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Bursting oscillations in excitable systems reflect multi-timescale dynamics. These oscillations have

often been studied in mathematical models by splitting the equations into fast and slow

subsystems. Typically, one treats the slow variables as parameters of the fast subsystem and studies

the bifurcation structure of this subsystem. This has key features such as a z-curve (stationary

branch) and a Hopf bifurcation that gives rise to a branch of periodic spiking solutions. In models

of bursting in pituitary cells, we have recently used a different approach that focuses on the

dynamics of the slow subsystem. Characteristic features of this approach are folded node

singularities and a critical manifold. In this article, we investigate the relationships between the key

structures of the two analysis techniques. We find that the z-curve and Hopf bifurcation of the two-

fast/one-slow decomposition are closely related to the voltage nullcline and folded node singularity

of the one-fast/two-slow decomposition, respectively. They become identical in the double singular

limit in which voltage is infinitely fast and calcium is infinitely slow. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4766943]

Bursting electrical oscillations are common in nerve cells

and endocrine cells. These consist of episodes of electrical

activity followed by periods of quiescence. Since each

electrical impulse is itself an oscillation, this is an exam-

ple of a multi-time scale oscillation, which has been ana-

lyzed successfully using a decomposition of the system of

equations into fast and slow subsystems. In this article,

we compare two alternate fast/slow analysis techniques

for the study of the type of bursting oscillations that typi-

cally occur in pituitary lactotrophs and somatotrophs.

We show the relationships between the key elements of

both types of analysis.

I. INTRODUCTION

Bursting oscillations are common patterns of electrical

activity in excitable cells such as neurons1–5 and many endo-

crine cells.6–10 Bursting activity is characterized by alterna-

tion between periods of spiking and periods of rest, and is

driven by slow variations in one or more slowly changing

variables, such as the intracellular calcium concentration.

Bursting oscillations are often more efficient than tonic

spiking in mediating the release of neurotransmitter or hor-

mone.7,8,11 Many mathematical models have been developed

to study various aspects of the dynamics of bursting oscilla-

tions.2,9,12–16 In many cases, the bursting dynamics have

been analyzed by dividing the system into fast and slow sub-

systems such that the slow subsystem includes a single slow

variable, and the fast subsystem includes the remaining

variables, which are relatively fast. When the system is

three-dimensional, we refer to this technique as a “two-fast/

one-slow analysis.” Recently, we used a different approach

for the analysis of bursting that formally divides the three

variables into a one-dimensional fast subsystem and a two-

dimensional slow subsystem.17,18 The main goal of this pa-

per is to clarify the relationship between the now-standard

two-fast/one-slow analysis and the new one-fast/two-slow

analysis.

In the standard two-fast/one-slow analysis, one studies

the dynamics of the fast subsystem with the slow variable

treated as a parameter.19–24 The bifurcation structure of the

fast subsystem with the slow variable as the bifurcation

parameter consists of the z-curve (set of fast subsystem

stationary solutions); fast subsystem periodic solutions; and

Hopf, saddle-node, and homoclinic bifurcations (HM).

Bursting oscillations are then understood by superimposing

the burst trajectory onto the fast subsystem bifurcation

diagram. This approach has been very successful for under-

standing bursting in pancreatic islets25 and neurons.2–4,21 It

has also been useful in understanding various aspects of

bursting in pituitary cells such as resetting properties,26 how

fast subsystem manifolds affect burst termination,23 and how

parameter changes convert the system from one burst type to

the other.24

In the alternate one-fast/two-slow analysis, one associ-

ates a variable with an intermediate time scale with the

slow subsystem rather than the fast subsystem. Analysis is

then performed on the planar slow subsystem, rather than

the planar fast subsystem of the standard decomposition.

This approach is typically used to study canard induced

a)Author to whom correspondence should be addressed. Electronic mail:
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mixed-mode oscillations.27–29 These oscillations are due to

the existence of a folded node (FN) singularity of the slow

subsystem.17,18,27,28,30,31

Using a model of the electrical activity of pituitary

lactotrophs,18 we provide a comparative analysis of the two

techniques (two-fast/one-slow and one-fast/two-slow). In

particular, we show the relationship between the z-curve and

the voltage nullcline of the planar slow subsystem. We also

show the relationship between the Hopf bifurcation (HB)

that gives rise to a branch of spiking solutions in the two-

fast/one-slow analysis and the folded node singularity that

is responsible for the spiking oscillations in the one-fast/two-

slow analysis.

II. THE MATHEMATICAL MODEL

We use a model of the pituitary lactotroph, which

produces what has been called “pseudo-plateau bursting”

(PPB) over a range of parameter values.18 This bursting has

small spikes emanating from a depolarized voltage plateau,

as is typically observed in pituitary lactotrophs and somato-

trophs.6–9 The details of the model and the parameter values

are given in the Appendix. The model includes three varia-

bles: V (membrane potential), n (fraction of activated

delayed rectifier Kþ channels), and c (cytosolic free Ca2þ

concentration). The equations are

Cm
dV

dt
¼ �ðICa þ IK þ IKðCaÞ þ IBKÞ; (1)

dn

dt
¼ n1ðVÞ � n

sn
; (2)

dc

dt
¼ �fcðaICa þ kccÞ; (3)

where ICa is an inward Ca2þ current, IK is an outward

delayed rectifying Kþ current, IKðCaÞ is a small-conductance

Ca2þ-activated Kþ current, and IBK is a fast-activating large-

conductance BK-type Kþ current. Expressions for the ionic

currents are

ICa ¼ gCam1ðVÞðV � VCaÞ; (4)

IK ¼ gKnðV � VKÞ; (5)

IKðCaÞ ¼ gKðCaÞs1ðcÞðV � VKÞ; (6)

IBK ¼ gBKb1ðVÞðV � VKÞ: (7)

All numerical simulations and bifurcation diagrams

(both one- and two-parameter) were constructed using the

XPPAUT software package,32 using the Runge-Kutta integra-

tion method, and computer codes can be downloaded as free-

ware from http://www.math.fsu.edu/~bertram/software/

pituitary.

III. TWO-FAST/ONE-SLOW ANALYSIS

Figure 1(a) shows the pseudo-plateau bursting pattern

produced by the model. The bursting pattern is accompanied

by the slow variation of c that increases during the active

phase and decreases during the silent phase of the burst.

The three variables (Eqs. (1)–(3)) vary on different time

scales, and variables V and n are much faster than c (for

details, see the Appendix). By taking advantage of time scale

separation, the system can be divided into fast and slow

subsystems, and the dynamics can be analyzed using a two-

fast/one-slow analysis. Here, c is treated as a parameter of

the fast subsystem, which consists of the fast variables V
and n. A bifurcation diagram summarizing the equilibrium

dynamics of the fast subsystem is then constructed using c as

FIG. 1. Two-fast/one-slow analyses for pseudo-plateau bursting and spiking patterns with parameter values gK ¼ 4 nS; gBK ¼ 0:4 nS, and Cm ¼ 10 pF.

(a) Pseudo-plateau bursting produced with kc ¼ 0:16 ðmsÞ�1
. (b) The fast subsystem bifurcation structure for pseudo-plateau bursting. The superimposed

pseudo-plateau burst trajectory (PPB curve) and c-nullcline are produced with kc ¼ 0:16 ðmsÞ�1
. (c) Continuous spiking with kc ¼ 0:1 ðmsÞ�1

. (d) The bifurca-

tion structure for a continuous spiking pattern and a superimposed spiking trajectory with kc ¼ 0:1 ðmsÞ�1
. When kc is decreased, the c-nullcline moves down-

ward, causing a transition from bursting to spiking. In panel (b) and (d), an unstable limit cycle (dashed curve) emerges from a subcritical HB, and terminates

at a HM. The full three-dimensional system has an unstable equilibrium point ((a), unfilled circle). For panel (a) and (c), and for the superimposed trajectories,

fc ¼ 0:01:
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the bifurcation parameter.19,21–24 Figure 1(b) shows the fast

subsystem bifurcation structure for pseudo-plateau bursting.

The “z-curve” that represents the stationary solutions of the

fast subsystem has three branches that are connected by

saddle-node bifurcations, or knees. The upper branch that

has unstable (dotted) and stable (solid) portions corresponds

to the depolarized (high-voltage) steady states, and the lower

branch that consists of stable nodes represents the hyperpo-

larized (low-voltage) steady states. The middle branch con-

sists of saddle points. The system is bistable between the

stable lower and upper steady states for a range of c values.

A branch of unstable periodic solutions (dashed curve)

emerges from a subcritical Hopf bifurcation (subHB) and

terminates at a HM.

The dynamics of pseudo-plateau bursting can be ana-

lyzed using the (c, V)-plane as a phase plane, and by treating

the z-curve as a generalized V-nullcline. The z-curve and the

c-nullcline (orange curve), where dc/dt¼ 0, are projected

into the (c, V)-phase plane, and they intersect at an unstable

equilibrium point of the full system (point A, unfilled circle).

The trajectory of the full (three-dimensional) system (the

pseudo-plateau bursting orbit) is then superimposed (PPB

curve, Fig. 1(b)). Note that dc=dt < 0 and dc=dt > 0 below

and above the c-nullcline, respectively. As a result, the flow

of the trajectory when V is low is leftward, and the flow

when V is high is rightward. If c were a truly slow variable

the trajectory would form a hysteresis cycle over the bistable

interval, producing a relaxation oscillation. However, c is

only marginally slow, so the silent phase of the burst trajec-

tory hardly follows the lower branch of the z-curve, and it

overshoots the lower knee. The trajectory then exhibits small

oscillations about the stable upper branch of weakly stable

foci.

The bursting can be converted to continuous spiking

by reducing the Ca2þ pump rate kc, thus, lowering the c-

nullcline (Figs. 1(c) and 1(d)). It is neither apparent from the

two-fast/one-slow analysis why this transition occurs, nor is

it clear why the spiking orbit no longer follows the z-curve

at all. What is apparent is that the two-fast/one-slow analysis

has limited predictive power for this system.

IV. ONE-FAST/TWO-SLOW ANALYSIS

Rather than associating n with the fast subsystem, as

above, one could associate it with c in the slow subsystem.

The time-scale separation between V and the slow variables

n and c can be accentuated by reducing the membrane capac-

itance Cm, which makes V even faster. In the singular limit

Cm ! 0, the trajectories follow a two-dimensional surface

called the critical manifold and given by

S � fðV; c; nÞ 2 R3 : f ðV; c; nÞ ¼ 0g; (8)

where

f ðV; c; nÞ ¼ �ðICa þ IK þ IKðCaÞ þ IBKÞ: (9)

The critical manifold has three sheets that are separated

by fold curves (L� and Lþ) (Fig. 2). The lower and upper

sheets are attracting @f
@V < 0
� �

and the middle sheet is

repelling @f
@V > 0
� �

. The lower (L�) and upper (Lþ) fold

curves are given by

L6 �
�
ðV; c; nÞ 2 R3 : f ðV; c; nÞ ¼ 0

and
@f

@V
ðV; c; nÞ ¼ 0

�
: (10)

By differentiating f(V, c, n)¼ 0 with respect to time and

then introducing a rescaled time s ¼ � @f
@V

� ��1

t, one obtains a

desingularized system that describe the flow on the surface S

dV

ds
¼ FðV; c; nÞ; (11)

dc

ds
¼ fcðaICa þ kccÞ @f

@V
; (12)

where

FðV; c;nÞ ¼ �fcðaICaþ kccÞð Þ@f

@c
þ n1ðVÞ � n

sn

� �
@f

@n
; (13)

where n satisfies f(V, c, n)¼ 0. The derivation of the desingu-

larized system is given in Ref. 18. These equations describe

the flow on the upper and lower attracting sheets in the limit

Cm ! 0.

The equilibria of the desingularized system can be of

two types. First, there are regular singularities that are equili-

bria of the original system of differential equations. In addi-

tion, there are folded singularities that are not equilibria of

the original system, but instead satisfy

f ðV; c; nÞ ¼ 0; (14)

FðV; c; nÞ ¼ 0; (15)

@f

@V
¼ 0: (16)

From Eq. (16), the folded singularities occur on the fold

curves L� and Lþ. For parameter values used in Fig. 2, the

FIG. 2. The critical manifold and fold curves with their projections for

gK ¼ 4 nS; gBK ¼ 0:4 nS; fc ¼ 0:01, and kc ¼ 0:16 ðmsÞ�1
. L� and Lþ are

the lower and upper fold curves. PðL�Þ and PðLþÞ are the projections of L�

and Lþ onto the upper and lower sheets of the critical manifold, respec-

tively. The curve SC (green curve) is the strong canard, and FN is a folded

node singularity. The singular periodic orbit (black curve with arrows) is

superimposed on the critical manifold.
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system has a folded node, a folded singularity with two real

negative eigenvalues, on Lþ (FN, in Fig. 2), and a folded

focus (FF) (two complex eigenvalues with negative real

parts) on L� (not shown).

With the parameter values used in Fig. 2, there is a stable

periodic orbit formed by solving Eqs. (11) and (12) on the

upper and lower sheets, and following fast fibers upward or

downward when the trajectory reaches a fold curve. This

closed orbit, described in more detail in Ref. 18, is called a sin-

gular periodic orbit (SPO). In Fig. 2, this orbit moves through

the folded node. Passage through the folded node is quite im-

portant, since away from the singular limit the slow manifold

becomes twisted near the folded node, producing small oscilla-

tions in any trajectory entering this region. If the singular peri-

odic orbit passes through the folded node, then when the

singular parameter (Cm) is increased from 0 small oscillations

will appear that are spikes of the pseudo-plateau burst.18

The singular periodic orbit and key curves are projected

onto the (c, V)-plane in Fig. 3. Figure 3(a), which is the pro-

jection of Fig. 2, shows again that the singular periodic orbit

passes through the folded node, so pseudo-plateau bursting

is produced for Cm > 0 (Fig. 1(a)). However, when kc is

decreased from 0:16 ðmsÞ�1
(the value used in Figs. 1(a) and

3(a)) to 0:1 ðmsÞ�1
, the singular periodic orbit does not pass

through the folded node (Fig. 3(b)), so the model produces

spiking instead of bursting when Cm > 0 (Fig. 1(c)). The

orbit does not enter the folded node since when it reaches L�

it moves to a point on PðL�Þ that is outside of the shaded

region, called the singular funnel. Only points in the singular

funnel move through the folded node.28,30,31,33 The funnel is

delimited by Lþ and the strong canard (SC, green curve),

which is tangent to the strong eigenvector of the folded node

(Fig. 3).

Decreasing fc (the fraction of free calcium concentration

in the cytosol) from 0.01 to 0.0025 moves the folded node

and the strong canard rightward, so that the singular periodic

orbit again enters the singular funnel (Fig. 3(c)). As a result,

pseudo-plateau bursting is produced (Fig. 3(d)). Thus, reduc-

ing fc compensates for the reduction in kc, rescuing the burst-

ing. This result would not have been predictable from the

two-fast/one-slow analysis, which instead predicts a relaxa-

tion oscillation in the limit fc ! 0 (cf. Fig. 1(d)).

V. THE RELATIONSHIP BETWEEN
TWO-FAST/ONE-SLOW ANALYSIS AND
ONE-FAST/TWO-SLOW ANALYSIS

A. The relationship between the V-nullcline
and the z-curve

As shown in Fig. 4(a), the desingularized system

(Eqs. (11) and (12)) has a single-branched V-nullcline (green

curve) that satisfies F(V, c, n)¼ 0 and a three-branched

c-nullcline (orange curves) L�; Lþ, and CN1. The fold

curves L�; Lþ satisfy @f
@V ¼ 0. The curve CN1 satisfies

FIG. 3. The critical manifolds constructed with

different parameter values are projected onto

the (c, V)-plane. For all panels, gK ¼ 4 nS

and gBK ¼ 0:4 nS. (a) kc ¼ 0:16 ðmsÞ�1
and fc

¼ 0:01. (b) kc ¼ 0:1 ðmsÞ�1
and fc ¼ 0:01.

(c) kc ¼ 0:1 ðmsÞ�1
and fc ¼ 0:0025. The SPO

(black curves with arrows) are superimposed.

The singular periodic orbit is inside the singular

funnel (shaded region) in panels (a) and (c), and

outside of the singular funnel in panel (b).

Lowering fc to 0.0025 compensates for the

decrease of kc to 0:1 ðmsÞ�1
, yielding pseudo-

plateau bursting when Cm ¼ 10 pF.
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aICa þ kcc ¼ 0, and is the c-nullcline of the full system,

shown in Fig. 1(b). Folded singularities occur at the intersec-

tion of the V-nullcline with the fold curves L� or Lþ. In the

case shown in Fig. 4(a), there are folded node and FF singu-

larities. There is an unstable ordinary singularity (A, unfilled

circle) that is located at an intersection of the V-nullcline

with CN1. Since this singularity is an equilibrium of the full

system, it is the same singularity as in Fig. 1(b), which

occurs at the intersection of the c-nullcline and the z-curve.

Figure 4(b) shows the superimposed z-curve (black curve)

with stable (solid) and unstable (dotted) portions identified.

The z-curve has almost the same shape as the V-nullcline,

and the three curves (z-curve, V-nullcline, and CN1) inter-

sect at the singular point A.

The z-curve satisfies dV
dt ¼ 0 (in Eq. (1)) and dn

dt ¼ 0 (in

Eq. (2)), and the parameter fc ¼ 0 since c is treated as a

parameter to construct this curve. The V-nullcline of the

desingularized system is on S, so it satisfies f(V, n, c)¼ 0 and

thus dV
dt ¼ 0 (Eq. (1)). Because it is the V-nullcline of the

desingularized system, F(V, n, c)¼ 0 (Eq. (11)). In the case

of fc ¼ 0, Eq. (13) implies that either
ðn1ðVÞ�nÞ

sn
¼ 0 or

@f
@n ¼ gKðV � VKÞ ¼ 0. Because the latter cannot occur (since

V > VK),
ðn1ðVÞ�nÞ

sn
¼ 0 on the V-nullcline when fc ¼ 0. From

Eq. (2), dn
dt ¼ 0 and therefore the V-nullcline of the desingu-

larized system with fc ¼ 0 is identical to the z-curve from

the two-fast/one-slow analysis.

Figure 5 shows the relationship between the two curves

for three values of fc. When fc is decreased from 0.01 to

0.001, the upper portion of the V-nullcline and the folded

node moves rightward. When fc ¼ 0, the V-nullcline lies

on the z-curve. The folded node now lies on the z-curve

(Fig. 5). Thus, slowing down the slower variable c moves the

V-nullcline of the desingularized system toward the z-curve,

but the folded node of the desingularized system and the sub-

critical Hopf bifurcation on the z-curve are still different.

B. The relationship between the folded singularities
and the Hopf bifurcations

We now set fc back to its default value and vary the

speed of V through the parameter Cm. Changing Cm has no

effect on the nullclines of the desingularized system (which

does not include Cm) or on the location of the z-curve (since
dV
dt ¼ 0 in Eq. (1)). However, the location of the subcritical

Hopf bifurcation on the z-curve depends on Cm. When Cm is

decreased, the subcritical Hopf bifurcation moves leftward

on the z-curve, and by Cm ¼ 0:1 pF another subcritical Hopf

bifurcation (subHB2) has occurred on the lower branch

of the z-curve (Fig. 6). Superimposing this curve onto the

(c, V)-phase plane of the desingularized system shows that

the subcritical Hopf bifurcation (subHB1) moves closer to

the fold curve Lþ (Fig. 7).

Now, if fc is again reduced the V-nullcline converges to

the z-curve, so that the folded node and subcritical Hopf

bifurcation are superimposed (Fig. 8(a)). In the double limit

fc ! 0, and Cm ! 0 the FN and subHB1 superimpose, as do

the folded focus and subHB2 (Figs. 8(b) and 8(c)).

The convergence of folded singularities and subcritical

Hopf bifurcations on the z-curve can be seen through an

examination of the differential equations. We have seen that

the V-nullcline converges to the z-curve as fc ! 0. Thus, a

folded singularity and a subcritical Hopf bifurcation lie on

the same curve, and satisfy dV
dt ¼ 0 and dn

dt ¼ 0. The other

FIG. 4. The phase plane of the desingularized

system with gK ¼ 4 nS; gBK ¼ 0:4 nS; kc

¼ 0:16 ðmsÞ�1
and fc ¼ 0:01. (a) The V-nullcline

(green) intersects with the three-branched c-null-

cline (orange) to form three singularities: a sta-

ble FN, a stable FF and an unstable ordinary

singularity (A, unfilled circle). (b) The z-curve

(black) with stable (solid) and unstable (dotted)

branches of the fast subsystem in the two-fast/

one-slow analysis, constructed with Cm ¼ 10 pF,

is superimposed onto the (c, V)-phase plane of

the desingularized system.

FIG. 5. The relationship between the V-nullcline and the z-curve with gK

¼ 4 nS and kc ¼ 0:16 ðmsÞ�1
. Decreasing fc causes the upper portion of the

V-nullcline (green curve) and the folded node to move rightward. When

fc ¼ 0, the V-nullcline and the z-curve (constructed with Cm ¼ 10 pF) super-

impose, and the folded node lies on the z-curve.
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condition for a folded singularity is that it satisfies @f
@V ¼ 0.

Hence, what remains is to show that a subcritical Hopf

bifurcation on the z-curve satisfies @f
@V ¼ 0 in the case of

Cm ! 0 pF. The z-curve is the curve of steady states of

1 and 2, and we can rewrite these as

dV

dt
¼ 1

Cm
f ðV; nÞ (17)

and

dn

dt
¼ gðV; nÞ; (18)

where gðV; nÞ ¼ n1ðVÞ�n
sn

. The Jacobian matrix of Eqs. (17)

and (18) is

J ¼
1

Cm

@f

@V

1

Cm

@f

@n
@g

@V

@g

@n
;

0
B@

1
CA; (19)

and the trace of J is

traceðJÞ ¼ 1

Cm

@f

@V
þ @g

@n
: (20)

Since trace(J)¼ 0 at a Hopf bifurcation, we have

@f

@V
þ Cm

@g

@n
¼ 0: (21)

In the singular limit Cm ! 0 pF, the condition @f
@V þ Cm

@g
@n

¼ 0 implies that @f
@V ¼ 0. Hence, in the double limit Cm !

0 pF and fc ! 0, the folded singularities and the subcritical

Hopf bifurcations satisfy dV
dt ¼ 0; dn

dt ¼ 0, and @f
@V ¼ 0, and are

identical points.

The z-curve constructed with two values of Cm is super-

imposed on the critical manifold in Fig. 9. Away from the

singular limit, for example, when Cm ¼ 10 pF, portions of

the stable branches of the z-curve lie on the unstable middle

sheet of the critical manifold (Fig. 9(a)). The subcritical

Hopf and lower saddle-node bifurcations from which the sta-

ble branches of the z-curve emerge are also on the unstable

middle sheet of the manifold. When Cm is decreased to

FIG. 6. Two-fast/one slow analysis for pseudo-plateau bursting with gK

¼ 4 nS and Cm ¼ 0:1 pF. The reduction of Cm has moved the upper subcriti-

cal Hopf bifurcation (subHB1) and the associated unstable periodic branch

leftward. This branch is now almost vertical. In addition, a new subcritical

Hopf bifurcation (subHB2) is present on the lower branch of the z-curve.

The PPB, produced with fc ¼ 0:01, does not follow the z-curve.

FIG. 7. The z-curve of the fast subsystem in the two-fast/one slow analysis

constructed with gK ¼ 4 nS and Cm ¼ 0:1 pF is superimposed into the

(c, V)-phase plane of the desingularized system. The upper subcritical Hopf

bifurcation is very close to the fold curve Lþ.

FIG. 8. The relationship between the folded singularities and the Hopf bifur-

cations in the double singular limit fc ! 0 and Cm ! 0 pF. When fc � 0, the

V-nullcline (green curve) overlies the z-curve (black curve). (a) When Cm

decreased to 0.1 pF, the upper subcritical Hopf bifurcation (subHB1) moves

toward the folded node, and the lower subcritical Hopf bifurcation (subHB2)

moves toward the folded focus. (b) When Cm ¼ 0:0001 pF, the upper sub-

critical Hopf bifurcation has almost coalesced with the folded node.

(c) When Cm ¼ 0:0001 pF, the lower subcritical Hopf bifurcation has almost

coalesced with the folded focus.
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0.0001 pF in Figure 9(b) stable branches of the z-curve move

to the stable sheets of the critical manifold. Also, the subcrit-

ical Hopf bifurcations move to the fold curves.

VI. CONCLUSION

The lactotroph model that we analyzed is a three-

dimensional system that produces fast oscillations clustered

into periodic bursts. It is therefore natural to analyze the dy-

namics of the model by decomposing it into a fast subsystem

and a slow subsystem. The standard fast/slow analysis con-

siders two variables as fast, and one as slow.9,16,19–21 This

decomposition leads to several key structures such as the

slow manifold or “z-curve” and the Hopf bifurcation that

gives rise to a branch of periodic spiking solutions. An alter-

nate decomposition, in which one variable is considered fast

and two variables are considered slow, has recently been

used to analyze fast bursting in pituitary cells.17,18 This

decomposition leads to a different set of key structures: the

critical manifold, nullclines of the desingularized system,

and folded node singularities. In this article, we have shown

the relationship between the key structures of both forms of

fast/slow analysis.

The z-curve is the set of stationary solutions of the pla-

nar fast subsystem in the two-fast/one-slow analysis. We

have shown that this curve lies on the critical manifold

obtained in the one-fast/two-slow analysis (Fig. 9). The

unstable portion of the z-curve lies in the repelling middle

sheet of the critical manifold, as do portions of the stable

branches (Fig. 9(a)). When the voltage variable V is made to

change very rapidly (Cm ! 0) the stable portions of the

z-curve move solely to stable sheets of the critical manifold

(Fig. 9(b)).

The z-curve also lies close to the V-nullcline of the

desingularized system. Decreasing the speed of the slower

variable c moves the V-nullcline to the z-curve. When c is

extremely slow (fc ! 0), the V-nullcline is superimposed

onto the z-curve (Fig. 5). The folded node also lies on the

z-curve in this limit, but it is away from the subcritical Hopf

bifurcation. When V is very fast the subcritical Hopf bifurca-

tion moves upward to the folded node and becomes singular.

In the singular limits (fc ! 0 and Cm ! 0) the folded node

and the subcritical Hopf bifurcation are identical (Fig. 8).

Which structures are organizing the dynamics, the

z-curve and Hopf bifurcation, or the V-nullcline and folded

node? This depends on the timescale relationship between

the variables. As we see in Fig. 10(a), when V is not too fast

and c is not too slow the burst trajectory (brown) follows nei-

ther the z-curve of the two-fast/one-slow decomposition nor

the V-nullcline of the one-fast/two-slow decomposition.

When c is very slow, the trajectory follows the z-curve

FIG. 9. The relationship between the

z-curve (black curve) with stable (solid)

and unstable (dotted) branches, and the

critical manifold. The critical manifold

is constructed with fc ¼ 0:01 and Cm

¼ 0 pF and is the same as in Fig. 2.

(a) The z-curve is constructed with

Cm ¼ 10 pF and superimposed. Portions

of the stable branches lie on the repelling

middle sheet of the critical manifold.

The subcritical Hopf bifurcation and the

lower saddle node (LSN) are on the

repelling middle sheet. (b) The z-curve

constructed with Cm ¼ 0:0001 pF now

has its stable branches on the attracting

sheets and unstable branch on the repel-

ling sheet. The subcritical Hopf bifurca-

tions lie on the fold curves.
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closely (Fig. 10(b)). It follows the bottom branch during the

silent phase and the top branch during the active phase,

jumping down after a slow passage through the subcritical

Hopf bifurcation.34 On the other hand, when V is very fast,

the trajectory oscillates around the V-nullcline of the desin-

gularized system and passes very close to the folded node

(Fig. 10(c)). The amplitude of the oscillations first decreases

and then increases, as typical for oscillations associated with

a folded node singularity.35 When V is very fast and c is very

slow the trajectory again moves along the V-nullcline and

through the folded node (Fig. 10(d)). In this case, the z-curve

and subcritical Hopf bifurcation are located nearby. Thus, ei-

ther technique may provide a good description of the dynam-

ics, depending on how close the system is to the appropriate

singular limit.

The two analysis techniques lead to predictions that can

be tested experimentally using the Dynamic Clamp tech-

nique.36 For example, the two-fast/one-slow analysis tech-

nique tells us that if the hyperpolarizing delayed rectifier Kþ

conductance gK is reduced sufficiently, then the bursting

should be replaced by a depolarized steady state. The one-

fast/two-slow analysis tells us even more: small decreases in

gK should increase the duration of a burst by adding more

spikes. Likewise, the one-fast/two-slow analysis tells us that

increasing the BK conductance gBK should convert many

spiking cells to a bursting state, and should increase the burst

duration of those cells that are already bursting. This predic-

tion was tested experimentally and validated.10 In summary,

the different fast/slow decompositions tell us useful informa-

tion about a model cell’s dynamics, and with the dynamic

clamp technique, often in combination with pharmacological

agents, these model predictions can be and have been tested.
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APPENDIX: THE LACTOTROPH MODEL

The lactotroph model is described by Eqs. (1)–(7) given

earlier, along with the additional equations and parameters

given here (Table I). The steady state activation functions

are given by:

m1ðVÞ ¼ 1þ exp
vm � V

sm

� �� ��1

; (A1)

FIG. 10. The relationship of the burst trajectory (brown) with the z-curve (black) and the V-nullcline of the desingularized system (green). (a) With Cm

¼ 10 pF and fc ¼ 0:01, the burst trajectory follows neither the z-curve nor the V-nullcline. (b) With Cm ¼ 10 pF and fc ¼ 0:001, the burst trajectory moves

along the upper and lower branches of the z-curve. The trajectory passes through the subcritical Hopf bifurcation (magenta circle). (c) With Cm ¼ 0:1 pF and

fc ¼ 0:01, the burst trajectory oscillates around the V-nullcline, and passes very close to the folded node (blue circle). (d) With Cm ¼ 0:1 pF and fc ¼ 0:001,

the burst trajectory oscillates around the V-nullcline and passes through the folded node. The z-curve and subcritical Hopf bifurcation are located nearby.
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n1ðVÞ ¼ 1þ exp
vn � V

sn

� �� ��1

; (A2)

s1ðcÞ ¼
c2

c2 þ K2
d

; (A3)

b1ðVÞ ¼ 1þ exp
vb � V

sb

� �� ��1

: (A4)

The variables V, n, and c vary on different time scales.

The time constant for n is sn ¼ 43 ms. The time constant

of V is given by sV ¼ Cm=gTotal, where gTotal ¼ gKn
þ gBKb1ðVÞ þ gCam1ðVÞ þ gKðCaÞs1ðcÞ. During a bursting

oscillation, V ranges from �70 mV to 2 mV, and the mini-

mum of gTotal is 0.483 nS and the maximum is 3 nS. Hence,
Cm

maxgTotal
� sV � Cm

mingTotal
, or 1:7 ms � sV � 10:4 ms, for

Cm ¼ 5 pF, a typical capacitance value for lactotrophs. The

time constant for c is 1
fckc
¼ 1
ð0:01Þð0:16Þ ms ¼ 625 ms. Thus, V

is fast, n is intermediate and c is slow.
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