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In recently published work [Inaba & Kousaka, 2020a; Inaba & Tsubone, 2020b], we discovered
significant mixed-mode oscillation (MMO) bifurcation structures in which MMOs are nested.
Simple mixed-mode oscillation-incrementing bifurcations (MMOIBs) are known to generate
[A0, B0×n] oscillations for successive n between regions of A0- and B0-oscillations, where A0 and
B0 are adjacent simple MMOs, e.g. A0 = 1s and B0 = 1s+1, where s is an integer. MMOIBs are
universal phenomena of evidently strong order and have been studied extensively in chemistry,
physics, and engineering. Nested MMOIBs are phenomena that are more complex, but have an
even stronger order, generating chaotic MMO windows that include sequences [A1, B1 × n] for
successive n, where A1 and B1 are adjacent MMOIB-generated MMOs, i.e. A1 = [A0, B0 × m]
and B1 = [A0, B0 × (m + 1)] for integer m. Herein, we investigate the bifurcation structures
of nested MMOIB-generated MMOs exhibited by a classical forced Bonhoeffer–van der Pol
oscillator. We use numerical methods to prepare two- and one-parameter bifurcation diagrams
of the system with m = 1, 2, and 3 for successive n for the case s = 2. Our analysis suggests
that nested MMOs could be widely observed and are clearly ordered phenomena. We then define
the first return maps for nested MMOs, which elucidate the appearance of successively nested
MMOIBs.

Keywords : Mixed-mode oscillation; mixed-mode oscillation-incrementing bifurcation; nested
mixed-mode oscillation.

1. Introduction

Mixed-mode oscillations (MMOs) were first discov-
ered in chemical experiments and have been stud-
ied extensively in recent years [Hudson et al., 1979;
Orban & Epstein, 1982; Maselko & Swinney, 1986;
Albahadily et al., 1989; Brøns et al., 2008]. These
oscillating systems periodically go through L large
excursions followed by s small peaks; the nota-
tion “Ls” is used to distinguish oscillations. This

definition of MMOs is ambiguous, but they appear
universally in the extended slow–fast and multi-
scale dynamics in which canard trajectories are seen
[Brøns et al., 2008; Petrov et al., 1992; Yoshinaga
et al., 1988; Kuehn, 2015]. Canards were discov-
ered in the early 1980s and represent a key dis-
covery in nonlinear dynamics [Benoit et al., 1981;
Diener, 1984; Zvonkin & Shubin, 1984; Baer &
Erneux, 1986, 1992; Braaksma & Grasman, 1993;
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Arnol’d, 1994; Guckenheimer et al., 2000]. Histor-
ically, MMOs have been discussed as a subset of
canards. Numerical studies and experiments with
circuits have established that canards appear in
Bonhoeffer–van der Pol (BVP) oscillators [Itoh &
Tomiyasu, 1990]. The dynamics of BVP oscilla-
tors are equivalent to those of FitzHugh–Nagumo
systems [FitzHugh, 1961; Nagumo et al., 1962].
However, Brøns et al. argued that MMOs were dis-
covered experimentally more than 100 years ago,
suggesting that the phenomena may appear more
universally in slow–fast systems [Brøns et al., 2008].

MMOs have been observed in various extended
dynamics that can undergo a canard explosion,
such as in noise-induced oscillatory dynamics near
a relaxation oscillation [Ryashko, 2018; Sudhu &
Kuehn, 2018; Muratov & Vanden-Eijnden, 2008],
forced canards near supercritical [Kutafina, 2015]
and subcritical Hopf bifurcation points [Shimizu
et al., 2011; Shimizu et al., 2012; Shimizu et al.,
2015; Shimizu & Inaba, 2016a; Kousaka et al.,
2017; Inaba & Kousaka, 2020a; Inaba & Tsub-
one, 2020b], and extended three-variable canard-
generating dynamics [Kawczyński et al., 2000;
Kawczyński & Strizhak, 2000; Petrov et al., 1992;
Rachwalska & Kawczyński, 2001; Sekikawa et al.,
2010; Shimizu & Inaba, 2016b; Yoshinaga et al.,
1988]. MMOs have been the subject of intense
research in the last four decades [Scott, 1993; Brøns
et al., 2006; Krupa et al., 2008; Markman & Bar-
Eli, 1994; Brøns et al., 1997; Sudhu & Kuehn,
2018; Muratov & Vanden-Eijnden, 2008; De Maess-
chalck et al., 2014; Freire & Gallas, 2011a, 2011b;
Desroches et al., 2013; Guchenheimer & Scheper,
2011; Desroches et al., 2012; Sekikawa et al., 2010;
Kousaka et al., 2017; Takahashi et al., 2018].

The mechanism behind simple MMOs have
been elucidated in theory [Kuehn, 2015; Brøns
et al., 2006; Krupa et al., 2008; Kutafina, 2015; De
Maesschalck et al., 2014; Guchenheimer & Scheper,
2011; Desroches et al., 2012]. However, numerical
studies of MMOs have revealed that extremely com-
plex MMO bifurcations occur including strongly
ordered phenomena that add MMOs to a system’s
trajectory. Kawczyński et al. [Kawczyński et al.,
2000; Kawczyński & Strizhak, 2000] and Rach-
walska et al. [Rachwalska & Kawczyński, 2001]
discovered MMO-adding phenomena in a system
of three-variable autonomous ordinary differential
equations (ODEs) and elucidated that these phe-
nomena occur many times in succession, resembling

the period-adding bifurcation in the circle map.
Shimizu et al. discovered the simplest MMO-adding
phenomena denoted by [12, 13 × n]n+1 for succes-
sive n in a forced BVP dynamics and refer to the
resulting bifurcations as MMO-incrementing bifur-
cations (MMOIBs) [Shimizu et al., 2012].

Kousaka et al. [2017] investigated the genera-
tion of MMOIBs using a constrained BVP oscillator
that includes a diode. This constrained BVP oscil-
lator is described with an infinitely large parameter
g that corresponds to the ON conductance of the
diode. As g tends to infinity, the governing equa-
tion is written by a piecewise one-dimensional (1D)
nonautonomous equation, and the Poincaré return
map is exactly 1D. Using 1D return maps, Kousaka
et al. [2017] showed that MMOIBs can occur many
times in succession and that the limiting ratio of
the previous bifurcation parameter interval to the
next one between every MMOIB converges to 1. The
study of MMOIBs is of great importance because
understanding MMOIBs has played a major role
in establishing control strategies for chemical reac-
tions and myocardial arrhythmias [Tsumoto et al.,
2017]. Engineers and researchers have therefore
achieved numerous research results in the fields
of medicine, chemistry, and engineering, among
others.

In a previous study [Inaba & Kousaka, 2020a],
the authors examined these constrained dynamics
to elucidate that MMOs can be nested. Namely,
between the 12- and 13-generating regions, sim-
ple (un-nested) MMOIBs generate the sequence of
[12, 13 × n]n+1 oscillations for successive n. Nested
MMOIBs generate [[12, 13 × 1]2, [12, 13 × 2]3 ×
n]3n+2 nested MMO sequences for successive n
between the regions that generate two adjacent sim-
ple MMOIB-generated [12, 13 × 1]2 and [12, 13 × 2]3
MMOs. Furthermore, we discovered that nested
MMOs occur in the classical forced BVP oscilla-
tor [Inaba & Tsubone, 2020b]. We imagine that
some researchers may already have observed nested
MMOIB-generated MMOs because MMOIBs have
enjoyed extensive numerical study [Kawczyński
et al., 2000; Kawczyński & Strizhak, 2000; Rachwal-
ska & Kawczyński, 2001; Scott, 1993; Shimizu et al.,
2012; Shimizu & Inaba, 2016a] and experimental
study [Albahadily et al., 1989; Maselko & Swin-
ney, 1986; Shimizu et al., 2015; Shimizu & Inaba,
2016b]. However, these authors may have failed to
identify the observed phenomena because such phe-
nomena could be very difficult to understand as
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nested MMOIBs without knowing the MMO pat-
tern in advance.

We deduced that nested MMOIBs can generate
nested MMO sequences [[12, 13 × m]m+1, [12, 13 ×
(m+1)]m+2×n](m+2)n+(m+1) for successive integers
n and m. This work was limited; however, in that,
we confirmed only the case for m = 1, and we did
not prepare two-parameter bifurcation diagrams.

This paper reports one- and two-parameter
bifurcation diagrams and first return maps for the
classical BVP oscillator for m = 1, 2, and 3. Since
the dynamics are slow–fast and the gradient of
the nonlinear conductor characteristic (−x + x3)
is very steep for x > 1, the first return maps
are approximately 1D. The two-parameter bifur-
cation diagrams are prepared using the shooting
algorithm proposed by Kawakami [1984]. These
diagrams show that nested MMOIB-generated
MMOs appear via saddle-node bifurcations and
that period-doubling bifurcations make the MMOs
disappear. Because complex bifurcations do not
occur in the two-parameter bifurcation diagram,
we conclude that nested MMOs are stable. At the
level of precision with which we can investigate the
one-parameter bifurcation diagrams, we conclude
that nested MMOIB-generated MMOs occur suc-
cessively for m = 1, 2, and 3.

This conclusion suggests that in the 30 over
years long history of MMO research, several
researchers may have been observing time series
waveforms of nested MMOs without recognizing
their ordered nature, because they appear to be
complex at first glance.

The rest of this paper is organized as follows.
Section 2 describes the dynamical system of interest
in detail. Section 3 then presents and discusses
bifurcation diagrams, time series waveforms, and
the first return maps to give evidence for the uni-
versality and ordered appearance of nested MMOs.
Conclusions are drawn in Sec. 4.

2. Circuit Setup

The circuit diagram of the classical forced BVP
oscillator is shown in Fig. 1(a). In the figure, x and
y are state variables that correspond to the volt-
age generated across capacitor C and the current
flowing through inductor L, respectively. Since the
notation L is also used as the number of large excur-
sions in MMOs, we avoid confusion by rescaling the
system so that the inductance L is normalized to 1.
In the figure, C = ε is a small parameter and is
set to 0.1 throughout the present study. Thus, the
dynamics are slow–fast, i.e. x changes quickly and
y changes slowly. k1 is a linear resistor, and B0 is a
DC voltage source, respectively. Furthermore, g(x)
is the current flowing through a nonlinear negative-
resistance conductor, whose characteristics are rep-
resented by the following third-order polynomial
function:

g(x) = −x + x3. (1)

In the following discussion, normalized variables
and parameters are used. Finally, ω and B1 are
the angular frequency and amplitude of the forc-
ing term, respectively, and these are varied as the

(a) (b)

Fig. 1. (a) Circuit diagram of a forced BVP oscillator near a subcritical Hopf bifurcation point and (b) geometric structure of
the (x–y)-plane in the absence of perturbations. Red: stable relaxation oscillation; blue: unstable periodic solution; red bullet:
stable equilibrium.
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bifurcation parameters. The constant parameters
are set to k1 = 0.9 and B0 = 0.207. At these
parameter values, a stable equilibrium coexists with
a stable relaxation oscillation due to the subcritical
Hopf bifurcation in the absence of perturbations.
Figure 1(b) shows the (x–y)-plane in the absence
of perturbations where a stable equilibrium, stable
relaxation oscillation, unstable periodic oscillation,
and x- and y-nullclines are illustrated.

Note that the BVP oscillators belong to the
category of natural circuits, because they comprise
only two-terminal elements and voltage sources.
In two-terminal elements, the voltages generated
across the terminals and the currents flowing in
the elements play a crucial role in the dynamics,
and two-terminal elements never act as analog com-
puters with input and output voltage terminals
[Matsumoto et al., 1985]. Because of this struc-
ture, such natural circuits are sometimes equiva-
lent to FitzHugh–Nagumo models [FitzHugh, 1961;
Nagumo et al., 1962].

The governing equations of the circuit are rep-
resented by the following system of two nonau-
tonomous ODEs:
⎧⎪⎨
⎪⎩

εẋ = y − g(x),

ẏ = −x − k1y + B0 + B1 sin ωτ

(
d
dτ

= ·
)

.
(2)

Simple mixed-mode oscillations will arise. To
observe behaviors of MMOs precisely in a one-
parameter bifurcation diagram, the following

subsets are defined:

Π− = {(τ, x, y) |x = 1, y − g(x) < 0(ẋ < 0)},
Π+ = {(τ, x, y) |x = 1, y − g(x) > 0(ẋ > 0)},
Σ1 = {(τ, x, y) |x = 1, y − g(x) = 0(ẋ = 0)}.

(3)

The dynamics of the forced BVP oscillator with vec-
tor fields and selected trajectories projected onto a
two-dimensional state space are illustrated in Fig. 2.

Let us consider a flow that leaves a point on
Π− just below Σ1 marked (τ0, y0) in Fig. 2(a). The
solution leaving Π− enters the x < 1 region and
strikes Π+ at a positive time at a point marked P
in the figure. Then, the solution passes along the x-
nullcline in the x > 1 region, as shown in Fig. 2(b)
and strikes Π− again at the point marked (τ1, y1)
in Fig. 2(a), close to Σ1. y1 is close to 0 because
of the slow–fast dynamics, and the gradient of g(x)
is very steep for x > 1 since ε is small. Therefore
y − g(x) � 0 when x is slow.

A global view of the one-parameter bifurca-
tion diagram between the 12- and 13-MMO gen-
erating regions is shown in Fig. 3(a). The bifurca-
tion parameter B1 is set to 0.0105. θk = ωτk/2π
mod 1 for large k is plotted in Figs. 3(a) and 3(b).
Figure 3(a) was created using the continuous defor-
mation method, which is standard for preparing
one-parameter bifurcation diagrams. The continu-
ous deformation method uses the following steps.
Let T be a Poincaré return map defined on plane
Π−. Let M and N be sufficiently large integers. In

(a) (b)

Fig. 2. (a) Geometric structure of the vector fields and (b) projection of x-nullcline, relaxation oscillation, Π−, Π+, and [13]1
solution onto the (x–y)-state space. Black: x-nullcline; blue: stable relaxation oscillation; red: [13]1 MMO trajectory; light
green: Π−; blue: Π+.
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(a)

(b)

Fig. 3. One-parameter bifurcation diagram for B1 = 0.0105 where MMOIB-generated [12, 13 × n]n+1 MMOs appear using
(a) the continuous deformation method and (b) fixed initial conditions (τ0, x0, y0) = (0.1(2π/ω), 1, 0). Only finite MMOIBs
can be observed in (a), whereas successive MMOIBs appear in (b).

this case, T 1(τ0, y0)–TM (τ0, y0) and TM+1(τ0, y0)–
TM+N (τ0, y0) at ω = ωPRESENT are the transient
and stationary states, respectively. At the next step,
ω = ωNEXT = ωPRESENT + Δω, where Δω is suffi-
ciently small, and TM+N (τ0, y0) is used for the ini-
tial conditions of T . With this method, most sys-
tems will yield smooth one-parameter bifurcation
diagrams, but one can see a clear discontinuity in
the transition from 13 to 12 sequences in Fig. 3(a),
in the region 0.58 < ω < 0.6. This suggests that
some of the MMOIBs in this bifurcation diagram
are being obfuscated by the continuous deformation
method. The transition between MMOs in Fig. 3(a)

appears to include regions of chaotic behavior, and
the transitions from these chaotic regions to peri-
odic solutions are not guaranteed to be MMOIBs.
The missing MMOIBs appear when instead of using
the continuous deformation method, we set the ini-
tial conditions to (τ0, x0, y0) = (0.1(2π/ω), 1, 0)
as shown in Fig. 3(b). We will discuss the rea-
son for choosing these initial conditions in the
next section.

One-dimensional time series waveform of some
of the MMOs and MMOIB-generated MMOs that
appear between the 12- and 13-generating regions
of the bifurcation diagram are shown in Fig. 4.
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(a)

(b)

(c)

(d)

(e)

Fig. 4. Simple MMOs and MMOIB-generated MMOs between them in the bifurcation diagram. (a) [12]1 for ω = 0.72,
(b) [12, 13 × 1]2 for ω = 0.64, (c) [12, 13 × 2]3 for ω = 0.62, (d) [12, 13 × 3]4 for ω = 0.61 and (e) [13]1 for ω = 0.58. The initial
conditions are fixed to (τ0, x0, y0) = (0.1(2π/ω), 1, 0). The trigger sequence 12 is marked blue.

2150121-6

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

1.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
O

U
T

H
 C

H
IN

A
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
07

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 22, 2021 15:46 WSPC/S0218-1274 2150121

Bifurcation Structures of Nested Mixed-Mode Oscillations

3. Nested MMOs

When we magnify Fig. 3(b) between two adja-
cent MMOIB-generated [12, 13 × 1]2 and [12, 13 ×
2]3 MMOs, we observe successive nested MMO
sequences that are generated by MMOIBs: [[12,
13 × 1]2, [12, 13 × 2]3 × n]3n+2 for n = 1, 2, 3. A
zoomed-in view of this region of the bifurcation
diagram in Fig. 3(b) is given in Fig. 5. We have
referred to the periodic structures delineated with
green lines as nested MMOs [Inaba & Kousaka,
2020a; Inaba & Tsubone, 2020b]. In our numerical
results, nested MMOIB-generated MMOs appear
in all simulations that yield MMOs. The lower
panel of Fig. 5 is a two-parameter bifurcation dia-
gram in the (ω–B1)-plane in the neighborhood
of B1 = 0.0105. In this two-parameter bifur-
cation diagram, Gi and Ij indicate saddle-node
and period-doubling bifurcation curves, and the

superscripts denote the number of periods of
the forcing term in each MMO sequence. These
bifurcation curves were drawn using the shooting
algorithm presented by Kawakami [1984], which
is explained in brief in Appendix A. The saddle-
node and period-doubling bifurcations indicate the
appearance and disappearance of nested MMOIB-
generated MMOs. From this two-parameter bifurca-
tion diagram, we can see that nested MMOs exist
and remain stable as the parameter B1 is varied. We
judge the nested MMOs as stable because no com-
plex bifurcations are observed in the two-parameter
bifurcation diagram.

Time series waveforms of nested MMOIB-
generated [[12, 13 × 1]2, [12, 13 × 2]3 × n]3n+2

oscillators for n = 1, 2, 3, 4, 5, and 6 are shown
in Figs. 6(a)–6(f), respectively. Note that nested
MMO attractor for m = n = 1 was observed

Fig. 5. One-parameter (top panel) and two-parameter (bottom panel) bifurcation diagrams where MMOIB-generated
[[12, 13 × 1]2, [12, 13 × 2]3 × n]3n+2 MMOs appear. G3n+2 and I3n+2 denote saddle-node and period-doubling bifurcations of
sets of 3n + 2-periodic points, respectively.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. Time series waveforms of nested MMOIB-generated [[12, 13 × 1]2, [12, 13 × 2]3 ×n]3n+2 MMOs, showing (a) n = 1 for
ω = 0.631, (b) n = 2 for ω = 0.6284, (c) n = 3 for ω = 0.627, (d) n = 4 for ω = 0.6264, (e) n = 5 for ω = 0.62593 and (f) n = 6
for ω = 0.62565. Fixed initial conditions are used: (τ0, x0, y0) = (0.1(2π/ω), 1, 0). In these figures, the sequences labeled 1213

in blue in sequences (a)–(f) trigger MMOIB-generated MMOs [[12, 13 × 1]2, [12, 13 × 2]3 × n]3n+2 for n = 1, 2, 3, 4, 5, and 6,
respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. The first return maps of nested MMOIB-generated MMOs, showing [[12, 13]2, [12, 13 × 2]3 × n]3n+2 (a) n = 1 for
ω = 0.631, (b) n = 2 for ω = 0.6284, (c) n = 3 for ω = 0.627, (d) n = 4 for ω = 0.6264, (e) n = 5 for ω = 0.62593 and (f)
n = 6 for ω = 0.62565.
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in experimental measurements [Inaba & Tsubone,
2020b]. The blue symbols denoted by 1213 in
Figs. 6(a)–6(f) mark the trigger sequences of nested
[[12, 13 × 1]2, [12, 13 × 2]3 × n]3n+2 oscillators for
n = 1, 2, 3, 4, 5, and 6, respectively. The sequence
of nested MMOs follows a surprisingly clear order.
However, the sequences of nested MMOs between
MMOIBs is difficult to capture even if we do not
know the pattern in advance that generates them.
It is quite likely that nested MMO time series
waveforms have been hiding behind complexity in
the last 30 years of results. As shown in Fig. 6,
these phenomena are difficult to identify from time
series waveforms alone. Note that these are the sim-
plest nested MMO time series waveforms, and they
appear quite complex at a glance, although orderly
behind the progression of sequences.

As discussed in the previous section, in the
plots (τ0, y0) and (τ1, y1), y1 takes a value close to
0 because the dynamics are slow–fast and the gra-
dient g(x) is very steep for x > 1. Thus, all MMO
solutions pass along x-nullcline. This result suggests
that first return plots [Inaba & Tsubone, 2020b] will
be valuable for distinguishing nested MMOs. Let us
consider a flow that leaves (τ0, x0, y0) = (τ0, 1, 0).
The solution passes close to an MMO path and
returns to (τ1, 1, y1). Note that y1 � 0 as mentioned
above. Therefore, the transition from θ0 = ωτ0/2π
to θ1 = ωτ1/2π mod 1 can be approximated with
a one-dimensional map. We call these plots first
return maps.

The nested MMOIB-generated MMO trajecto-
ries corresponding to [[12, 13]2, [12, 13 × 2]3 ×n]3n+2

and the corresponding first return maps for n =
1, 2, 3, 4, 5, and 6 are shown in Figs. 7(a)–7(f),
respectively. The periods of the first return plot
trajectories coincide with the number of periods of
the forcing term per MMO sequence, i.e. i of Gi

or j of Ij . The first return maps clarify the rules
by which nested MMOs are ordered. Let us recall
that we use fixed initial conditions (τ0, x0, y0) =
(0.1(2π/ω), 1, 0) to create the one-parameter bifur-
cation diagram. The value 0.1(2π/ω) is chosen
as the initial time because the first return map
passes through a local minimum close to 0.1.
Thus, when we use the fixed initial conditions
(τ0, x0, y0) = (0.1(2π/ω), 1, 0), the simulation can
track both simple (un-nested) and nested MMOIB-
generated MMOs. We presented the trajectories of
the first return plots themselves previously [Inaba &
Tsubone, 2020b]. The present study introduces

approximated first return maps prepared without
using constrained dynamics [Kousaka et al., 2017;
Inaba & Kousaka, 2020a; Inaba & Tsubone, 2020b]
for this system.

The nested MMOIB-generated [[12, 13]2,
[12, 13 × 2]3 × n]3n+2 MMOs increment and accu-
mulate when n tends to infinity toward the MMO
increment-terminating tangent bifurcation point
[Kousaka et al., 2017; Inaba & Kousaka, 2020a]
at which the [12, 13 × 2]3 oscillation emerges. The
third-order first return map becomes tangent at
three points because the number of the sequence
has [12, 13 × 2]3 three forcing term. Because this
first return map is approximated, the tangent bifur-
cation point is also derived approximately, and
the MMOIB-generated MMO terminates approxi-
mately at ω = 0.6245911. The first return map as
applied thrice at this point is shown in Fig. 8.

In previous work, we only discussed nested [[12,
13 ×m]m+1], [12, 13 × (m + 1)]m+2 ×n](m+2)n+(m+1)

MMOs for m = 1 [Inaba & Tsubone, 2020b]. In the
present study, we confirm the existence of nested
MMOIB-generated MMOs for the cases m = 1, 2,
and 3 using first return maps. Much similar to that
depicted in Fig. 5, a two-parameter bifurcation dia-
gram and the corresponding one-parameter bifur-
cation diagram where nested MMOIB-generated
[[12, 13 × 2]3, [12, 13 × 3]4 × n]4n+3 MMOs can be
observed for successive n are shown in Fig. 9.

Time series waveforms [[12, 13 × 2]3, [12,
13 × 3]4 × n]4n+3 for n = 1, 2, 3, 4, 5, and 6 are
shown in Figs. 10(a)–10(f), respectively. This is the
case in which m = 2. Similarly, the blue symbol
denoted by 121313 (= [12, 13 × 2]3) in Figs. 10(a)–
10(f) is the sequence that triggers [[12, 13 × 2]3, [12,
13 × 3]4 × n]4n+3 for n = 1, 2, 3, 4, 5, and 6, respec-
tively. As m increases, the time series waveforms
of nested MMOIB-generated MMOs become more
complicated, as shown in Figs. 10(a)–10(f).

The first return map and the first return
plot trajectories corresponding to Figs. 10(a)–
10(f) are shown in Figs. 11(a)–11(f), respectively.
The first return maps and their plot trajectories
allow us to explain nested MMOs well. Similar to
Fig. 8, the MMOIB-generated [[12, 13×2]3, [12, 13×
3]4 × n]4n+3 MMO sequences increment and accu-
mulate toward a tangent bifurcation point where
[12, 13 × 3]4 appears as a consequence of n → ∞.
Since the sequence [12, 13 × 3]4 has four forcing
terms, an approximated first return map applied
four times will be tangent to the diagonal line when
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Fig. 8. The shape of first return map applied thrice at the MMO increment-terminating tangent bifurcation point for
ω = 0.6245911.

Fig. 9. One-parameter (top panel) and two-parameter (bottom panel) bifurcation diagrams in which MMOIB-generated
[[12, 13 × 2]3, [12, 13 × 3]4 × n]4n+3 MMOs appear. G4n+3 and I4n+3 denote saddle-node and period-doubling bifurcation
curves of 4n + 3-periodic points, respectively.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10. Time series waveforms of nested MMOIB-generated [[12, 13×2]3, [12, 13×3]4×n]4n+3 MMOs, showing (a) n = 1 for
ω = 0.6155, (b) n = 2 for ω = 0.6143, (c) n = 3 for ω = 0.6136, (d) n = 4 for ω = 0.61326, (e) n = 5 for ω = 0.61305 and (f)
n = 6 for ω = 0.61291. Fixed initial conditions are used: (τ0, x0, y0) = (0.1(2π/ω), 1, 0). In these figures, the sequences labeled
121313 in blue in the sequences (a)–(f) trigger MMOIB-generated MMOs [[12, 13×2]3, [12, 13×3]4×n]4n+3 for n = 1, 2, 3, 4, 5,
and 6, respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. The first return maps of nested MMOIB-generated MMOs, showing [[12, 13 × 2]3, [12, 13 × 3]4 × n]4n+3 (a) n = 1
for ω = 0.6155, (b) n = 2 for ω = 0.6143, (c) n = 3 for ω = 0.6136, (d) n = 4 for ω = 0.61326, (e) n = 5 for ω = 0.61305 and
(f) n = 6 for ω = 0.61291.
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Fig. 12. The shape of the first return map applied four times for ω = 0.6124231.

Fig. 13. One-parameter (top panel) and two-parameter (bottom panel) bifurcation diagrams where MMOIB-generated
[[12, 13 × 3]4, [12, 13 × 4]5 × n]5n+4 MMOs appear. G5n+4 and I5n+4 denote saddle-node and period-doubling bifurcation
curves of 5n + 4-periodic points, respectively.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 14. Time series waveforms of nested MMOIB-generated [[12, 13 × 3]4, [12, 13 × 4]5 × n]5n+4 MMOs, showing (a) n = 1
for ω = 0.607, (b) n = 2 for ω = 0.6064, (c) n = 3 for ω = 0.60601, (d) n = 4 for ω = 0.60582, (e) n = 5 for ω = 0.6057
and (f) n = 6 for ω = 0.605625. Fixed initial conditions (τ0, x0, y0) = (0.1(2π/ω), 1, 0) are used. In these figures, the sequence
labeled 12131313 in blue in the sequences (a)–(f) trigger MMOIB-generated MMOs [[12, 13 × 3]2, [12, 13 × 4]5 × n]5n+4 for
n = 1, 2, 3, 4, 5, and 6, respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 15. The first return maps of nested MMOIB-generated MMOs, showing [[12, 13 × 3]4, [12, 13 × 4]5 × 1]5n+4 (a) n = 1
for ω = 0.607, (b) n = 2 for ω = 0.6064, (c) n = 3 for ω = 0.60601, (d) n = 4 for ω = 0.60582, (e) n = 5 for ω = 0.6057 and
(f) n = 6 for ω = 0.605625.
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n tends to infinity. The point at which the MMO
increments terminate is calculated as ω = 0.6124231
when the first return map becomes tangent to the
diagonal line after four iterations. The correspond-
ing first return map applied four times is given in
Fig. 12.

Two- and one-parameter bifurcation diagrams
between the [12, 13 × 3]4 and [12, 13 × 4]5 MMO-
generating regions where nested MMOIB-generated
[[12, 13 × 3]4, [12, 13 × 4]5 × n]5n+4 MMOs emerge
for successive n are shown in Fig. 13. The time series
waveforms corresponding to [[12, 13 × 3]4, [12, 13 ×
4]5 × n]5n+4 for n = 1, 2, 3, 4, 5, and 6, respec-
tively, are shown in Figs. 14(a)–14(f). Similar to
the figures above, the blue symbol denoted by
12131313 in Figs. 14(a)–14(f) is the trigger sequence
of [[12, 13 × 3]4, [12, 13 × 4]5 × n]5n+4 for n = 1,
2, 3, 4, 5, and 6, respectively. Finally, the corre-
sponding first return maps and their trajectories
are shown in Figs. 15(a)–15(f). Even if the first
return maps are applied, distinguishing between
[[12, 13 × 3]4, [12, 13 × 4]5 × n]5n+4 with n = 5 and
n = 6 is difficult because the period of the first
return plots is already 34. However, the MMO
increment-terminating tangent bifurcation point
can be easily derived if we apply the condition that
[12, 13 × 4]5 emerges as a consequence of [[12, 13 ×
3]4, [12, 13 × 4]5 × n]5n+4 for n → ∞. In this case,
the first return map applied five times becomes tan-
gent to the diagonal line at the bifurcation point.

Fig. 16. The shape of the first return map applied four times
for ω = 0.605369.

The MMO increment-terminating tangent bifurca-
tion point can be approximately derived under these
conditions as ω = 0.605369 (see Fig. 16). There-
fore, our numerical results indicate that nested
MMOs are universal phenomena because they are
strongly ordered and can be observed for succes-
sively increasing values of m, which is one of the val-
ues of successive n of simple (un-nested) MMOIBs.

4. Conclusion

We investigated nested MMOs generated by a clas-
sical forced BVP oscillator in which the nonlin-
ear term is expressed as a third-order polynomial
function. Numerical methods were used to pre-
pare three magnified views of this system’s global
one-parameter bifurcation diagram. Each of the
three diagrams resembles the global view, indicat-
ing that self-similar structures can exist in chaotic
windows. The nested MMOIB-generated MMOs
are judged to be stable because the bifurcation
structures of the two-parameter bifurcation dia-
grams remain unchanged. Furthermore, we defined
approximated first return maps and used these to
confirm that nested MMOIB-generated MMOs are
explained well by the rules we have fomulated. We
also used these first return maps to identify the
thresholds of the bifurcation parameters at which
the MMO increments are terminated by tangent
bifurcations.
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Appendix A

Calculating Bifurcation Parameter
Values

This Appendix gives a brief explanation of
Kawakami’s shooting algorithm for obtaining bifur-
cation boundary curves [Kawakami, 1984]. Let
Eq. (2) be expressed as

ẋ = f(τ,x), (A.1)

where x = (x, y)�. Let the Poincaré return map be
expressed by Tλ instead of a simple T to indicate
that T depends on the bifurcation parameter λ. Let
us then define a stroboscopic Poincaré return map
as follows:

Tλ : R2 → R2, x0 �→ x1 ≡ Tλ(x0). (A.2)

Let u be an l-periodic point of Tλ. Then, u satisfies
the following equation:

T l
λ(u) − u = 0, (A.3)

where T l
λ indicates Tλ applied l times. The charac-

teristic equation is written as∣∣∣∣ d
du

T l
λ(u) − μI

∣∣∣∣ = 0, (A.4)

where I is a two-dimensional identity matrix. The
saddle-node, period-doubling, and Neimark–Sacker
bifurcation parameters are obtained by substitut-
ing μ = 1, −1, and eiθ into Eq. (A.4), respectively,
and solving Eqs. (A.3) and (A.4) simultaneously
for u and λ. These simultaneous equations can be
solved with Newton’s method. The derivatives of
the Poincaré return map Tλ with respect to u and λ
can be derived from the following variational equa-
tions with respect to u and λ.

∂

∂u
T l

λ(u) =
∂

∂u
ϕ

(
2lπ
ω

,u, λ

)
,

∂

∂λ
T l

λ(u) =
∂

∂λ
ϕ

(
2lπ
ω

,u, λ

)
,

∂2

∂u2
T l

λ(u) =
∂

∂u
ϕ

(
2lπ
ω

,u, λ

)
,

∂2

∂u∂λ
T l

λ(u) =
∂2

∂u∂λ
ϕ

(
2lπ
ω

,u, λ

)
,

(A.5)

where ϕ is a solution of Eq. (A.1) and satisfies
ϕ(0,u, λ) = u. The right-hand side of Eq. (A.6)
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can be obtained from the first- and second-order
variational equations as follows:

d
dτ

∂ϕ

∂u
=

∂f

∂x
∂ϕ

∂u
, where

∂ϕ

∂u

∣∣∣∣
τ=0

= I,

d
dτ

∂ϕ

∂λ
=

∂f

∂x
∂ϕ

∂λ
+

∂f

∂λ
, where

∂ϕ

∂λ

∣∣∣∣
τ=0

= 0,

d
dτ

∂2ϕ

∂u2
=

∂f

∂x
∂2ϕ

∂u2
+

∂2f

∂x2

(
∂ϕ

∂u

)2

,

where
∂2ϕ

∂u2

∣∣∣∣
τ=0

= 0,

∂2ϕ

∂u∂λ
=

∂f

∂x
∂2ϕ

∂u∂λ
+

∂2f

∂x2

∂ϕ

∂u
∂ϕ

∂λ
+

∂2f

∂x∂λ

∂ϕ

∂u
,

where
∂2ϕ

∂u∂λ

∣∣∣∣
τ=0

= 0.

(A.6)

These variational equations represented by
Eq. (A.6) are obtained by differentiating the fol-
lowing ODE with respect to u and λ as many times
as necessary:

d
dτ

ϕ(τ,u, λ) = f(ϕ(τ,u, λ), τ),

where ϕ(0,u, λ) = u. (A.7)
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