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Visual Abstract

Significance Statement

Recent findings suggest that striatal activity is organized in spatially compact neuron clusters. Here, we
show that striatal projection neurons should have a nonmonotonically changing distance-dependent
connectivity to obtain spatially localized activity patterns in striatum. Among the different states a striatal
network can show, asynchronous-irregular and transition activity states closely resemble striatal activity in
the healthy state. In contrast, strong cortical inputs as observed in Parkinson’s disease drive the network
into a winner-take-all state, in which the striatum loses its stimulus sensitivity. Thus, our model makes
specific predictions about the spatial network connectivity in the striatum and provides new insights about
how the striatum might make a transition from a healthy state to a Parkinson’s disease state.
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The striatum is the main input nucleus of the basal ganglia. Characterizing striatal activity dynamics is crucial to
understanding mechanisms underlying action selection, initiation, and execution. Here, we studied the effects of
spatial network connectivity on the spatiotemporal structure of striatal activity. We show that a striatal network
with nonmonotonically changing distance-dependent connectivity (according to a gamma distribution) can exhibit
a wide repertoire of spatiotemporal dynamics, ranging from spatially homogeneous, asynchronous-irregular (AI)
activity to a state with stable, spatially localized activity bumps, as in “winner-take-all” (WTA) dynamics. Among
these regimes, the unstable activity bumps [transition activity (TA)] regime closely resembles the experimentally
observed spatiotemporal activity dynamics and neuronal assemblies in the striatum. In contrast, striatal networks
with monotonically decreasing distance-dependent connectivity (in a Gaussian fashion) can exhibit only an AI
state. Thus, given the observation of spatially compact neuronal clusters in the striatum, our model suggests that
recurrent connectivity among striatal projection neurons should vary nonmonotonically. In brain disorders such as
Parkinson’s disease, increased cortical inputs and high striatal firing rates are associated with a reduction in
stimulus sensitivity. Consistent with this, our model suggests that strong cortical inputs drive the striatum to a
WTA state, leading to low stimulus sensitivity and high variability. In contrast, the AI and TA states show high
stimulus sensitivity and reliability. Thus, based on these results, we propose that in a healthy state the striatum
operates in a AI/TA state and that lack of dopamine pushes it into a WTA state.
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Introduction
The basal ganglia (BG) are a collection of nuclei located

at the base of the forebrain. BG are crucial for critical
functions such as voluntary movement control, decision-
making, procedural learning, and a variety of cognitive
functions. The striatum as the main input stage of the BG
plays a major role in BG-related brain function and dys-
function. Like many other subcortical structures, the stria-
tum is a network of inhibitory neurons driven by excitatory
inputs from multiple regions of the neocortex (Wall et al.,
2013), thalamus (Smith et al., 2009a), and hippocampus.
The output of the striatum directly projects to the globus
pallidus (GP) and forms two major functional pathways in
the BG, the “go and “no-go” pathways. The interaction of
these pathways forms the basis of functions such as
action selection, initiation, and execution (Albin et al.,
1989).

Experimental data suggest that striatal firing rates in
ongoing activity are quite low (�1 Hz; Mahon et al., 2004;
Gage et al., 2010), and �30% of striatal projection neu-

rons respond with a markedly increased firing rate
(�10–20 Hz; Kimchi and Laubach, 2009; Gage et al.,
2010; Adler et al., 2012). However, it remains unclear how
the sparse and low-firing-rate task-related activity of the
striatum is organized in space and time to shape the
activity of the GP to initiate action selection.

Recent observations of temporal (Adler et al., 2013) and
spatial (Barbera et al., 2016) clustering of spiking activity
in the striatum suggest that striatal activity may be orga-
nized in transient coactivations of groups of neurons.
Such coactivated neuron groups can be termed neuronal
assemblies (NAs). Such NAs can effectively increase the
inhibitory influence of striatal neurons on downstream
networks. However, conditions under which NAs appear
in the striatum are not well understood.

Within the framework of dynamical systems, the NA-
type activity state could be an outcome of a “winnerless
competition” (WLC; Rabinovich et al., 2001) or a noise
driven transition state between the asynchronous-irre-
gular (AI) activity state and the “winner-take-all” (WTA)
state. Although the mechanisms underlying the emer-
gence of such transient NAs are not well understood,
heterogeneity in both the external input and the recurrent
connectivity among striatal projection neurons is a com-
mon feature of the existing models of transient NAs
(Humphries et al., 2009; Ponzi and Wickens, 2010;
Angulo-Garcia et al., 2015).

Here, we investigate the existence of NAs in a large-
scale network model of the striatum in which neurons are
connected in a distance-dependent manner. We address
two key questions: (1) How does the structure of the
network connectivity define the repertoire of the ongoing
activity dynamics? and (2) Under which conditions can
task-related inputs modify these ongoing activity dynam-
ics?

Specifically, we considered two qualitatively different
spatial connectivity profiles in which the connection prob-
ability between any two neurons varied as a function of
the distance between the neurons: decreased monotoni-
cally (according to a Gaussian distribution) or changed
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nonmonotonically (according to a gamma distribution;
Rinzel, 1998). Using network simulations and mathemat-
ical analysis, we show that spatially structured activity in
the network can emerge only for a nonmonotonically
shaped connectivity kernel. In inhibitory networks with a
monotonically changing connectivity kernel, network ac-
tivity remains AI. Only networks with a nonmonotonically
changing connectivity kernel can exhibit different activity
regimes. Weak background inputs or high input variance
induced unstructured AI activity, whereas stronger back-
ground inputs or low input variance induced stable dy-
namics (e.g., WTA). For moderately strong inputs, the
network activity organized into unstable spatial bumps
[transition activity (TA)] resembling the experimentally ob-
served NAs (Adler et al., 2013; Barbera et al., 2016).
Finally, we describe how stimulus response characteris-
tics are affected by the ongoing activity state of the
network. We show that only AI and TA states support a
reliable stimulus response and that stimulus-induced
changes in pairwise correlations are maximal in the TA
state, especially for weak stimuli.

These results help us to better understand information
processing in the striatum and other primarily inhibitory
subcortical networks as in the amygdala and the cerebel-
lum. Moreover, our model provides new insights into neu-
ronal mechanisms underlying brain diseases such as
Parkinson’s disease (PD). For instance, the strong resem-
blance between the properties of the WTA state and the
activity observed in PD (Costa et al., 2006) leads to the
hypothesis that PD may be a transition from AI or TA to a
WTA state.

Materials and Methods
Neuron model

Neurons in the network were modeled as “leaky-
integrate-and-fire” (LIF) neurons. We intentionally chose
this simple neuron model to ensure that the observed
network dynamics would be the result of the connectivity
profiles studied and not the intrinsic dynamics of a more
complex neuron model. The subthreshold membrane po-
tential dynamics of LIF neurons are given by

Cm �
dv
dt

� �gL � [v(t) � EL] � I(t). (1)

Synapses were modeled as conductance transients.
The temporal profile of the transient conductance change
in response to a single presynaptic spike was modeled as
an alpha function. The recurrent connectivity within an
inhibitory network such as the striatum is weak and
sparse (Tepper et al., 2004; Taverna et al., 2008; Planert
et al., 2010). We adjusted the synaptic conductances to
obtain weak synapses such that a unitary inhibitory post-
synaptic potential (IPSP) had an amplitude of 0.8 mV at a
holding potential of –44.0 mV and an excitatory postsyn-
aptic potential (EPSP) had an amplitude of 1.6 mV at a
holding potential of –70.0 mV. The various neuron and
synapse parameters are summarized in Table 1. When-
ever possible, we used parameters corresponding to the
striatal network (Yim et al., 2011).

Network architecture
We considered a population of 10,000 inhibitory neu-

rons. The neurons were placed on a 100 � 100 grid and
folded as a torus to avoid boundary effects. The distance
between neighboring nodes in the grid network amounted
to 10 �m. Each neuron sent 1000 inhibitory recurrent
inputs to other neurons within the network (i.e., 10%
total connection probability), mimicking the sparse con-
nectivity in most biological inhibitory networks. We im-
plemented no self-connections within the network, and
neurons were allowed to form multiple connections
between them.

To implement a distance-dependent connectivity, we
chose two qualitatively different spatial profiles (Rinzel,
1998). For the first type of connectivity, we assumed that
the distance-dependent connection probability decreased
monotonically as a function of distance. To implement such
connectivity, we used the Gaussian distribution to
model the distance-dependent decrease in connectivity
(Fig. 1a, top). We will refer to this network type as a
Gaussian network.

For the second type of connectivity, we assumed that
the distance-dependent connection probability varied
nonmonotonically as a function of distance. Recent ex-
perimental data suggest that the connectivity between
pairs of medium spiny neurons (MSNs) in the striatum
may indeed change nonmonotonically as a function of
distance (Fujiyama et al., 2011; López-Huerta et al., 2013).
To implement such connectivity, we used a gamma dis-
tribution to model the distance dependent variation in
connectivity (Fig. 1a, bottom). We will refer to this network
type as a gamma network.

The out-degree of individual neurons was fixed to 1000
neurons. In our network, target neurons were located on a
uniformly spaced grid (100 � 100), and each neuron index
can be calculated by its coordinate on the grid map.
Moreover, each target neuron could also be identified by
an angle and radius in polar coordinates:

x � r � sin(�)
y � r � cos(�)

idx � x � ncol � y

where x and y are the coordinates of the grid locations, idx
is the index of the target neurons, and ncol � 100 is the
size of the network in one of two dimensions. To identify
1000 targets, we drew � from a uniform distribution �

Table 1. Parameter values for the neuron and synapse model

Name Value Description
Cm 200.0 pF Membrane capacitance
gL 12.5 nS Leak conductance
EL –80.0 mV Leak reversal potential
Vth –45.0 mV Spike threshold
Vreset –80.0 mV Resting membrane potential
tref 2.0 ms Refractory period
Eexc 0.0 mV Excitatory reversal potential
Einh –64.0 mV Inhibitory reversal potential
	exc 5.0 ms Time constant of excitatory conductance
	inh 10.0 ms Time constant of inhibitory conductance
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��
, 
� and r from either Gaussian or gamma distribution.
This approach is much faster than deciding connectivity
based on pairwise distances, but can be used only when
neurons are arranged on a grid.

To appropriately compare these different network
types, we ensured that the connection weights and the
degree distributions were identical in the two network
types.

Ongoing/background excitatory drive
All neurons received background excitatory inputs

mimicking the global ongoing activity in striatum. The
external drive was modeled by uncorrelated homoge-
neous Poisson-type spike trains with fixed firing rate.
Each neuron received an independent realization of such
spike train, obtained from the same underlying Poisson
process. The rate of the Poisson-type spike trains was
varied systematically to study the different dynamical
states of the inhibitory networks.

Stimulus
To measure the impact of the an external stimulus on

network activity in each dynamic state, we stimulated the
network with an external stimulus, on top of the back-
ground inputs described above. The stimulus was pro-
vided to a subset of �45 neurons. To distribute the
stimulated neurons in a spatial manner, we defined a
region of interest (ROI) of size 30 � 30 neurons. In the
ROI, we defined a location as center for stimulated neu-
rons chosen according to a two-dimensional (2D) Gauss-
ian profile (�: 2 grid points). The external stimulus was
modeled as an injection of direct current to the selected
neurons. The stimulus presentation lasted for 1 s, and its
amplitude was systematically varied between 0 and 150
pA. To collect sufficient data for further statistical analy-
sis, each stimulus was presented 20 times to its assigned
subset of neurons.

To estimate how the response magnitude and trial-by-
trial variability changes when one stimulus is immediately
followed by another, we extended the simulation of the
network with two different external stimuli. Each of these
two external stimuli was provided to two nonoverlapping
subsets of �45 neurons. In the ROI, as described above,
we defined two locations that were 10 grid points apart.
Using these two locations as centers, stimulated neurons
were chosen according to a 2D Gaussian profile (�: 2 grid
points). The two stimuli were presented in alternating
fashion, and each stimulus presentation lasted for 1 s,
separated by a pause of 2 s. Thus, the two stimuli differed
only in terms of their target neurons; other properties
(strength, duration) were identical.

Characterization of the network dynamics
The network activity states were characterized on the

basis of the spiking activity using standard descriptors:
firing rates and the coefficient of variation of interspike
intervals (CVISI), the latter used to measure the degree of
irregularity of the spiking of individual neurons Kumar
et al. (2008b).

Count and duration of activity bumps
We constructed a series of binary matrices representing

the 2D map (100 � 100 neurons) of the network activity
over disjunct time windows of 100 ms each from the spike
train recordings of all neurons. To enhance the spatial
contrast, these matrices were convolved with the 2D
“Mexican hat”–shaped kernel (Ricker wavelet). The size of
the hat was taken from the estimation of the bump size
(Figs. 4b and 5). The integral of the Mexican hat kernel
was set to zero to ensure that the filtered activity was
comparable for different inputs. Additionally, the integrals
of the positive and the negative part of the convolution
kernel were set to 1 and –1, respectively. After convolving
the spatial activity of the network (measured in a 100 ms

a b

Figure 1. Spiking activity of the network with gamma-distributed (top) and Gaussian-distributed (bottom) connectivity. (a) Connection
probability between neurons as a function of the distance between neurons normalized to the full size of the network. (b) Examples
of the spiking activity of 200 of 10,000 neurons for different average firing rates (�) of the network. With increasing background activity,
the spiking activity of the Gaussian networks remained irregular and the bursting behavior increased. In contrast, the gamma networks
showed transient or persistent bursting behavior and local synchronization of spiking activities.
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window) with the Mexican hat kernel, we thresholded the
resulting image to identify patches of high activity. The
center of each patch was taken as the position of individ-
ual bumps. The positions of individual bumps were then
used to compute the number of bumps and determine the
affiliation of neurons to individual bumps. Finally, trackers
of time-merged bumps were used to analyze the lifespan
of the bumps, determined by finding similar positions of
bump centroids over subsequent time frames.

Characterization of the stimulus response
To estimate the influence of the external stimuli on

striatal ongoing activity, we analyzed the activity of stim-
ulated neurons in the ROI (of size 30 � 30 grid). To
characterize the impact of the external stimulus on the
network activity dynamics, we measured the average fir-
ing rate, the trial-by-trial variability of the network re-
sponse, and the spectrum of pairwise correlations of the
network spiking activity. To estimate whether the evoked
response of the stimulated neurons was discernible from
the background, we measured

response �
evoked firing rate

background firing rate

for each stimulus. The trial-by-trial variability was quanti-
fied using the Fano factor (FF), defined as the ratio of the
variance and the mean of the response of the stimulated
neurons.

The correlation spectrum was estimated for the activity
of individual neurons. Neuronal spiking activity was
binned using a rectangular bin of 100 ms. We measured
the correlation spectrum for the trial-by-trial average of
both ongoing and stimulus-evoked activity.

Simulation tools
All simulations of the networks of spiking neurons were

performed using NEST simulation software (Gewaltig and
Diesmann, 2007). The dynamical equations were inte-
grated at a fixed temporal resolution of 0.1 ms. Simulation
data were analyzed with Python using the scientific librar-
ies SciPy (http://www.scipy.org) and NumPy (http://
www.numpy.org) and visualized using the plotting library
Matplotlib (http://matplotlib.org).

Results
Neuronal activity in the striatum is maintained by tha-

lamic and cortical excitatory inputs. In a randomly con-
nected inhibitory network model of the striatum, the
recurrent inhibition and the level of external excitatory
inputs define the dynamical states and stimulus response
properties of the network (Brunel and Hakim, 1999; Ponzi
and Wickens, 2010; Yim et al., 2011; Angulo-Garcia et al.,
2015). Here, we extend this earlier work by investigating
the effects of spatial connectivity on the dynamical states
and the stimulus-response properties of the striatal
network activity. To this end, we used both analytical
calculations using neural field equations and numerical
simulations of biologically realistic, large-scale inhibitory
networks models with 10,000 spiking neurons.

In our network models, the profile of the spatial con-
nection probability between any two neurons could vary

either monotonically or nonmonotonically as a function of
the distance between the neurons. For this, we used two
different kernels for the spatial connectivity: In Gamma
networks, the nonmonotonic distance-dependent change
in connection probability was modeled as a Gamma dis-
tribution [off-center inhibition (Rinzel, 1998); Fig. 1a, top],
whereas in Gaussian networks, the connection probability
decreased monotonically in a Gaussian manner as a func-
tion of distance between neurons [on-center inhibition
(Rinzel, 1998); Fig. 1a, bottom].

Firing rates and spike train irregularity
First, we determined the firing rate and the degree of

irregularity of the spiking activities in the networks con-
nected according to the Gaussian-shaped (Figs. 1a, b,
top) and gamma-shaped (Figs. 1a, b, bottom) connectivity
profiles. As expected, the average firing rates in both
network types increased as a function of the background
excitatory input (�ext; Fig. 1b). However, comparing the
network activity at similar average output rate (�), the
activity pattern of network differed in connectivity profiles
(Fig. 1b). Gamma networks were clearly more sensitive to
a change in the background input rate (�ext) than Gaussian
networks (Fig. 2a, black trace). Thus, the same range
of average firing rates as in Gaussian networks was
achieved in gamma networks already for a much lower
range of external inputs (�ext; Fig. 2a, black trace). This
suggests that a gamma-shaped spatial connectivity ker-
nel increased the sensitivity of the network activity to
changes in the background input.

Moreover, these two network types differed consider-
ably in the distribution of firing rates over neurons (Fig. 2a,
top row) and spike timing irregularity (CVISI; Fig. 2a, bot-
tom row). We compared the output firing rate distributions
for a range of external inputs that resulted in the same
range of output firing rates. The recurrent inhibition in the
network ensured that even for very strong background
input, only few neurons could spike at a high rate, and a
major fraction of neurons spiked at relatively low rates,
resulting in a positively skewed distribution of firing rates.
For Gaussian networks, the average firing rate (�) and the
standard deviation (��) and skewness (��) of the neuronal
firing rate distribution monotonically increased as back-
ground input was increased (Fig. 2a, top right). In con-
trast, in Gamma networks, both � and �� increased
nonmonotonically, but the skewness of the firing rate
distribution changed in a nonmonotonic fashion as a func-
tion of background input rate (Fig. 2a, top right). This
suggests that a nonmonotonically changing connectivity
profile results in a larger diversity of firing rates in the
network and that the diversity of firing rates is maximized
for a moderate amount of background input.

Interestingly, in Gaussian networks, the neurons’ CVISI

monotonically increased with an increase in their firing rate.
An average CVISI � 1 indicates that most high-firing-rate
neurons spiked in bursts (Fig. 2b, top). Because we used LIF
neurons, the bursting in the network activity was caused by
the recurrent inhibition and not intrinsic neuron properties. In
the Gaussian networks, the connection probability peaked over
only a small range in the vicinity of a given neuron, thereby
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reducing the effective recurrent inhibition and allowing the neu-
ron to maintain its high firing rate for some time. However,
fluctuations in the external input (modeled as Poisson spike
trains) could rapidly switch the high-rate activity from any one
neuron to another, thereby creating a spike pattern consisting
of short-lived bursts and pauses.

In contrast, in the Gamma networks, only neurons with
moderate output firing rates showed a CVISI � 1 (Fig. 2b,
top). Neurons with very high firing rates (� �100 Hz)
spiked in a regular manner (CVISI �0.5). Such a small CVISI

implies that the network was operating in the so-called
mean-driven regime (Brunel, 2000), in which the back-
ground input is strong enough to keep the free-membrane
potential of the neurons above spiking threshold. Within
the physiologic range of output firing rates (� �50 Hz),
neurons in both network types elicited spike bursts, but
the CVISI in Gaussian networks was nearly twice as high
as that in Gamma networks.

Spatial structure of the network activity
Next, we included spatial information about neurons in our

analysis and characterized the spatial activity patterns in
both network types. Visual inspection of the spike rasters
(Fig. 1b) suggested that in Gaussian networks, the structure
of the network activity remained spatially homogeneous,
even for very high background input rates (�ext). In contrast,
when increasing the background input rate in gamma net-
works, the activity got confined into local clusters, resulting
in spatially periodic activity bumps. The spatial structure
became more apparent when we rendered the neuronal
activity as a 2D surface (Figs. 3 and 4a). Depending on the
strength of the background input, three qualitatively different

network activity states were observed. In the AI state, neu-
rons spiked at a low rate and the activity was more or less
homogeneously distributed across the network (Fig. 3, top
row). For very strong background inputs, the network activity
organized into a spatially periodic and temporally stable

a b

Figure 2. Analysis of the spike patterns in networks with different connectivity profiles. a, Distribution of average firing rates (�; top)
and coefficient of variation (CVISI; bottom) as a function of background input strength (�ext) for Gaussian (left) and gamma (right)
networks. In Gaussian networks, increasing �ext resulted in a steadily widening distribution of � and CVISI, which for a large fraction
of neurons tended to the value 3. In contrast, in gamma networks, the distribution of � and CVISI was rapidly widely distributed from
a relatively low �ext (1.5 kHz) upward. Gamma networks were clearly more excitable than Gaussian networks. Green trace indicates
the skewness of the firing rate in both networks. Black and blue traces refer to the average firing rate (�) and standard deviation (��)
of the firing rate distribution, respectively. b, Relationship between the irregularity of the spiking pattern (CVISI) and the average firing
rate (�). The color of the traces represents the background input rate (�ext). In Gaussian networks (top), neurons with higher � tended
to exhibit a higher CVISI, whereas in gamma networks (bottom), they tended to exhibit a lower CVISI.

Figure 3. Characterization of the bump activity states for the
gamma network. Time series snapshots of the 2D pattern (100 �
100 neurons) of bump activity, contrast-enhanced by Mexican
hat filtering. Each frame was measured by summing the neuronal
activity over 100 ms. Three snapshots (columns) of activity were
taken 1 s apart. Three representative gamma network states for
three different amounts of external inputs are shown in each row.
AI: external input � 1 kHz; no bump activity is observed and the
network activity remains noisy. TA: external input � 1.5 kHz; the
network is in an unstable state, with several bumps appearing
transiently, in the company of noisy activity. WTA: external input
� 3 kHz; the network forms mostly persistent bumps throughout
the entire network.
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bump structure (Fig. 3, bottom row). This state resembles
the k-WTA state (Hutt and Atay, 2005). In between, for
moderate inputs, the bump structure was aperiodic and
unstable (Fig. 3, middle row). We refer to this state as
transition activity (TA).

To better characterize the emergence of activity bumps
and these three dynamic states in gamma networks, we
measured the numbers, sizes, and lifespans of activity
bumps. To reliably identify bumps, we designed a bump
detection algorithm (see Methods). First, we measured
the average firing rate as a function of distance from the
center of a bump. For weak inputs, the average network
activity decayed and reached a baseline level with in-
creasing distance from the center of the bump. However,
for stronger inputs, not only did the firing rate in the bump
increase, but the spatially periodic nature of the activity
also became more apparent (Fig. 4a).

The number of bumps increased in a sigmoidal fashion
with the background input rate (Fig. 4c). For strong inputs
(�ext �1.7 Kspikes/s), the bumps were stable: neurons
that started to spike at the beginning of the simulation
remained active for the entire simulation (Fig. 4d, e, red
trace). For weak inputs (�ext �1.2 Kspikes/s), the few
bumps that appeared lasted only for short durations (Fig.
4d, e, blue trace). For the medium range of input rates (1.2
� �ext � 1.7 Kspikes/s), the bumps showed a wide range
of lifespans (Fig. 4d, e, light blue trace).

This analysis of the network activity showed that
gamma networks exhibited random unstructured activity
for weak background inputs and stable periodic bump
activity for strong background inputs. The stable bump
activity was similar to the periodic bump activity observed
in networks of excitatory and inhibitory neurons intercon-
nected according to a spatial Gaussian connectivity pro-

a

b

c

d

e

Figure 4. Quantification of bump activities in gamma networks. a, Spatial autocorrelation of the network spiking activity, showing the mean
firing rate (�) of each bump as a function of the distance from the cluster centroid normalized to the full size of the network. Different colors
represent the strength of the background excitation. b, Distance between bumps in various gamma distributions and its comparison
between numerical simulations and mean field equations. The background color is measured bump distance from the network simulation
data. Solid traces show results from analytical estimation of bump distance; dashed traces represent the estimation of bump distance from
network simulations. The parameter for the gamma-distributed connection is used for the spiking network model (red circle). Spatial
representations of activity bumps are also observed in Fig. 5 (c–e). These subfigures display the bump count and their relative lifespan
during the entire simulation as a function of the background external excitation (�ext), which modulates the nature of the bump activity. c,
With increasing �ext, the number of bumps increases in a sigmoidal fashion. For higher �ext, the number of bumps saturates, owing to the
limited capacity of the finite spatial map. The error bars for the bump counts indicate the standard deviation of bump counts over the
simulation time. d, The lifespan of bumps reflects the dynamic state of the bumps: a shorter lifespan reflects TA dynamics, whereas a larger
lifespan indicates stable bump activity reflecting WTA dynamics. By increasing �ext, the distribution of lifespans shifts from short to long
term. The ordinate indicates lifespan, normalized to the duration of the entire simulation (10 s), of individual bumps. Because the average
bump counts are different in each dynamical state (TA, WTA), we normalized the color bar of bump count to the average bump count in
individual states. e, The lifespan distribution is split into three groups (dashed lines in d). The long (red trace) appearance of bumps reflects
the WTA state of bump activity, whereas the short (blue trace) appearance of bumps reflects the TA state of bump activity. Between these
two states, the network is in a highly unstable state, characterized by a wider distribution of lifespans (light blue trace).
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file (Mehring et al., 2003; Roxin et al., 2005; Kumar et al.,
2008a). This raises the question of why inhibitory net-
works with a gamma-type connectivity profile exhibit
spatial bump activity patterns and why networks with
Gaussian-distributed connectivity profile do not.

Necessary conditions for the emergence of bump
states

To understand why a gamma-type connectivity profile
exhibits spatial bump activity and a Gaussian connectivity
profile does not, we investigated the dynamical states of
spatially interconnected inhibitory neurons using neural
field equations (Ermentrout, 1992; Hutt and Atay, 2005).
For simplicity, we started by formulating the neural field
equation for a one-dimensional network with circular
boundary conditions. The results hold also for a 2D net-
work with torus-folded boundary conditions because we
are considering a homogeneous and isotropic scenario.
The mean membrane potential v(x,t) in the continuum limit
is given by

�v�x, t�
� t

� �v�x, t� � �
��

�

f�v�y, t��W�x � y�dy � I�x, t� ,

(2)

where W(x) denotes the spatial connectivity profile and f(v)
the neuron transfer function, mapping the mean membrane
potential to the output firing rate (�). Without loss of gener-
ality, we used normalized connectivity profiles W(x), and the
scaling parameter was chosen such that the absolute con-
nection strength was absorbed into f(v). The background
input to the neurons is denoted by I(x,t). For the network, the
stationary and spatially homogeneous solution v(x,t) � v0 �
constant is a solution to Eq. (2) for a constant background
input I(x,t) � I0. Here, v0 is given by the implicit equation

�v0

� t
� �v0 � f(v0) � I0 � 0. (3)

To investigate the stability of this homogeneous solu-
tion, we considered small perturbations v�x, t� � v0 � ��
�x, t� around v0 and linearized the transfer function in Eq.
(2). After subtracting Eq. (3), this yields

���x, t�
� t

� ���x, t� � �
��

�

f��v0���x, t�W�x � y�dy . (4)

Here and in the remainder f��v0� is used as shorthand
notation for �f�v� / �v�v�v0

. In the Fourier domain, this ex-
pression simplifies to

� �̃�k, t�
� t

� � ṽ�k, t� � f��v0��̃�k, t�W̃�k� , (5)

with �̃ denoting the Fourier transform of � with respect to
space. We can now obtain the eigenvalues:

� � �1 � f��v0�W̃�k� . (6)

When the eigenvalues are positive, small perturbations
do not die out, indicating unstable dynamics. Assuming

that the slope of the transfer function f��v0� is always
nonnegative, negative values in W̃�k� are a necessary
condition for positive eigenvalues � and, hence, for spa-
tially periodic activity bumps. In purely inhibitory net-
works, this condition can be fulfilled by off-center
inhibition kernels, such as the gamma-kernel under inves-
tigation, or, e.g., a mixture of two Gaussian distributions
arranged symmetrically around zero. Although for biolog-
ically plausible connection kernels, off-center inhibition
(i.e., a nonmonotonic kernel) fulfills this condition, it
should be noted that this is not a necessary condition. For
instance, the Fourier transform of a box-shaped kernel
around zero takes negative values at nonzero frequencies
and therefore could, in principle, generate bump states.

For the gamma distribution–shaped connectivity kernel,

W�x� �
xn�1e

��x�

�

2��n��n
, (7)

with shape parameter n and scale parameter �, this
condition of positive eigenvalue � � 0 can be fulfilled for n
� 1, when the Fourier transform W̃�k� takes negative
values (Fig. 6, right). In contrast, the Gaussian kernel
Fourier-transforms into another Gaussian, which never
takes negative values (Fig. 6, right), and therefore,
purely inhibitory networks with a Gaussian-type con-
nectivity profile do not show any spatially periodic
bump activity. When the eigenvalues � are negative, the
network activity remains spatially homogeneous, simi-
lar to the AI state observed in both the Gaussian net-
works and the gamma networks (Fig. 1c).

Eq. (6) also revealed that the slope of the transfer
function at stationary rate f��v0� is an important factor
controlling the eigenvalues. For positive eigenvalues, it
needs to be sufficiently large. That is, the following con-
dition needs to be fulfilled:

f��v0� � �min
k

W̃�k���1 . (8)

Here, f��v0� is controlled by a number of factors. For
instance, an increase in the synaptic weights (e.g.,
cortico-striatal, MSNs to MSNs, and fast spiking interneu-
rons to MSNs) increases f��v0� and can make the network
cross the bifurcation. Similarly, increasing the background
input rate will also increase the slope f��v0�, because the
transfer function of LIF neurons in the simulated network
is convex for low firing rates (Burkitt, 2006). That is, both
an increase in the strength of recurrent synapses and an
increase in the background input rate can cause the
transition from spatially homogeneous firing to periodi-
cally organized bump solutions.

This analysis shows that the activity of an inhibitory
network driven by constant input I(x) has two stable so-
lutions: for weak inputs, the stationary state is spatially
homogeneous (AI state; Fig. 3, top row), whereas for
strong inputs, the stationary state is spatially periodic
(WTA state; Fig. 3, bottom row). When the network is
driven with noisy inputs or the neurons have unequal
numbers of synapses (owing to random connectivity), the
transition between the two stable solutions is smooth-
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ened (TA state; Fig. 3, middle row). This result of the
analytical calculations is consistent with the numerical
network simulations (Figs. 1 and 4) where noise was
introduced into the network by the connectivity and the
Poisson type spike trains as external background input.

In addition to stating the condition for spatially periodic
bump solutions to arise, Eq. (6) enables us to estimate the
distance between bumps. The wave number of the
emerging spatially periodic solution is approximately
given by the wavenumber kc minimizing the Fourier trans-
form of the gamma kernel (7). This critical wavenumber kc

is given by

kc � arg min
k

W̃�k� �
tan



n � 1
�

. (9)

This means that the spacing between bumps will in-
crease as the shape (n) and scale parameter (�) of the
gamma function are increased (Fig. 4b, dashed traces).
We confirmed this in numerical simulations by systemat-
ically varying the two parameters of the connectivity
kernel (Fig. 5). We found that, indeed, the analytical ap-
proximation closely matched the estimates of the inter-
bump distance measured in network simulations (Fig. 4b).

Impact of the ongoing activity state on the stimulus
response

The three different networks states we identified were
obtained by changing the global input to the network, and
therefore, these states can be thought as possible ongo-
ing states of the network activity, i.e., when the animal is
not engaged in a specific task. To understand how a
task-related activity may be represented in the striatum
when it operates in one of these three ongoing activity
states, we selectively stimulated two different subsets of
neurons located in spatially nonoverlapping regions in the
network alternately (stimulus A and B; Fig. 7a; see Meth-
ods) and measured the stimulus response.

In the AI state, the network instantaneously responded
to the stimulus and switched to a different spatial pattern

as the input was changed (Fig. 7a, top row). In this state,
there were no bumps in the ongoing activity; therefore the
stimulus created new bumps. In the TA as the ongoing
state (Fig. 7a, middle row), external stimuli modified the
already existing bump pattern. The resulting patterns
were different for the two stimuli. By contrast, in the WTA
state, the ongoing activity already showed strong stable
bumps and the external stimuli proved insufficient to alter
the ongoing bump pattern (Fig. 7a, bottom row), unless it
overlapped with an existing bump (e.g., the stimulus B in
Fig. 7a, bottom row).

To quantify the striatal response in different ongoing
activity states, we measured the change in the average
firing rate of the stimulated neurons (�response, Fig. 7b)
and the trial-by-trial variability (measured over 20 trials) for
the two stimuli (Fig. 7c). In AI and TA states, the external
input elicited a strong response, well discernible from the
background activity. As expected, the response magni-
tude increased with an increase in the stimulus strength
(Fig. 7b). The variance of the evoked response (�response
measured across trials for the whole duration of the stim-
ulus) in the TA state was higher than in the AI state, but for
stronger stimuli both average response and trial-by-trial
variability were similar (Fig. 7b). The time-resolved trial-
by-trial variability of the evoked response (measured as
FF) of the network response was maximal at stimulus
onset (Fig. 7c). However, the trial-by-trial variability of the
response in the steady state (in the presence of the
stimulus) was smaller than that observed in the ongoing
state. By contrast, in the WTA state, not only the
�response was smallest among the three states, it was
also more variable across trials (depending on the location
of the stimulus). For strong input it was possible to elicit a
strong reliable response even in the WTA state, but that
response depended strongly on the location of the stim-
ulus, e.g., among the two stimuli we tested, only stimulus
B resulted in a high �response (Fig. 7b, bottom row).
Besides, in the WTA state, trial-by-trial variability also
depended on the stimulus location. For the stimulus A, FF
in the WTA state was highest of the three states (Fig. 7c).

Figure 5. Spatial map of bump activity patterns for different gamma distributions. A snapshot, contrast-enhanced by Mexican hat
filtering, of the 2D pattern (100 � 100 neurons) of bump activity for different parameters (shape, scale) of gamma connection profile
defines the size of bumps and the distance between bumps. The rate of the external Poisson excitation (�ext) was set to 5 kHz to obtain
WTA states in networks with different gamma distributions.
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Although average FF of stimulus B was much lower (�7)
than that of the stimulus A (�25) in the WTA state, it was
still higher than that measured in AI and TA states. These
observations suggest that evoked responses are far more
variable across trials in the WTA state than in both AI and
TA states.

Taken together, the stimulus response properties of the
three ongoing network activity states in gamma networks
showed that only AI and TA states provide a suitable
substrate to reliably encode different external stimuli. In
contrast, in the WTA state, the response depends not only
on the stimulus amplitude but also on the spatial location
of the input. When the input coincides with an existing
bump, the response is reliable and discernible from the
background, but otherwise the response is weak and
unreliable (e.g., stimulus B).

Modulation of pairwise correlations is maximal in the
TA state

AI and TA states are similar in terms of stimulus sensi-
tivity and response reliability (Fig. 7). Further analysis of
the evoked activity, however, revealed a crucial difference
between these two network states that renders the TA
state as a more suitable ongoing activity state for stimulus
encoding. In the AI state, a weak external stimulus affects
only the rate of stimulated neurons and, thereby, induces
only a small effect on neighboring neurons. Therefore, the
correlation spectrum during the evoked activity is slightly
positively skewed (Fig. 8, left, light blue trace). That is,
although weak stimuli can evoke activity responses in the
AI state, the spectrum of correlations remains largely
unaffected (Fig. 8).

In contrast, in the TA state, even a weak external stim-
ulus can create new activity bumps and, thereby, intro-
duce both positive and negative correlations (Fig. 8,
middle, light blue trace). The resulting distribution of cor-
relations in the evoked activity is much wider than ob-
served in both AI and WTA states. That is, in the TA state
even weak stimuli are able to induce large changes in the
structure of pairwise correlations (Fig. 8, middle, light blue
trace). These correlations may be effective in carving out
the selected action not only in the striatum, but also
downstream in external and internal GP, both of which
have high baseline activity and require coordinated striatal
inhibition to be suppressed. Moreover, the change in the
pairwise correlation distribution can also be useful in dis-
tinguishing stimulus-evoked bumps from spontaneously
generated bumps, which otherwise cannot be distin-
guished based on firing rates alone.

For strong external stimuli, the correlation spectra are
similar in both AI and TA states. In the WTA state, how-
ever, a weak stimulus did not induce any visible modula-
tion in the correlation spectrum (Fig. 8, right, blue and light
blue traces), and only very strong inputs could trigger a
small change in the correlation structure (Fig. 8, right, red
and orange traces). These results suggest that although
both AI and TA states allow for reliable and discernible
stimulus responses, the TA state may be more suitable to
process weaker stimuli than the AI state, because in the

TA state the correlation spectrum can already be modu-
lated by very weak stimuli.

Discussion
Here, we investigated the activity dynamics and stimu-

lus response properties of the striatum as a purely inhib-
itory network with different spatial connectivity profiles.
We showed that a nonmonotonically changing spatial
connectivity profile can lead to the emergence of spatially
structured activity in purely inhibitory networks. In con-
trast, when the connectivity changes monotonically as a
function of distance between neurons, the network activ-
ity is uniformly distributed over the network, respective of
the background input. Specifically, we have shown that
with a nonmonotonically shaped connectivity profile, the
striatal network can exhibit three qualitatively different
activity states: AI, TA, and WTA dynamics. Importantly,
among these three different dynamical network states,
both AI and TA states have the necessary properties for
reliably encoding external stimuli. Between the AI and TA
states, the average stimulus response is similar; however,
the TA state has several interesting properties that make
it a dynamically richer and more responsive state: (1) the
overall firing rate distribution in the TA state is more
skewed than in the other two states (Fig. 2a); (2) the
lifespan of NAs in the TA state is more widely distributed
that in the other two states (Fig. 4d); and (3) in the TA
state, even weak stimuli are able to alter the spectrum of
pairwise correlations (Fig. 8).

Transient NAs in striatum-like purely inhibitory networks
with spatial connectivity structure (Humphries et al., 2009)
or without any spatial connectivity structure (Ponzi and
Wickens, 2010) have been defined as groups of neurons
showing a conspicuous correlation in their temporal firing
rate profiles. Such NAs and their member neurons were
identified by offline analysis of the spiking activities of
neurons in sparsely connected, random recurrent inhibi-
tory network models with weak synapses. In such net-
works, NAs were found to be randomly distributed over
the entire network and appeared to involve mutually un-
connected neurons (Angulo-Garcia et al., 2015). However,
such assemblies may not influence the downstream net-
work, unless they are specifically wired to share their
downstream targets. Moreover, experimental data showed
that transient NAs exist as spatially compact clusters (Bar-
bera et al., 2016). Here, we extend the previous work and
show that the existence of spatially compact NAs in a
striatum-like network requires that the connection probabil-
ity between striatal neurons changes in a nonmonotonic
fashion as a function of their distance.

Previously, a few studies have investigated the dynam-
ics of the striatal network with distance-dependent con-
nectivity (Wickens et al., 1995; Humphries et al., 2010),
albeit without focusing on the role of the connectivity
structure and the external input. Wickens et al. (1995)
showed that when the connectivity of striatal neurons is
confined to a small neighborhood, the network can exhibit
multiple spatially localized, persistent bumps (akin to the
WTA state). Such multiple bump–state activity required
that the connections were symmetric. Any heterogeneity
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and asymmetry in connections led to traveling waves or
AI-type activity. However, that network was very small,
and the connection probability was fixed over a finite
distance. Humphries et al. (2010) developed a more real-
istic model of the striatum using distance-dependent con-
nectivity estimated from the 3D morphology of MSNs.
Structurally, that network is similar to the gamma network
we investigated here. However, Humphries et al. (2010)
investigated neither the dynamics of the network as a
function of the input nor the relationship between network
structure and dynamics. Our work complements and ex-
tends these previous studies and, importantly, explains
how external input and the structure of spatial connectiv-
ity profiles (Gaussian and gamma) interact to shape the
dynamics of spatially compact activity clusters in the
striatum.

Relevance for striatal network activity dynamics
In the ongoing network activity state, striatal neurons

are relatively silent, and task-related activity can increase
up to 20 Hz (Gage et al., 2010). Recently, advances in
recording methods have enabled recording 10–100 neu-
rons simultaneously, using calcium imaging in behaving
animals. Analyses of such high-density sampling of stria-
tal neurons showed that striatal activity is organized as
spatially compact clusters of coactivated neurons (or
NAs; Barbera et al., 2016; R. Costa, personal communi-
cation). Similar observations were made earlier in in vitro
(Carrillo-Reid et al., 2011) and in task-related activity in
behaving monkeys (Adler et al., 2013). In an unhealthy
low-dopamine state (as in Parkinson’s disease), D2 type
dopamine receptor expressing striatal projection neurons
increase their firing rates (Mallet et al., 2006), and in
general, striatal neuronal activity loses its diversity and
ability to switch neuronal activity in a task-dependent
fashion (Costa et al., 2006; Costa, 2011).

It is conceivable that the spatially compact clusters (or
NAs) are a simple consequence of spatially localized
cortico-thalamic inputs to the striatum. However, this is a
trivial solution and indicates that the striatum acts as a
simple transmitter of cortico-thalamic activity to down-
stream targets. Instead here we argue that intrinsic dy-
namics of striatum-like inhibitory networks are able to
generate NAs even when cortico-thalamic inputs are not
spatially compact.

The three network states that we identified in our study
capture different aspects of the ongoing and evoked ac-
tivity of the striatum in normal and in low-dopamine
states. Both AI and TA states in our network models
match some properties of the ongoing activity measured
in vivo. In data from experiments in which animals wait for
a cue to initiate a task (e.g., Gage et al., 2010; Adler et al.,
2012), the ongoing activity in the striatum appears be
similar to the AI state. When the animal engages in the
task, after the cue presentation, the AI activity is trans-
formed into a TA-like state (Gage et al., 2010; Adler et al.,
2012). On the other hand, in data from freely moving
animals, although the animals are not performing any
goal-directed behavior, striatal activity shows spatially
compact clusters of coactivated neurons, similar to the TA

state (Barbera et al., 2016). Whether the striatal activity
recorded in freely moving animals can be treated as an
ongoing activity, a goal-directed activity, or a combination
of both is an open question. We hypothesize that because
animals were not engaged in specific goal-directed be-
havior, the data reported in Barbera et al. (2016) represent
an ongoing activity state in the sense that any task-related
cue or reward was absent. It will be interesting to explore
whether these spatial activity clusters also emerge in a
goal/cue-directed task, thereby possibly hinting at differ-
ences in the contextual input received by the striatum
during ongoing and goal-directed states.

Thus, in our opinion, depending on the context (e.g.,
freely moving or cued goal-directed behavior), the ongo-
ing activity of the striatum can be in an AI or TA state. As
stated earlier, both states allow for a reliable and discern-
ible response in the striatum. A subtle, but important,
difference between the AI and TA states is that in TA-type
ongoing activity, even weak stimuli can induce a large
change in stimulus-induced correlations. Assuming that
neuronal correlations form the basis of modification of
synaptic strengths, we speculate that when an animal
operates in a TA state, even weak stimuli can drive learn-
ing.

In the WTA state, neurons have higher firing rates and
the spatial bumps are stable (Figs. 3 and 4). In this state,
the ongoing activity shows only a very small diversity, and
only very strong inputs, arriving in specific locations, can
induce any discernible and reliable response. With these
properties, the WTA state resembles the striatum dynam-
ics in Parkinson’s disease (Costa et al., 2006; Costa,
2011). Moreover, the WTA state is observed when neu-
rons are spiking at a high rate (Fig. 4), which could be
achieved either by increasing the ongoing external exci-
tation or by increasing the excitability of the neurons. This
is also consistent with the fact that in Parkinson’s disease
the cortical drive to the striatum is increased due to the
potentiation of cortico-striatal synapses (Smith et al.,
2009b; Fieblinger et al., 2014), and the lateral inhibition
among MSNs is decreased or even disrupted (Taverna
et al., 2008).

Here, we estimated the stimulus response for one par-
ticular size of the external stimulation (i.e., the number of
stimulated neurons and their spatial distribution) and var-
ied only the magnitude of the stimulation current. The size
of the external stimulus may also influence the stimulus-
response magnitude and reliability. We expect that in-
creasing the number of neurons in a fixed region will
increase the response reliability and magnitude. However,
increasing the stimulated region with a fixed number of
neurons may have a nonmonotonic effect on the response
magnitude and reliability. As long as the stimulated region
is smaller than the size of an individual bump, the re-
sponse magnitude and reliability will increase. Increasing
the size of the stimulated region beyond the single bump
will recruit surrounding neurons, which should be inhib-
ited by the bump itself, and hence, the stimulus response
may decrease. In another scenario, distributing the stim-
ulated neurons in small islands may have nonlinear effects
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on the response dynamics. A detailed analysis of the
relationship between stimulus size and response dynam-
ics is a complex topic and should be addressed in a
separate study.

Despite the similarities and interesting insights we
noted regarding the striatal activity in the healthy and in
Parkinson’s disease states, we note that our model is
highly simplified and ignores several key features of the

Figure 6. Analytical description of connectivity profiles. The graphs show the spatial connectivity profile (left) and its Fourier transform
(right) as a function of the distance between neurons and wave numbers, respectively, for both gamma (red) and Gaussian (blue)
connectivity kernels. Note that the spatial connectivity profile remains positive for both connectivity kernels. However, their Fourier
transforms behave differently: the Gaussian kernel remains positive, whereas the gamma kernel takes negative values for larger
(absolute) wave numbers.

a

b c

Figure 7. Impact of the network dynamics on the stimulus response. a, Spatial distribution of the spiking activity displayed in time series
for different dynamic states (rows). Each frame shows a spatial map of 30 � 30 neurons from the ROI (black squares) in a time window of
100 ms, with 500-ms intervals between successive frames. The gradient background is the probability area for stimulated neurons, and its
color refers to a stimulus phase. b, The change of response activity of the stimulated neurons to their corresponding stimuli A (red) or B
(orange) in different ongoing bump states (AI, TA, and WTA). Each row represents the strength of the stimuli (50–150 pA). A lower �response
indicates a weaker impact of the external stimuli on the network activity, and lower variance of activity reflects a higher reliability of the
response. For each subpanel, the white lines are the median value of the data. The colored boxes extend from the 25% to 75% of the data,
i.e., the box contains �50% of the data. Whiskers extend from minimum to maximum values of the data. c, The temporal variability (FF)
of the response of the stimulated neurons as a function of time. A lower FF indicates a higher reliability of the stimulus response. A higher
FF is observed at each stimulus onset, in both the AI and TA states. In contrast, in the WTA state, the network is not able to reliably respond
to external stimuli. Both stimulus phases are displayed at the bottom of each subpanel.
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striatal network. Specifically, it would be necessary to
study how other components of the striatal network [e.g.,
interneurons, separation of the striatal network into D1-
and D2-type medium spiny neuron populations (Taverna
et al., 2008; Bahuguna et al., 2015), neuromodulators]
affect the stability and stimulus responses in the AI and
TA states. In addition, we have used only simple LIF
model neurons in our networks. Voltage-dependent ion
channels may introduce nonlinear effects and change the
network dynamics qualitatively (Wickens et al., 1995;
Rinzel, 1998). Hence, in future work, it will be important to
understand how the three dynamical states identified in
our study are possibly altered when neurons are endowed
with voltage-dependent ionic currents or larger heteroge-
neity in neuron/synapse properties.

Model validation
Recent experimental data show that the ongoing activ-

ity of the striatum can be either in an AI state or a TA state,
depending on the experimental conditions (Gage et al.,
2010; Adler et al., 2012; Barbera et al., 2016). Further-
more, these data also suggest that the striatum exhibits a
TA-like state as animals get engaged in a task. In addition
to direct measurement of NAs using modern imaging
tools (Barbera et al., 2016), our model suggests that even
the relationship between the firing rate and spike time
irregularity (Fig. 2) can provide further indirect evidence
for the existence of NAs in the striatum.

The key to the emergence of spatially compact tran-
sient NAs in the TA state is the nonmonotonically shaped
connection probability. Indirect estimates of the anatomic
(from neuron morphologies) and functional connectivity
both indicate that MSNs do not inhibit their nearest neigh-
bors and that the connection probability peaks at a dis-
tance of �80 �m and then decays to zero beyond �200
�m (Fujiyama et al., 2011; López-Huerta et al., 2013).
Similar estimates regarding the distance-dependent con-
nectivity between MSNs have been drawn from compu-
tational analysis of the 3D morphologies of MSN axons
and dendrites (Humphries et al., 2010). However, more
experimental work is required to measure the spatial pro-
file of not just the functional, but also the structural,
connectivity within the striatum, in particular to measure

the spatial connection profile and spatially compact neu-
ral clusters that would support our network model. In
addition, our model predicts that neurons participating in
the NAs should have a low connection probability and
share their inputs. In addition, our model predicts that the
CVISI values of MSNs should increase as their firing rate
increases (Fig. 2b). Finally, we predict that the pairwise
correlation spectrum should be more susceptible to weak
inputs in the TA state than in the AI state (Fig. 6). High-
density sampling of striatal neurons, when available,
would be sufficient to check these predictions.

Relationship with models of cortical networks
Recurrent networks with both excitatory and inhibitory

(E-I) neurons, interconnected according to a monotoni-
cally decaying (e.g., Gaussian) connectivity profile for ex-
citation and inhibition, can be tuned to exhibit spatially
clustered or stationary bump type activity (Ben-Yishai
et al., 1995; Roxin et al., 2005). A key feature of E-I
networks that show spatial clusters is that the excitatory
connectivity decays more rapidly with distance than the
inhibitory connectivity. In such networks, the summation
of excitatory and inhibitory connectivity kernels or excit-
atory and inhibitory synaptic strengths yield the well-
known Mexican hat profile as the effective connectivity
kernel with its characteristic, nonmonotonic shape. With
such a connectivity profile, local recurrent excitation ac-
tivates neighboring neurons which, in turn, inhibit the
surrounding region because of the stronger distal inhibi-
tion. That is, in such E-I networks, a coactivated local
group of neurons is brought together by their mutual,
predominantly excitatory, connections and by their com-
mon field of surround inhibition. Examples of such behav-
ior have been reported in the experimental literature, e.g.,
in the monkey prefrontal cortex (Vaadia et al., 1995). In
contrast, we found that for purely inhibitory networks,
using both network simulations and neural field equa-
tions, a nonmonotonic spatial connectivity kernel (such as
the gamma distribution) generates spatially clustered
bump type activity for high background input. As shown
by our mean field analysis, purely inhibitory networks with
a Gaussian spatial connectivity profile cannot possibly
support any spatially periodic bump activity. Intuitively,

Figure 8. Impact of the network dynamics on the modulation of the spectrum of pairwise correlations. Different subfigures show the
pairwise correlation spectrum of the network activity in three dynamic network states (AI, TA, and WTA). Different colored traces
represent different stimulus strengths on the selected neurons. Compared with the correlation spectrum in ongoing activity (blue), a
higher excitation is required to modulate correlations in the AI state than in the TA state. With a stronger external excitation, the
correlations are more widely distributed in the network activity in both AI and TA states.
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that is because coactivation of neighboring neurons re-
quires that these neurons do not inhibit each other while
creating an inhibitory surround. Thus, in purely inhibitory
networks, a coactivated local group of neurons is defined
by the lack of mutual connectivity and the presence of a
common range of surround inhibition. Mathematically, as
we have shown, the key condition to have spatial clusters
of activity is that the effective connectivity kernel has a
nonmonotonic shape as a function of distance in the
network (Fig. 6 and “Necessary conditions for the emer-
gence of bump states”). Both the Mexican hat–shaped
effective connectivity kernel of E-I networks and the
gamma distribution shaped connectivity kernel of purely
inhibitory networks fulfill that condition. We note that the
stable bump state (WTA) observed in our network models
closely resembles the grid patterns observed in the me-
dial entorhinal cortex of rodents and that computational
models of grid cells also use a nonmonotonic kernel to
form connections between inhibitory neurons (Couey
et al., 2013; Roudi and Moser, 2014).

In summary, we have shown how the shape of the
distance-dependent recurrent connectivity profile and the
strength of ongoing external background excitation to-
gether determine the state of the ongoing network activity
as well as the stimulus-response properties in a purely
inhibitory network, such as the striatum. These results,
when properly adapted to the specific inhibitory network
of interest, could provide important new insights into the
functional characterization of the activity dynamics in in-
hibitory brain networks such as the striatum, globus pal-
lidus, and central amygdala.
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