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Space–time wiring specificity supports
direction selectivity in the retina
Jinseop S. Kim1*, Matthew J. Greene1*, Aleksandar Zlateski2, Kisuk Lee1, Mark Richardson1{, Srinivas C. Turaga1{,
Michael Purcaro1, Matthew Balkam1, Amy Robinson1, Bardia F. Behabadi3, Michael Campos3, Winfried Denk4,
H. Sebastian Seung1{ & the EyeWirers5

How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for
50 years. In search of clues, herewe reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial
electron microscopic images with help from EyeWire, an online community of ‘citizen neuroscientists’. On the basis of
quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire
with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is
known to lag the far type in time of visual response. A mathematical model shows how such ‘space–time wiring
specificity’ could endow SAC dendrites with receptive fields that are oriented in space–time and therefore respond
selectively to stimuli that move in the outward direction from the soma.

Compared to cognitive functions such as language, the visual detection
ofmotionmay seem trivial, yet the underlyingneuralmechanisms have
remained elusive for half a century1,2. Some retinal outputs (ganglion
cells) respond selectively to visual stimuli moving in particular direc-
tions, whereas retinal inputs (photoreceptors) lack direction selectivity
(DS). How does DS emerge from the microcircuitry connecting inputs
to outputs?
Research on this question has converged upon the SAC (Fig. 1a, b).

A SAC dendrite is more strongly activated by motion outward from
the cell body to the tip of the dendrite, than by motion in the opposite
direction3. Therefore a SAC dendrite exhibits DS, and outwardmotion
is said to be its ‘preferred direction’. Note that it is incorrect to assign
a single such direction to a SAC, because each of the cell’s dendrites
has its own preferred direction (Fig. 1a). DS persists after blocking
inhibitory synaptic transmission4, when the only remaining inputs to
SACs are BCs, which are excitatory. As the SAC exhibits DS but its BC
inputs exhibit little or none5, DS appears to emerge from the BC–SAC
circuit.
Mouse BCs have been classified into multiple types6, with different

time lags in visual response7,8.Motion is a spatiotemporal phenomenon:
an object at one location appears somewhere else after a time delay.
Accordingly, DS might arise because different locations on the SAC
dendrite are wired to BC types with different time lags. More specif-
ically, wepropose that the proximal BCs (wirednear the SAC soma) lag
the distal BCs (wired far from the soma).
Such ‘space–timewiring specificity’ could lead toDSas follows (Fig. 1c).

Motion outward from the soma will activate the proximal BCs followed
by the distal BCs. If the stimulus speed is appropriate for the time lag,
signals frombothBCgroupswill reach the SACdendrite simultaneously,
summing to produce a large depolarization. For motion inward towards
the soma, BC signals will reach the SAC dendrite asynchronously, caus-
ing only small depolarizations. Therefore the dendrite will ‘prefer’ out-
ward motion, as observed experimentally3.

Three-dimensional reconstruction by crowd and
machine
We tested our hypothesis by reconstructing Off BC–SAC circuitry using
e2198, an existing data set ofmouse retinal images from serial block-face
scanning electron microscopy (SBEM)9. The e2198 data set was over-
segmentedbyanartificial intelligence into groupsofneighbouringvoxels
that were subsets of individual neurons. These ‘supervoxels’ were assem-
bled byhumans into accurate three-dimensional (3D) reconstructions of
neurons. For this activity, we hired and trained a small number of work-
ers in the laboratory, and also transformed work into play bymobilizing
volunteers through EyeWire, a website that turns 3D reconstruction of
neurons into a game of colouring serial electron microscopy images.
Through EyeWire, we wanted to enable anyone, anywhere, to par-

ticipate in our research.The approach is potentially scalable to extremely
large numbers of ‘citizen scientists’10. More importantly, the 3D recon-
struction of neurons requires highly developed visuospatial abilities, and
we wondered whether a game could bemore effective11 than traditional
methods of recruiting and creating experts.
In gameplay mode, EyeWire shows a 2D slice through a ‘cube’, an

e2198 subvolumeof 2563 2563 256greyscale voxels (Fig. 2a).Gameplay
consists of two activities: colouring the imagenear a location, or searching
for a new location to colour. Colouring is done by clicking at any location
in the 2D slice, which causes the supervoxel containing that location to
turn blue. Searching is done by translating and orienting the slice within
the cube, and interactingwitha 3Drenderingof the coloured supervoxels.
When the player first receives a cube, it already comes with a ‘seed’, a

contiguous set of coloured supervoxels. The challenge is to colour all the
rest of the supervoxels that belong to the same neuron, and avoid colour-
ingotherneurons.Gameplay for a cube terminateswhen theplayer clicks
‘submit’, receives a numerical score (Extended Data Fig. 1a), and pro-
ceeds to the next cube. Because our artificial intelligence is sufficiently
accurate, colouring supervoxels is faster thanmanually colouring voxels,
an older approach to 3D reconstruction12.
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The scoring system is designed to reward accurate colouring. This is
nontrivial because EyeWire does not know the correct colouring. Each
cube is assigned to multiple players (typically 5 to 10), and high scores
are earned by players who colour supervoxels that other players also
colour. In other words, the scoring system rewards agreement between
players, which tends to be the same as rewarding accuracy.
Consensus is usednot only to incentivize individual players, but also to

enhance the accuracy of the entire system. Any player’s colouring is
equivalent to a set of supervoxels.Given the colouringsofmultiple players
starting from the same seed in the same cube, a consensus can be com-
putedbyvotingoneach supervoxel. EyeWirer consensuswasmuchmore
accurate than any individual EyeWirer (Fig. 2b, c).
Colouring a neuron is more challenging than it sounds. Images are

corruptedbynoiseandotherartefacts.Neurites takepaths thataredifficult
to predict, and can branch without warning. Careless errors result from
lapses in attention. Extensive practice is required to achieve accuracy. The

most accurate EyeWirers (Fig. 2c, top right corner) often had experience
with thousands of cubes. Improvements in accuracy were observed over
the courseof hundredsof cubes, corresponding to tensofhoursofpractice
(Fig. 2d).According to subjective reports ofEyeWirers, learning continues
formuch longer than that. By contrast, previous successes at ‘crowdsour-
cing’ image analysis involved tasks that did not require such extensive
training10,13.
Reconstructing an entire neuron requires tracing its branches through

thousands of cubes. This process is coordinated by an automatic spaw-
ner, which inspects each consensus cube for branches that exit the cube.
Each exit generates anewcubeand seed,which are added to aqueue. Eye-
Wirers are automatically assigned to cubes by analgorithm that attempts
to balance the number of plays for each cube.
Over 100,000 registered EyeWirers have been recruited by news

reports, social media and the EyeWire blog. Players span a broad range
of ages and educational levels, come from over 130 countries, and the
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Figure 2 | EyeWire combines crowd and
artificial intelligence. a, 3D and 2D views in the
neuron reconstruction game. b, Precision and
recall are two measures of accuracy. c, Accuracy of
artificial intelligence (AI), 5,881 EyeWirers, and
EyeWirer consensus on reconstruction of a
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increase with number of cubes submitted. Solid
lines are median values across 208 EyeWirers who
submitted at least 500 cubes, and shaded regions
indicate 25th to 75th percentile.

Preferred direction

a

d

c

b GCL

IPL

INL

e

τ

τ

τ

Preferred 

direction

Preferred 

direction

Figure 1 | Starburst amacrine cell and its
direction selectivity. a, b, Off SAC (red) viewed
opposite (a) and perpendicular (b) to the light axis.
GCL, ganglion cell layer.Greyscale images from the
e2198 data set9. Swellings of distal dendrites are
presynaptic boutons (inset). Scale bar, 50mm. c,We
propose that a SAC dendrite is wired to pathways
with time lags of visual response that differ by an
amount t. d, A previousmodel invoked the time lag
due to signal conduction in a passive dendrite24.
e, The previousmodel predicts an inward preferred
direction for the somatic voltage, contrary to
empirical observations3.
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great majority have no formal training in neuroscience (ExtendedData
Figs 2 and 3 and Supplementary Notes). These statistics show that Eye-
Wire indeedwidens participation inneuroscience research.At the same
time, themost avid players constitute an elite groupwithdisproportionate
achievements. For example, the top 100players have contributed about
half of all cubes completed in EyeWire.
Laboratoryworkers also reconstructed neurons independently of Eye-

Wire, with amore sophisticated version of the user interface (Methods).
Their reconstructions were pooled with those of EyeWirers for the ana-
lyses reported below. Reconstruction error was quantified (Methods),
andwas treated like other kinds of experimental errorwhen calculating
confidence intervals from our data.

Contact analysis
We reconstructed 195 Off BC axons and 79 Off SACs from e2198
(Fig. 3b and Extended Data Fig. 4). The e2198 retina was stained in an
unconventional way that did not mark intracellular structures such as
neurotransmitter vesicles9, and reliablemorphological criteria for iden-
tification of BC presynaptic terminals are unknown. As an indirect mea-
sure of connectivity, contact areas were computed for all BC–SAC pairs.
The resulting ‘contactmatrix’was analysed through twosubsequent steps.
In the first step, Off BC axons were classified into five cell types, fol-

lowing structural criteria14 established to correspondwith previousmo-
lecular definitions6 (Methods andExtendedDataFig. 5). BC types stratify
at characteristic depths in the inner plexiform layer (IPL), and vary in size
(Fig. 4a). TheBCs of each type formed a ‘mosaic’,meaning that cells were
spaced roughly periodically (Extended Data Fig. 6a–e). This is generally
accepted as an important defining property of a retinal cell type. Type
densities (Extended Data Fig. 6f) were roughly consistent with previous
reports6.When the columns of the contactmatrixwere sorted byBC type
(Fig. 4b), it became evident that BC2 and BC3a contact SACsmore than
other BC types.

In the second step, we averaged contact area over BC–SAC pairs of the
sameBCtypeandsimilardistancebetweentheBCaxonandtheSACsoma
in the plane tangential to the retina (Fig. 4c). These absolute areas were
normalized to convert them into the percentage of SAC surface area cov-
eredbyBCsofagiventype(Methods).TheresultinggraphsshowthatBC2
prefers to contact SAC dendrites close to the SAC soma, whereas BC3a
prefers to contact far from the soma (Fig. 4d and Extended Data Fig. 7c).
Imaging of intracellular calcium in BC axons7 and extracellular glu-

tamate aroundBCaxons8 indicates thatBC2 lagsBC3a invisual responses
by 50–100ms.ThereforeBC–SACwiring appears to possess the space–time
specificity appropriate for anoutwardpreferreddirection, asweproposed
(Fig. 1c).

Co-stratification analysis
Off SACs stratify at a particular depth in the IPL (Fig. 1b).Why this depth
and not some other? From Fig. 4a, it is obvious that this depth is appro-
priate for wiring with BC2 and BC3a, as required by our model of DS
emergence. Following this logic one step further, wewonderedwhether
the observed dependence of contact on distance from the SAC soma
might be reflected in fine aspects of SACmorphology.Wehypothesized
that SACdendrites are ‘tilted’,movingdeeper into the IPLwithdistance
from the SAC soma. Such a change in depth would be compatible with
more overlap with BC2 near the soma, and more overlap with BC3a
far from the soma, as BC3a is deeper in the IPL than BC2 (Fig. 4a and
Supplementary Video 1).
The hypothesized tilt turns out to exist (Fig. 5a). Very close to the SAC

soma, thedendrites dive sharply into the IPL from the innernuclear layer
(INL). Surprisingly, IPL depth continues to increase as distance from the
SAC soma in the tangential plane ranges from 20 to 80mm. The slight
increase is not evident in a single dendrite (Fig. 1b), but emerges from
statistical averaging.
Could dendritic tilt be the cause of the observed variation in BC–

SAC contact with distance (Fig. 4d)? We cannot address causality on
the basis of our data, but we can test how well the tilt predicts contact
variation.We computed the stratification profiles of BC types (Fig. 5a),
defined as the one-dimensional density of BC surface area along the
depth of the IPL. We also computed the stratification profile of SAC
dendrites at various distances from the SAC soma (quartiles, Fig. 5a).
Assuming that BC and SAC arborizations are statistically independent
of each other, we estimated contact from ‘co-stratification’, defined as
the integral over IPL depth of the product of BC and SAC stratification
profiles (Methods).
We found that actual BC2contact dependsmore stronglyondistance

than predicted; the slight change in IPL depth after the initial plunge
appears too small to account for the large change in actual BC2 contact.
In other failures of contact prediction, BC3a, BC3b and BC4 stratify at
the same IPL depths (Fig. 5a), yet BC3amakesmuchmore contact than
BC3b or BC4. Also, actual BC3a contact plummets near the tips of SAC
dendrites (Fig. 4d), whereas predicted contact does not change at all
because the IPLdepthof SACdendrites is constant in this region (Fig. 5b).
Overall, the total contact from all BC types seems low in this region
(Extended Data Fig. 7d), suggesting that BCs avoid making synaptic
inputs to the most distal SAC dendrites. This runs counter to the con-
ventional belief that input synapses are uniformly distributed over the
entire length of SAC dendrites15. The unreliability of inferring contact
from co-stratification is illustrated by numerous examples of SAC den-
drites that pass through BC axonal arborizations without making any
contact at all (Extended Data Fig. 8).

Model of the BC-SAC circuit
Wementioned previously that BC2 lags BC3a in visual response. There is
another important difference: BC3a responds more transiently to step
changes in illumination, whereas BC2 exhibitsmore sustained responses.
The implications of the sustained–transient distinction for DS can be
understood using amathematical model. The activity of a retinal neuron
is often approximated as a linear spatiotemporal filtering of the visual

a

b

Figure 3 | 3D reconstructions of Off BCs and SACs. a, b, Cells viewed
opposite the light axis. BCs alone (a); BCs with SACs (b). Scale bar, 50mm.
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stimulus followed by a nonlinearity16,17. Such a ‘linear–nonlinear’ model
for the output O(t) of the SAC dendrite can be written as

O(t)~
ð
dxdt0W(x,t{t0)I(x,t0)

� �z
ð1Þ

For simplicity, the dendrite and visual stimulus I(x,t) are restricted to a
single spatial dimensionx, and thenonlinearity is ahalf-wave rectification,
[z]15max{z,0}.We interpret the integral in equation (1) as the summed
input from the BCs presynaptic to the SAC. The nonlinearity could arise
fromvarious biophysicalmechanisms, such as synaptic transmission from
SACs to other neurons. The spatiotemporal filterW(x,t) is a sumof two
functions,

W(x,t)~Us(x)vs(t)zUt(x)vt(t) ð2Þ
corresponding to contributions from BC2 and BC3a. The sustained
temporal filter ns(t) is monophasic, whereas the transient filter nt(t) is
biphasic (Fig. 6a). The spatial filterUs(x) represents the entire set of all
BC2 inputs to the dendrite, and can be estimated from the BC2 contact
area graph in Fig. 4d. Similarly, Ut(x) can be estimated from the BC3a
contact area graph. The two spatial filters are displaced relative to each
other (Fig. 6a), because BC3a tends to contact SAC dendrites at more
distal locations than BC2.

Each of the terms in the sum of equation (2) is said to be ‘space–time
separable’, because it is the product of a function of space and a function
of time. It was previously observed that a spatiotemporal filterW(x,t) of
this form can endow a model like equation (1) with DS18,19. This is illu-
strated by Fig. 6 using the fact that the convolution in equation (1) is
equivalent to ‘sliding’ the spatiotemporal filterW in time over the stimu-
lus I, and computing the overlap at each time. The filterW(x,t) is oriented
in space–time (Fig. 6a), and so also is amoving stimulus I(x,t) (Fig. 6g, h).
The overlap with a rightward-moving stimulus (Fig. 6h) is greater than
for a leftward one (Fig. 6g), so the model exhibits DS with a rightward
preferred direction.
How is DS affected by the biphasic shape of the transient temporal

filter, nt(t)? Ifwe remove thenegative lobe (Fig. 6c), then nt(t)will become
monophasic like ns(t) and their relation closer to a simple time lag
(Fig. 6d).We will refer to this model as a ‘Reichardt detector’, in honour
of the pioneering researcherWerner Reichardt, although itmore closely
resembles a subunit of his model20. On the other hand, removing the
positive lobe of nt(t)makes it monophasic but with inverted sign relative
to the sustained filter (Fig. 6e). The result (Fig. 6f) resembles a DSmodel
originally proposed by Barlow and Levick21.
Bothmodifiedmodels (Fig. 6d, f) exhibit DS. In the Reichardt detector,

the inputs from the two arms enhance each other for motion in the
preferred direction. In theBarlow–Levick detector, the two inputs cancel
each other for motion in the null direction. As our sustained–transient
model (Fig. 6b) uses both mechanisms, it should exhibit more DS than
either detector.Ourmodel is related to versions of theReichardt detector
with low-pass and high-pass filters on the two arms22.
In the original Barlow–Levickmodel, the negative filter corresponded

to synaptic inhibition. As BCs are believed to be excitatory, negative BC
input in our model represents a reduction of excitation relative to the
resting level, rather than true inhibition. Signalling by reduced excitation
may be possible, at least for low-contrast stimuli, as BC ribbon synapses
may have a significant resting rate of transmitter release23.
The model of equations (1) and (2) is a useful starting point for many

theoretical investigations that are outside the scope of this article. For
example, DS dependency on the spatial and temporal frequencies of a si-
nusoidaltravellingwavestimulusiscalculatedinSupplementaryEquations,
andDS dependence on stimulus speed is graphed in ExtendedData Fig. 9.

Discussion
In ourDSmodel, SACdendrites arewired toBC typeswithdifferent time
lags. Apreviousmodel did not distinguish betweenBC types, and instead
reliedon the time lagof signal conductionwithin theSACdendrite itself24
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(Fig. 1d). Likemost other amacrine cells, SACs lack an axon; their output
synapses are found in the distal zones of their dendrites15 (Fig. 1a, inset).
Owing to dendritic conduction delay, proximal BC inputs should take
longer to reach the output synapses thandistalBC inputs (Fig. 1d). There-
fore this time lag is also consistent with the empirical finding of an
outwardpreferreddirection.To summarize thenovelty of our hypothesis,
we place the time lag before BC–SAC synapses, whereas the previous
model places it after BC–SAC synapses.
The postsynaptic delay model has a major weakness. If dendritic con-

ductionwere theonly sourceof time lag, the somatic voltagewouldexhibit
DS with an inward preferred direction, but this is inconsistent with intra-
cellular recordings3 (Fig. 1e). By contrast, the presynaptic delay model is
compatible with approximating a SAC dendrite as isopotential (Fig. 1c),
so preferred direction is predicted to be independent of the location of
the voltage measurement, consistent with empirical data3. It may also
be possible to make the postsynaptic delay model consistent with ex-
periments by adding active dendritic conductances4.
The presynaptic and postsynaptic delaymodels are notmutually ex-

clusive. If they work together, passive cable theory suggests that pre-
synaptic delay dominates, because estimatedpostsynaptic delay ismuch
shorter than the time lag betweenBC2andBC3a (SupplementaryEqua-
tions). Can we gauge the relative importance of the delays empirically

rather than theoretically?Onewaywould be intracellular recording at the
SAC soma of responses to visual stimulation at various dendritic loca-
tions. If postsynaptic delay dominates, then response latency will grow
with distance of the visual stimulus from the soma. If presynaptic delay
dominates, then distal stimulation will evoke somatic responses with
shorter latency than proximal stimulation. This prediction may seem
counterintuitive, but is an obvious outcome of our model.
Many other models of DS emergence in SACs invoke inhibition as

well as excitation25–28. We have focused on excitatory mechanisms, as
blocking inhibitiondoesnot abolishDS3.However, inhibitionmayhave
the effect of enhancing DS, and its role should be investigated further.
Thiswork focusedonOffBC–SACcircuitry.Ananalogous sustained–

transient distinction can also bemade forOnBC types7,8. It remains to be
seenwhether their connectivitywithOnSACsdepends ondistance from
the soma. If this turns out to be the case, then the model of Fig. 6 could
serve as a general theory of motion detection by both On and Off SACs.
The model filter of Fig. 6a also resembles the spatiotemporal receptive
field of the J type of ganglion cell (see Fig. 3b of ref. 29).
Neural activity imaging30 and connectomic analysis31 have recently

identified a plausible candidate for the site of DS emergence in the fly
visual system. If our theory is correct, then the analogies between insect
and mammalian motion detection1 are more far-reaching than prev-
iously suspected, with fly T4 and T5 cells corresponding to On andOff
SAC dendrites in both connectivity and function.
A glimmer of space–time wiring specificity can even be seen in the

structure of the SAC itself. As BC types with different time lags arborize
at different IPL depths, IPL depth can be regarded as a time axis. There-
fore, the slight tilt of the SACdendrites in the IPL (Fig. 5a) couldbe related
to the orientation of the SAC receptive field in space–time (Fig. 6a).
However, dendritic tilt alone is not sufficient to predict our model, as
co-stratification sometimes fails to predict contact (Figs 4d and 5b). For
example, co-stratification predicts strong BC4 connectivity to distal SAC
dendrites. This would favour an inward preferred direction, contrary to
what is observed, because BC2 leads (not lags) BC4 in visual responses7.
Theideathatcontact(orconnectivity)canbeinferredfromco-stratification

is sometimes known as Peters’ rule32, and has also been applied to estim-
ateneocortical connectivity33–35. Thepresentwork shows that fairly subtle
violations of Peters’ rule may be important for visual function. Previous
research suggests that On–Off direction-selective ganglion cells inherit
theirDS fromSAC inputs owing to a strong violation of Peters’ rule9,36–38.
Our findingsweremadepossiblebyusingartificial intelligence to reduce

the amount of human effort required for 3D reconstruction of neurons.
Even after the labour savings, our research required great human effort
from a handful of paid workers in the laboratory and a large number of
volunteers throughEyeWire. Our experiences do not support claims that
the ‘wisdom of the crowd’ should replace experts39. Instead, EyeWire
depends on cooperation between laboratory experts and online amateurs
(Methods). Furthermore, someamateursdeveloped remarkable expertise
and were promoted to increasingly sophisticated roles within the Eye-
Wire community (SupplementaryNotes).Webelieve that crowdwisdom
requires amplifying the expert voices within the crowd, and also empow-
ering individuals to become experts. Fortunately, such goals are well-
matched to the game format.
TheEyeWire artificial intelligencewas based ona deep convolutional

network40,41. Similar networks have been successfully applied to serial
electronmicroscopy images obtained using conventional staining tech-
niques that mark intracellular organelles42. Extending EyeWire to such
images, inwhichsynapses areclearlyvisible,wouldenablea trueconnection
analysis that goes beyond the contact and co-stratification analyses
used here.
Ourwork demonstrates that reconstructing a neural circuit can pro-

vide surprising insights into its function. Muchmore will be learned as
reconstruction speed grows.The combinationof crowdandartificial in-
telligencepromises a continuousupwardpathof improvement, as human
input from the crowd is not only useful for generating neuroscience
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discoveries, but also formaking the artificial intelligencemore capable
through machine learning.
Note added in proof : Further evidence that BC axons exhibit little or
no DS appeared while this paper was in press43.

METHODS SUMMARY
A convolutional network was trained to detect neural boundaries via the MALIS
procedure40 and CNPKG (https://github.com/srinituraga/cnpkg/), which is based
on Cortical Network Simulator44. The convolutional network was applied to the
e2198 data set, which was then segmented into supervoxels by a modified version
of the watershed algorithm. Paid workers and volunteer EyeWirers reconstructed
neurons in 3D by assembling supervoxels. The retina was computationally flat-
tened, reconstructed neurons were classified by their structural properties, and
contact and co-stratification were analysed by custom Matlab and C11 code.

Online Content Any additional Methods, ExtendedData display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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