold at −80 mV onto the hyperpolarized (solid) section of Meq, after the neuron becomes constantly hyperpolarized by the external current Iext,

or temporarily by an inhibitory drive from a pre-synaptic neuron. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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The low-threshold activated calcium current IT, modeled by Eq. (10) and regulated by the maximal conductance gCa, causes the

PIR mechanism in the neurons (1), as illustrated in Fig. 2. Here, a rebound burst is triggered by the injection of a hyper-polarizing

pulse of the external current I(i)
ext (bottom panel in Fig. 2). If the impact of IT current is strong enough (the impact is stronger for

larger values of gCa), the neuron generates a train of several spikes, after recovering from the hyperpolarized quiescent state (top

panel in Fig. 2).

We would like to clarify that even though the system (1) under consideration was specifically aimed at modeling of the

voltage dynamics of thalamocortical cells in the original paper [22], our study is not meant to refer to a particular part of brain or

nervous system. As such, it is applicable to a broad class of neuronal models of the Hodgkin–Huxley type and an array of PIR based

phenomenological systems as a whole. We treat the conductance-based model (1) with certain electrophysiological properties as

a generic system, which has turned to possess certain dynamical and bifurcation properties, first of all the PIR mechanism, shared

across a large variety of similar systems of diverse biological origins [31]. The features of this single compartment model (1) are

based on its two functional components: (i) the first component represents the classical Hodgkin–Huxley-type mechanism for

fast spike generation typically due to relaxation oscillations; (ii) the second one is in charge of the calcium-based mechanism for

post-inhibitory rebound. Our goal is to understand the “synergetic” interaction of both components: the significance of reciprocal

influence of the post-inhibitory rebounds on the fast spiking oscillatory dynamics, and vice verse, in the system of two coupled

neurons.
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Fig. 2. Abrupt release of a hyperpolarized pulse of the external current Iext (bottom panel) triggers a post-inhibitory rebound of bursting in the quiescent neuron

(top panel). The parameter gCa stated in the legend denotes maximal conductance of the current IT . When the parameter gCa is relatively small, the effect of the

IT current is negligible, what causes absence of PIR in the dynamics of the neuron (dashed green curve in the top panel). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Bifurcation diagram for an isolated neuron (gCa = 1.75 mS/cm
2
): plotting inter-spike intervals (ISI) against the external current Iext (this horizontal

axis is broken in the middle to highlight the ranges of nontrivial behaviors) reveals windows of bursting (−0.14 μA/cm
2 � Iext � 0.5 μA/cm

2
), quiescence

(0.5 μA/cm2 � Iext � 4 μA/cm2), and tonic spiking (Iext � 4 μA/cm2) activity in the neuron. The low ISI branch corresponds to short time intervals between fast

spikes, and the top branch represents long interburst intervals between consecutive spike trains.
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3. Dynamics of an isolated neuron

Let us first consider the dynamics of an isolated neuron at Isyn = 0 in Eq. (1). The external current Iext is considered to be

the pivotal bifurcation parameter that allows one to examine and plausibly model various neuronal activities and transitions

between them in both computational and biological experiments. We employ the notion of inter-spike intervals (ISIs) quantifying

distances between adjacent spikes generated by the neurons, as the feasible measurement characterizing the types of neuronal

activity. Fig. 3 illustrates how the ISIs can change with variations of Iext.

First we describe the neuron dynamics at large Iext values. For Iext > 4 μA/cm2, the neuron produces tonic spiking activity

(corresponding to a stable periodic orbit in the phase space of the model (1)). Here, the value of ISI (which is the period of the

stable orbit) is inversely proportional to the Iext-value. The period decreases with increase of Iext, and vice versa. As one can see

from Fig. 3, near a critical value Iext ≈ 4 μA/cm2, the ISI shows an “unbounded” growth, which is an indication of a bifurcation of

the stable periodic orbit with an arbitrarily long period. Detailed examinations indicate the occurrence of a homoclinic saddle-

node bifurcation [14] underlying the transition from the tonic spiking activity to the hyperpolarized quiescence, represented by

a stable equilibrium state at low values of the membrane potential V. This stable equilibrium state (a node with real and negative

characteristic exponents) persists within the parameter window 0.8 μA/cm2 � Iext � 4 μA/cm2, where the neuron remains ready

for PIRs. Small perturbations of the quiescent state of the neuron have no pronounced effects. Relatively strong perturbations
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can trigger a spike, after which the neuron comes back to the over-damped quiescence state. With a decrease of Iext from the

threshold Iext ≈ 4 μA/cm2, the steady state becomes a focus. The stable focus loses its stability through a supercritical Andronov–

Hopf bifurcation at Iext ≈ 0.8 μA/cm2 (see the explanation below). These oscillations are not seen in Fig. 3 because they are

under the threshold of spike generation. The amplitude of the oscillations increases rapidly as Iext is further decreased. At Iext ≈
0.5 μA/cm2 the shape of the periodic orbit in the phase space changes via the addition of new “turns” around the tonic spiking

manifold through the mechanism of period-adding [32,33]. Such a stable periodic orbit is associated with a robust bursting

activity, and the number of its turns is exactly the number of the spikes within a burst (see Fig. 1). Bursting that includes two

time scales can be recognized in Fig. 3 through two characteristic branches: the bottom branch corresponds to small ISI values

due to fast spiking, while the top branch is due to long inter-burst intervals. More details on geometry of bursting can be found

in [15,30]. Decreasing the external current Iext makes the bursting neuron more depolarized and increases the number of spikes

per burst. Having reached some maximal value of spikes per burst at Iext ≈ −0.136 μA/cm
2
, a further decrease of Iext can cause

the neuron to generate bursts with considerably fewer spikes. The value Iext ≈ −0.14 μA/cm2 corresponds to the occurrence of

another saddle-node bifurcation of equilibria since the time interval between two consecutive bursts becomes arbitrarily large.

For Iext < −0.14 μA/cm
2

the neuron remains quiescent and excitable.

The examination of bifurcations has been repeated for several values of the maximal conductance gCa, regulating the low-

threshold Ca2+ current responsible for PIR in the neuron. We have found that this current bears an insignificant affect on the

intrinsic dynamics of the individual neurons, mainly because the membrane potential does not decrease below the threshold

value to activate the current. As we will see below, this is not the case for coupled neurons, where the parameter gCa has a

pronounced effect on the collective dynamics.

4. Synchronization of two bursting neurons

In this section and Sections 5–7 , we explore a repertoire of rhythmic bursting outcomes generated by a HCO constituted

by two neurons coupled reciprocally by fast, non-delayed inhibitory synapses. The current section deals with the dynamics of

coupled endogenously bursting neurons. Sections 5 and 6 will focus on intrinsically spiking and quiescent neurons, respectively,

that become coupling-induced bursters due to the PIR mechanism. Next, in Section 7 we will consider the mixed-mode case of

coupled neurons with different types of intrinsic activity.

It has recently become known that endogenous bursters, when weakly coupled, can produce a range of synchronous rhyth-

mic outcomes with various fixed phase-lags, due to spike interactions within overlapping bursts, see [6,34] and the references

therein.

First we will examine the cooperative dynamics in the system of two coupled neurons (N = 2 in Eqs. (1)) with different

I(1,2)
ext within the interval [−0.14 μA/cm

2
, 0.5 μA/cm

2
]. This range of the current Iext corresponds to the endogenous bursting

in both neurons. Due to the difference, �Iext = I(1)
ext − I(2)

ext , the temporal and quantitative characteristics of endogenous bursters

such as their period, duty cycles, the spike numbers per burst, are different. The strength of the coupling is quantified by the

maximal conductance G, of the inhibitory synaptic current Isyn. In what follows, we show that while �Iext remains relatively

small, increasing the coupling strength shall give rise to an onset of synchrony between the neurons with the same bursting

period in a rather straightforward way (Section 4.1). However, for larger �Iext values (Section 4.2) also more complex states are

observed. All results in this section are obtained for gCa = 1.75 mS/cm
2
.

4.1. Nearly identical bursters

While |�Iext| � 0.05 μA/cm2, synchronous bursting can already occur at a relatively weak coupling: the burst periods of both

neurons become equal. This observation is supported by Fig. 4, which depicts the dependence of the established (after relatively

long transient) phase lag �ϕ on the coupling strength G for several values of the conductance gCa. Here, �ϕ is introduced as the

phase difference:

�ϕ = |ϕ1 − ϕ2|, (4)

where ϕ1, 2 denote the phases of both endogenous bursters that are defined as follows:

ϕi = 2π
t − T (k)

i

T (k+1)
i

− T (k)
i

, t ∈ [T (k)
i

, T (k+1)
i

]. (5)

Here, T (k)
i

is the initiation moment of the kth burst in the voltage trace Vi(t) (i = 1, 2), and k is greater than some N to skip

transients, after which the dynamics settles down onto some fixed phase lag �ϕ∗. As one can see from Fig. 4, such a phase locking

occurs at about the same coupling constant value (identified by a vertical dashed line in the Fig. 4) for different values of gCa.

Near the threshold of the phase locking, the stationary value of �ϕ is close to 3π /2 (or, equivalently, to −π/2); here the neurons

produce out-of-phase bursts. However, with an increase of the inhibitory coupling over a critical value, the phase lag tends

eventually to π , which indicates the occurrence of proper anti-phase bursting in the HCO. Note that the post-inhibitory rebounds

in the neurons under consideration are due to the slowest, low-threshold Ca2+-current IT, whose magnitude is controlled by the

maximal conductance gCa. It is worth noticing that PIRs occur more reliably with increasing gCa. One can see from Fig. 4 that

an increase of g (promoting stronger post-inhibitory rebound activity) may lead to the onset of symmetric antiphase bursting
Ca
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Fig. 4. Stationary value of the phase lag �ϕ (Eq. (4)), plotted vs. the coupling strength G for different values of the maximal conductance gCa (larger gCa values

promote stronger PIRs in the neurons); here I(1)
ext = 0.2 μA/cm

2
and I(2)

ext = 0.15 μA/cm
2
.

Fig. 5. Bifurcation diagram for antiphase synchronization regimes: averaged frequency of bursting is plotted against the coupling strength for several increasing

�Iext values. Double overlapping branches are the indication of bursting dichotomy with two slow different frequencies in the two coupled neurons. Note a large

plateau of the pronounced 4:3 frequency locking (indicated by dashed arrows) at �Iext = 0.2 μA/cm
2
, collapsing into anti-phase synchrony locked at an 1:1 ratio

at higher G values.
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even at small values of the coupling strength. This is an explicit manifestation of the contribution of the slow low-threshold

Ca2+-current in fostering the anti-phase synchronization between the bursting neurons in the HCO.

While the in-phase bursting appears to be atypical for neurons with fast inhibitory coupling like in our case, the coexistence

of anti-phase and in-phase regimes has been reported elsewhere [4,6]. However, the in-phase synchrony can prevail whenever

both HCO neurons are driven externally by another inhibiting burster or a HCO [23,35].

4.2. Bursters that far from identical

Increasing �Iext in the coupled oscillators leads to an array of pronounced synchronization effects. Fig. 5 represents the slow

(bursting) frequencies plotted against the coupling strength G, for several �Iext values. This figure depicts multiple branches of

the synchronization locking frequencies at low G-values. This indicates that the coupled neurons generate bursting activities

at different frequencies, until the coupling is increased over a threshold value at which both branches merge. This threshold

value becomes higher with increasing of �Iext, as the individual neurons become more and more distinct. We can see from this

figure that for the largest case �Iext = 0.2 μA/cm2
, the HCO neurons become locked at the 4:3 frequency ratio (see the plateau,

indicated by dashed arrows in Fig. 5), prior to the occurrence of the ultimate 1:1 frequency locking at higher coupling values. It

is worth mentioning that complex phase-locking regimes (similar to the case of 4:3 locking) are typical for oscillatory systems

with relatively large frequency mismatches, and have been identified as high-order locking regimes in various applications [1].
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Fig. 6. Left column shows progressions of phase locked voltage traces of two coupled neurons at �Iext = 0.2 μA/cm
2
, I(1)

ext = 0.2 μA/cm
2

for G = 0.02 mS/cm
2

(a);

0.0445 mS/cm2 (b); 0.464 mS/cm2 (c); 0.048 mS/cm2 (d). Right panels demonstrate the Lissajous curves drawn by slow variables h(1)
T

and h(2)
T

, which correspond

to (a) quasi-periodic dynamics at G = 0.02; (b) a 4:3-frequency locking regime at G = 0.0445 mS/cm
2
; (c) an 1:1 chaotic locking at G = 0.464 mS/cm

2
; (d) an 1:1

periodic locking at G = 0.048 mS/cm
2
. Circles and squares mark spike events in bursting.
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Fig. 7. Bifurcation diagram showing spike number per burst generated by the neurons plotted against the coupling constant G; other parameters are same as in

Fig. 6. Value G ≈ 0.045 mS/cm2 is a threshold towards the 1:1-frequency locking; G ≈ 0.0464 mS/cm2 corresponds to phase slipping in the chaotic 1:1 locking

state of alternating bursting.

Fig. 8. Voltage oscillatory activity generated by the HCO at gCa = 1 mS/cm
2

and I(1)
ext = 5, and �Iext = 0.02 μA/cm

2
: (a) antiphase spiking at G = 0.2 mS/cm

2
; (b)

chaotic spiking activity at G = 0.37 mS/cm
2
; (c) forced sub-threshold oscillations (red) in neuron 2 due to fast spiking (black) in neuron 1 at G = 2 mS/cm

2
, (d)

coupling-induced bursting at G = 4 mS/cm
2
. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

221
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These types of phase synchronizations are characterized by commensurable periods of coupled oscillators such as 3T1 = 4T2. As

one can see in Fig. 5, for all values of �I there always exists a threshold value of the coupling constant G, beyond which the

anti-phase 1:1 synchronization takes place. Expectedly, the threshold increases with increase of �I. The latter properties remain

true even for larger values of mismatch �I, so far both neurons are in the range of intrinsic bursting.

Fig. 6 illustrates transitions to synchrony between the neurons in the HCO for the largest case �Iext = 0.2 μA/cm2. The left

panels depict the established anti-phase bursting in voltage traces produced by the HCO at various values of the coupling strength

G, below and above the 1:1 synchronization threshold. The right panels represent the so-called Lissajous curves, which are para-

metrically traced down by the slow variables h(1)
T

and h(2)
T

of both neurons. These curves help one to interpret the corresponding
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a

b

Fig. 9. (a) Diagram representing inter-spike intervals plotted against the coupling constant G for three increasing values of gCa indicated by labels on the corre-

sponding panels. Due to similarity, the diagram is presented for the first neuron. Vertical dashed lines indicate the transition thresholds to emergent anti-phase

bursting. (b) Critical value of the coupling constant G plotted against the maximal conductance of IT current. For G < Gthr the network stably inhibits antiphase

spiking (one ISI value corresponds to one G value); for G > Gthr the system obtains stable antiphase bursting regime (few ISI values correspond to one G value).

Parameters for both panels are Iext 1 = 5 μA/cm
2

and �Iext = 0.02 μA/cm
2

(corresponding to tonic spiking neurons in isolation).
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types of frequency locking, including quasi-periodic dynamics. Dots on these curves in the right panels mark timing of individual

spikes in bursts.

It is worth noticing that at larger values of �Iext, the phase difference �ϕ (Eq. (4)) tends to converge to π /2, rather than to

π , as the coupling strength G is increased. With a π /2 phase shift, active phases of bursting in the neurons partially overlap (one

expects strong overlap for a zero or small phase shift and no overlap for anti-phase oscillations, i.e. for a phase shift close to π ),

showing the emergence of the complex dynamics caused by spike interactions. To understand this dynamics, we evaluated the

distribution of numbers of spikes per burst for several coupling strengths. Our findings are presented in Fig. 7. The analysis of

the bursting frequency (not shown, similar to Fig. 5) reveals that the transition to the 1:1 locking occurs at G ≈ 0.045 mS/cm2.

Moreover, our simulations indicate that there is a small window, �G ≈ 1.5 × 10−4 mS/cm2
, of a hysteresis occurring at the tran-

sition. Fig. 7 reveals a peculiar feature of the synchronous state (in the sense of coincidence of the average bursting periods of

two neurons), occurring at strong coupling G ∈ [0.045 mS/cm2, 0.0485 mS/cm2]: while the spike number in bursts generated by

neuron 2 remains nearly the same, the number of spikes in bursts by neuron 1 shows a large dispersion, before it becomes a

constant at a stronger coupling.

From the two bottom insets in Fig. 6(c) and (d) one can observe that depending on the coupling strength, the 1:1 locking can

exhibit chaotic and periodic modulations via the slow gating variables of the neurons. Chaotic modulation is depicted in Fig. 6(c).

Here one can clearly see spreading of slow variables on the Lissajous curves, typical for low-dimensional strange attractors

(chaoticity here was confirmed by observation of irregular variations of the number of spikes in bursts: autocorrelation function

of this observable decays for the chaotic case and returns to one for the quasiperiodic dynamics). The number of spikes per burst

in the second neuron varies significantly for chaotic modulation. One can see this in Fig. 7 at the corresponding value of coupling:

at G = 0.464 mS/cm
2

the first neuron shows from 13 to 18 spikes per burst. On the other hand, the alternating bursting in the HCO

remains locked at an 1:1-ratio of the bursting frequencies. This is an explicit manifestation of the phenomenon of chaotic phase

synchronization in slow-fast dynamics [5]. Indeed, chaotic phase synchronization is a regime in coupled chaotic oscillators, which

are synchronized in mean periods only (the phases are locked), while amplitudes remain chaotic and non-synchronized. In the

context of our Hogkin–Huxley-type neurons, the slow dynamics just show such a behavior, while the uncorrelated slow chaotic

amplitudes manifest themselves, quite spectacular, in the variations in the number of spikes per burst. Periodic modulation is
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a
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Fig. 10. (a) Diagram of inter-spike intervals in neuron 1 plotted against the coupling constant G for three increasing values of gCa indicated by labels on the

corresponding panels; vertical dashed lines indicates the transition thresholds to emergent anti-phase bursting. (b) Critical value of the coupling constant G

plotted against the maximal conductance of IT current. For G > Gthr , the system stably exhibits anti-phase bursting regime. Parameters for both panels are

I(1)
ext = 2 μA/cm

2
and �Iext = 0.02 μA/cm

2
(corresponding to both hyperpolarized quiescent neurons in isolation).
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depicted at the bottom row of Fig. 6(d). Here one can see that the Lissajous curve splits in two lines. Correspondingly, at this

value of coupling (G = 0.048 mS/cm2) the first neuron, according to Fig. 7, shows alternating bursts with 18 and 19 spikes.

5. Antiphase bursting out of spiking neurons

In this section we study the emergence of alternating bursting in a HCO made of two coupled neurons that are tonically

spiking being in isolation at I(1)
ext = 5 μA/cm

2
, with relatively small �Iext = 0.02 μA/cm

2
. Our goal is to reveal how increasing of

the inhibitory coupling strength transforms such tonic spikers into coupling-induced bursters, as illustrated in Fig. 8.

Weak coupling results in a periodic antiphase tonic spiking in the coupled neurons at G = 0.2 mS/cm2 (Fig. 8(a)). With further

increase of the coupling strength, the HCO neurons first demonstrate irregular, unreliable spiking around G = 0.37 mS/cm2
, as

shown in Fig. 8b. The mechanism of chaoticity here is similar to that for other slow-fast oscillators featuring canards [3]. In

such a system, sensitive irregularity is typically observed whenever its solutions pass nearby the borderline of the slow motion

manifold, and hence, depending on tiny perturbations, can produce an extra spike [36–38]. With further increase of the coupling

strength, an asymmetric dynamics is observed. In this robust regime, either neuron generates tonic spiking activity, while the

other one is forced to produce sub-threshold oscillations of quite a large amplitude, such as ones shown in Figs. 8(b) and (c) at

G = 2 mS/cm2. A dramatic increase in the inhibitory coupling strength beyond G ≈ 3 mS/cm2 finally forces the neurons to begin

bursting in alternation.

Such a bursting activity is often referred to as a coupling-induced bursting, which is the result of strongly reciprocal interac-

tions of two individually tonic spiking neurons. Fig. 3 provides an explanation, why inhibitory coupling must be strong enough to

be able to induce coupling-induced bursting in the given model. There is a wide gap between the values of parameter Iext corre-

sponding to bursting (at the low end) and to tonic spiking (on the high end). Within this gap, the neurons remain hyperpolarized

quiescent, and hence the bursting can only occur through PIR mechanisms. A strong flux of inhibitory current is required to

originate from the presynaptic, tonic spiking neuron in order to activate the low-threshold IT current in the postsynaptic neuron.

The positive exciting effect of the current IT can overcome the inhibition and trigger the onset of the post-rebound activity. Then,

the neurons swap the roles of the driving and the driven units in the HCO, so that the process keeps repeating. This assertion

is further supported by Fig. 9(a), showing inter-spike intervals (ISIs) of the neurons vs. the coupling strength for three values of
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Fig. 11. (a) Antiphase coupling-induced bursting through the PIR mechanism is filled out densely by alternating voltage traces without quiescent gaps unlike

the case of coupled endogenous bursters through the release mechanism. (b) Lissajous curve of a figure-eight shape traced down by the slow gating variables of

the models at G = 1.24 mS/cm
2

and gCa = 1.75 mS/cm
2
; other parameters the same as in Fig. 10. Circles and crosses in panel (b) mark occurrences of spikes.
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gCa. To the left of the vertical dashed line the system is either in the regime of anti-phase tonic spiking (voltage traces are similar

to Fig. 8(a) and (b)), or in the regime of tonic spiking of only one neuron, and suppression of another one (Fig. 8(c)). Here one

can see, that for all three values of gCa the system switches to the bursting mode, which is characterized by two branches of

inter-spike intervals (on the right of the vertical dashed lines in Fig. 9(a)). In all cases the latter regime is anti-phase synchronous

bursting depicted in Fig. 8(d). As one can see, the value of gCa drastically changes the threshold, at which bursting stably oc-

curs (compare positions of the vertical dashed lines at different panels in Fig. 9(a)). Indeed, Fig. 9(b) summarizes the qualitative

role of the slow low-threshold Ca2+-current IT: an increase of the corresponding rebound parameter gCa lowers the threshold of

coupling-induced bursting, and narrows the parameter interval of hyperpolarized quiescence in the neurons.

We would like to emphasize that in this section we have considered intrinsically spiking neurons. Here anti-phase bursting

appears as a result of strong synaptic coupling, which is sufficient to switch the neurons from the spiking mode to the bursting

regime. Hence, parameter �I and difference in spiking frequencies do not play a crucial role here, and can be relatively large in

order to get anti-phase bursting.

6. P.I.R. mechanism for antiphase bursting

In this section we examine the emergence of coupling-induced anti-phase bursting through the PIR mechanism. Here, it is

imperative that both neurons remain hyperpolarized quiescent within a parameter window 0.5 μA/cm2 � Iext � 4 μA/cm2, as

seen from Fig. 3. It is also necessary for PIR coupling-induced bursting, that the initial states of the neurons must be different:
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Fig. 12. Bifurcation diagram of ISIs plotted versus the coupling parameter G indicates the threshold, beyond which the system comprised of the tonically spiking

neuron 1 and the hyperpolarized quiescent neuron 2 begins to generate anti-phase bursting; gCa = 1.75 mS/cm
2
.

Fig. 13. Voltages patterns generated by the HCO neurons: (a) tonic spiking (black) in neuron 1 and inhibition induced subthreshold oscillations (red) in neuron

2 at G = 1 mS/cm
2
; (b) periodic antiphase spiking with a 2:1 locked ratio at G = 1.8 mS/cm

2
; (c) chaotic antiphase bursting near the threshold at G = 2 mS/cm

2
.
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one at tonic spiking and one being hyperpolarized quiescent. An alternative is an application of a negative pulse of the current to

trigger a PIR in the targeted neuron. In addition to the above constrains, the coupling strength must exceed a certain threshold,

as indicated by the vertical dashed lines in Fig. 10(a).

One can see from this plot, that relatively weak coupling cannot initiate PIR coupling-induced bursting. Rather, some sub-

threshold oscillations are generated in the post-synaptic neuron, which extinct as soon as the pre-synaptic neuron ends its

active spiking phase, and becomes hyper-polarized quiescent as well. For each set of the parameters, numerical simulations

depicted in Fig. 10(a) clearly show that there is a threshold for the coupling strength, beyond which the HCO robustly produces

anti-phase bursting. Figure 10(b) also demonstrates that the PIR mechanism of coupling-induced bursting becomes more reliable
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Fig. 14. Bifurcation diagram of ISI plotted against the coupling parameter G indicates the threshold around 0.5 mS/cm2 beyond which the system made of the

bursting neuron 2 and the hyperpolarized quiescent neuron 1 begins to generate anti-phase bursting; here gCa = 1.75 mS/cm
2
.
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with increasing gCa, which lowers the threshold value of inhibitory coupling. The PIR bursting is illustrated in Fig. 11(a). Fig. 11(b)

reveals a quasi-periodic modulation of the slow gating variables; here the Lissajous curve forms a band of a characteristic figure-

eight shape.

7. Coupling of neurons in different regimes

In this section we consider the dynamics of two coupled neurons operating in different modes. Specifically, the neurons are

set close to “quiescence-spiking” and “quiescence-bursting” transitions, respectively. As Fig. 3 suggests, we choose the following

values of the external driving current: I(1)
ext = 4.1 μA/cm

2
and I(2)

ext = 3.7 μA/cm
2
. This means that in isolation neuron 1 produces

tonic spiking activity, while neuron 2 is hyperpolarized and ready for the PIR mechanism. Our simulations of two such neurons

are summarized in Figs. 12 and 13. We can conclude that while coupling remains weak, neuron 1 tonically spikes (Fig. 13(a)).

Above a threshold, G ≈ 1.75 mS/cm2, neuron 2 begins spiking as well. Fig. 13(b)) depicts alternating spiking at G = 1.8 mS/cm
2

with the locking ratio 2:1, which means that two spikes in neuron 1 are followed by a single spike in neuron 2. The system

begins to burst in antiphase, first with irregularly varying numbers of spikes per bursts as G exceeds 2 mS/cm2, as illustrated in

Fig. 13(c). Further increase in the coupling strength above G = 2.5 mS/cm
2
, regularizes bursting that becomes stable and similar

to the pattern shown in Fig. 11.

Figure 14 represents the bifurcation diagram for the endogenous burster – neuron 2 at I(2)
ext = 0.4 μA/cm2

, coupled with neu-

ron 1 remaining hyperpolarized at I(1)
ext = 1 μA/cm2. Because the quiescent neuron 1 initially remains below the synaptic thresh-

old, anti-phase bursting may only start when the PIR mechanism is induced by the endogenous burster. This explains a qualitative

resemblance of the diagram in Fig. 14 to that in Fig. 12, for the HCOs made of tonic-spiking and quiescent neurons.

8. Conclusions

This study is focused on the mechanisms of rhythmogenesis of anti-phase bursting in HCO consisting of two reciprocally

inhibitory coupled neurons. Such HCOs are primary building blocks for larger neural networks, including CPGs controlling a

plethora of locomotion behaviors in spineless and non-invertebrate animals. There is a growing consensus in the neuroscience

community that CPGs of various animals may share same universal principles of their functioning.

In this paper, to study the HCO dynamics, we have used the biophysically plausible Hodgkin-Huxley-type model. Its main

feature is the post-inhibitory rebound dynamics: a quiescent neuron is able to produce a single or series of spikes after it has

been quickly released from inhibition by another pre-synaptic neuron, or by a hyperpolarized pulse of external current. The PIR

mechanism allows a pair of naturally quiescent neurons to stably generate anti-phase oscillations, initiated by virtue of external

perturbation(s).

In this study, we have investigated properties of anti-phase bursting through PIR mechanisms, by considering neuro-

physiologically feasible models. Unlike reduced PIR models, such as 2D slow-fast relation oscillators, the given 7D model with

multiple time scales can exhibit a range of complex oscillatory activities. This makes its analytical treatment hardly possible to

perform. Instead, we have performed a series of numerical simulations aimed at a quantitative assessment and a qualitative in-

terpretation of the observed dynamical regimes from the viewpoint of general theory of nonlinear dynamical systems. We expect

that similar regimes can be observed in other models of Hodgkin-Huxley type, apart from some quantitative differences.
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We have considered several configurations of HCOs including coupled endogenous bursters. We have also discussed HCOs

comprised of tonic spiking and quiescent neurons, that become coupling-induced bursters when coupled by fast inhibitory

synapses. In our examination of synchronization properties of bursting, we have found that, in all considered cases, the system

of two coupled neurons can reliable achieve synchrony in anti-phase bursting. We have described some particular configura-

tions leading to incomplete synchronization, where the neurons become partially synchronized through slow-varying currents.

Meanwhile, cross-correlations in their fast voltage dynamics are not always obvious. This fast voltage dynamics may give rise to

the emergence of really complex states, including chaos in the neural ensemble.

We have found that while enhancing the PIR mechanism does not always lead to drastic changes in the dynamics of the

individual neurons, it can cause significant modification of the dynamics under coupling. Specifically, we have detected that

the windows of anti-phase bursting rhythms can be extended in the parameter space of the system, when increase of the PIR

mechanisms in individual neurons becomes more prominent. This suggests that PIR is a key component for robust and stable

anti-phase bursting in HCOs. In the future, we plan to examine specific networks constituted by several coupled HCOs, which

have been identified in swim CPGs of specific sea mollusks.
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Appendix. Conductance based model

The model in this study is adopted from Ref. [22]. The dynamics of the membrane potential, V is governed by the following

equation:

CmV ′ = Iext − IT − Ileak − INa − IK − Isyn, (6)

here, Cm = 1 μF/cm2 is the specific membrane capacity, Iext is the external current in μA/cm2, IT is the slow low-threshold

a2+-current, Ileak is the leakage current, INa is the Na+-current, IK is the K+-current and Isyn is the synaptic current from other

neurons.

The leak current Ileak is given by

Ileak = gNa(V − Eleak), (7)

with Eleak = −78 mV being the reversal potential for leak current, and maximal conductance gL = 0.05 mS/cm2. Dynamics of the

fast Na+-current INa = gNam3h(V − ENa) is described by the following equations:

m′ = 0.32(13 − V )

e0.25(13−V ) − 1
(1 − m) − 0.28(V − 40)

e0.2(V−40) − 1
m,

h′ = 0.128 · e
17−V

18 (1 − h) − 4

e−0.2(V−40) + 1
h,

(8)

where gNa = 100 mS/cm2 is the maximal conductance of Na+-current, ENa = 50 mV is the reversal potential for Na+-current, m

and h are the gating variables describing activation and inactivation of the current. Dynamics of the fast K+-current IK is described

by

IK = gKn4(V − EK ),

n′ = 0.032(15 − V )

e0.2(15−V ) − 1
(1 − n) − 0.5e

(10−V )
40 n,

(9)

with n being the gating activation variable; here EK = −95 mV and gK = 10 mS/cm2. Dynamics of the slow low-threshold Ca2+-

current IT is modeled as follows:

IT = gCam2
T hT (V − ECa), (10)

with gCa = 1.75 mS/cm
2
.

The equilibrium potential ECa, which depends on the intraneuronular concentration of Ca2+, is found from the Nernst

equation:

ECa = k̄
R · T

2F
ln

(
[Ca]0

[Ca]

)
, (11)
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here R = 8.31441 J K/mol, T = 309.15 K , dimensionless constant k̄ = 1000 for ECa is measured in millivolts, the extraneuronular

concentration of calcium ions is [Ca]0 = 2 mM.

The gating activation m and the inactivation h are given by

m′
T = −mT − mT∞(V )

τTm(V )
, h′

T = −hT − hT∞(V )

τTh(V )
, (12)

with

mT∞(V ) = 1

1 + e− V+52
7.4

,

τTm(V ) = 0.44 + 0.15

(e
V+27

10 + e− V+102
15 )

,

hT∞(V ) = 1

1 + e
V+80

5

,

τTm(V ) = 62.7 + 0.27

(e
V+48

4 + e− V+407
50 )

.

(13)

These constants were taken at temperature 36 °C and extraneuronular calcium concentration [Ca]0 = 2 mM.

Dynamics of intraneuronular concentration of calcium ions [Ca] is described via

[Ca]′ = − kIT
2Fd

− KT [Ca]

[Ca] + Kd

, (14)

where the first term is an inflow through thin membrane due to a low-threshold Ca2+-current, and the second term is a contri-

bution of Ca2+ ion-pump. Here the parameters are the following: F = 96, 469 C/mol, d = 1 μm, k = 0.1, KT = 10−4 mM/m s−1

and Kd = 10−4 mM.

Synaptic currents are modeled using the fast-threshold modulation paradigm [28]:

Isyn(Vi,Vj) = G · S(Vj − θsyn) · (Vi − Esyn), (15)

where G is the maximal conductance of synaptic current flowing from pre-synaptic jth neuron into the post-synaptic ith neuron.

For inhibitory coupling we set Esyn = −80 mV; the synaptic activity function S(V) is given by

S(V ) = 1

1 + e−100(V−θsyn)
, (16)

with the synaptic threshold θsyn = 20 mV set in a middle of fast spikes.

In numerical simulations of the described model we used the 4th order Runge–Kutta method with time step 0.01.
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