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SUMMARY

Several types of retinal interneurons exhibit spikes
but lack axons. One such neuron is the AII amacrine
cell, in which spikes recorded at the soma exhibit
small amplitudes (<10 mV) and broad time courses
(>5 ms). Here, we used electrophysiological record-
ings and computational analysis to examine the
mechanisms underlying this atypical spiking. We
found that somatic spikes likely represent large, brief
action potential-like events initiated in a single, elec-
trotonically distal dendritic compartment. In this
same compartment, spiking undergoes slow modu-
lation, likely by an M-type K conductance. The struc-
tural correlate of this compartment is a thin neurite
that extends from the primary dendritic tree: local
application of TTX to this neurite, or excision of it,
eliminates spiking. Thus, the physiology of the axon-
less AII is much more complex than would be antici-
pated from morphological descriptions and somatic
recordings; in particular, the AII possesses a single
dendritic structure that controls its firing pattern.

INTRODUCTION

In the mammalian retina, the AII amacrine cell distributes rod-

driven synaptic input from the rod bipolar cell to ON and OFF

retinal ganglion cells. Often called the rod amacrine cell (Strettoi

et al., 1992), recent studies have demonstrated that the AII func-

tions also in cone-mediated vision (Manookin et al., 2008;Münch

et al., 2009). Because it operates during both rod- and cone-

mediated vision within most of the parallel pathways that

generate retinal output, understanding the AII is critical to com-

prehending signaling within the inner retina.

The AII is an unconventional neuron: it is axonless and has

only a soma and an elaborate dendritic tree (Strettoi et al.,
C

1992; Tsukamoto et al., 2001; Veruki et al., 2010). A theoretical

study has suggested that the small size of the AII (<100 mm

end-to-end distance) makes it electrotonically compact (Vardi

and Smith, 1996). Indeed, more recent experimental evidence

demonstrated that the AII’s dendrites appear to act as a single

processing unit: rod-driven synaptic inputs generate synchro-

nous outputs to the ON and OFF pathways despite the fact

that the loci of these outputs are on physically separate portions

of the dendritic tree (Murphy and Rieke, 2006, 2008; Strettoi

et al., 1992; Tian et al., 2010).

Several features of spiking in AIIs, however, are inconsistent

with the AIIs’ being electrotonically compact. AIIs spike intrin-

sically at high rates (up to hundreds of Hz), and somatically

recorded spikes are small (<10 mV), broad (>5 ms), and capable

of superposition (Boos et al., 1993; Tamalu andWatanabe, 2007;

Tian et al., 2010; Veruki and Hartveit, 2002a, 2002b). It is unclear

how such atypical spikewaveforms could be produced in a com-

pact (i.e., isopotential) neuron, as superposing spikes in somatic

recordings typically are associated with spike generation at

multiple, electrically independent dendritic locations (Oesch

et al., 2005). The suggestion of multiple spike initiation sites in

AIIs, however, is inconsistent with the recent observation that

Na channel expression in AIIs is concentrated on single dendritic

processes (Wu et al., 2011).

Here, we combined electrophysiological recordings with com-

putational analyses to elucidate the unconventional anatomical

and electrophysiological characteristics of the AII. We found

that the AII membrane is not isopotential, nor do spikes arise

from multiple dendritic locations. Rather, spikes appear to orig-

inate from a single, electrotonically distal site, indicating that the

AII has a dendritic compartment that acts like a conventional

axon initial segment. At this location, a slow negative feedback

mechanism consistent with an M-type K conductance modu-

lates spiking. Our results clarify and expand previous analyses

of the AII (Wu et al., 2011) and elucidate the unexpected electro-

tonic structure of the most common inhibitory interneuron in the

mammalian retina (Jeon et al., 1998; Strettoi andMasland, 1996):

spikes in the AII are initiated in a single neurite emanating from its
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Figure 1. Somatically Recorded Spikes in the AII Appear to Reflect

Distal Initiation

(A) (i) Spontaneously occurring spikes at rest exhibited small amplitudes and

stereotyped waveforms. (ii) After hyperpolarization of the AII by STC, small

current steps induced bursts of superposing spikes. Larger current steps

elicited tonic firing. (iii) Expanded view of bursting and tonic spiking.

(B) (i) TEA inhibited recovery and modestly increased the initial spike height.

(ii) TEA and 4AP produced significant but small increases in spike height
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elaborate dendritic arbor, and the unconventional pattern of

firing observed at the soma is controlled by the interplay of

conventional Na and K conductances at this electrotonically

distal site.

RESULTS

AIIs Exhibit Small Amplitude Tonic and Burst Firing
We first recorded spiking in AIIs in the light-adapted retina. In

accord with previous studies, spikelets exhibited stereotyped

waveforms that lacked afterhyperpolarizations (Boos et al.,

1993; Tian et al., 2010; Veruki and Hartveit, 2002a, 2002b;

Wu et al., 2011; Figure 1Ai). Additionally, when hyperpolarized

to threshold (Vthres approximately �60 mV; achieved by in-

jection of hyperpolarizing DC subthreshold current or ‘‘STC’’

of�30 to�80 pA), small depolarizations evoked burst firing (Fig-

ure 1Aii,iii). During bursts, high-frequency spikes superposed.

When larger current steps were imposed on the STC, bursting

behavior was eliminated, and AIIs spiked tonically.

Thus, AIIs can exhibit both tonic and burst firing, and themode

of firing is voltage dependent. This finding provides a useful

experimental paradigm to assess the conductances involved in

spiking in the AII.

K Conductances Do Not Strongly Limit Spike Height
To begin to understand the electrical organization of the AII,

we began by posing a simple question: why are somatically

recorded spikes in AIIs small relative to those of classical

neurons? Small spikes might reflect a fast K conductance atten-

uating depolarizations mediated by a voltage-gated Na conduc-

tance (Scott et al., 2007). This scheme is plausible, as K currents

in AIIs show a prominent A-type component (Boos et al., 1993;

Tian et al., 2010). Blocking the A-type K conductance with TEA

or 4-AP, however, produced only small increases in the height

of the initial spike in a burst (Figure 1B; see Experimental Proce-

dures for why initial spike used).

As an alternative, spikes could be initiated in one or

more dendritic compartments isolated electrotonically from the

soma by morphological choke points or by leaky dendrites.

The small spikes recorded at the somamight therefore represent

attenuated versions of larger, dendritically initiated spikes.

Here, we provide experimental evidence for this assertion:

in voltage-clamp, a step in somatic holding potential from

�80 mV to �50 mV evoked regenerative, TTX-sensitive inward

action currents (n = 4, Figure 1Ci). To exclude the possibility

that poor voltage control arose from electrical coupling between

AIIs, we recorded identical unclamped action currents from AIIs

in the Cx36�/�mouse, in which electrical coupling between AIIs

is absent (n = 4/4, Figure 1Cii; Deans et al., 2002). We conclude,
(TEA: 114 ± 4% relative to control; 4AP: 133 ± 14% relative to control; n = 4

cells in each case; p < 0.05 in each case; error bars indicate SEM).

(C) In voltage-clamp configuration, a suprathreshold step from�80 to�50 mV

evoked regenerative, stereotyped inward events in AIIs from both wild-type

(i) and gap junction knockout (ii) mice. In a wild-type AII, injecting a single

inward event as depolarizing current in the presence of TTX evoked a wave-

form similar to a spike in control conditions (iii). Injecting a train of regenerative

events in TTX elicited superposing spikes resembling a burst waveform (iv).
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Figure 2. Slow Modulation Is Bidirectional,

Exhibits One Timescale, and Is Distal

(A) Repolarization in the AII is illustrated following either

a +75 pA (blue) or �75 pA (green) current injection, for a

single trial (i) and an average across trials (ii). Respectively,

responses exhibited transient after-hyperpolarizations

and after-depolarizations with similar time courses.

(B) Responses over a longer timewindowdid not show any

further adaptation (averaged response depicted).

(C) TTX (red) strongly reduced transient behavior following

current offset in both protocols. Both an individual trial

(i) and an averaged response (ii) are shown.
then, that the majority of voltage-gated Na channels in the AII

must be located at a site (or sites) electrotonically distal to the

soma.

To investigate whether these Na currents were the source of

spikelets, recorded TTX-sensitive action currents were injected

via the recording pipette in the presence of TTX. A single action

current waveform elicited a voltage response resembling a

spikelet (Figure 1Ciii), and the injection of a train of action currents

evoked superposing spikes resembling a burst (Figure 1Civ).

These results suggest that the action currents observed in

voltage-clamp underlie spiking in current-clamp, and therefore

spiking occurs even when somatic voltage is held fixed.
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Spiking Is Modulated Bidirectionally
on a Single Timescale
Generally, intrinsic bursting requires regenera-

tive spiking modulated by negative feedback

from a slower conductance (Izhikevich, 2007).

To begin to characterize the slow conductance

operating in AIIs, first we assessed the voltage

range over which it was active. We considered

two possible scenarios. One, the slow con-

ductance might require hyperpolarization to

operate, potentially explaining why cells burst

following hyperpolarization (Figure 1Aii,iii). Two,

the slow conductance might also be active at

more depolarized potentials, and therefore

modulate spiking bidirectionally; in particular,

returns from depolarization should suppress

firing owing to the slow adaptation of this

conductance.

To differentiate between these two cases,

we examined after-potentials at current offset

following large hyperpolarizing or depolarizing

current injections. In all AIIs tested (n = 6/6),

transient bidirectional modulation was ob-

served: rapid superposing bursts of spikes

(after-depolarizations) were evoked following

returns from hyperpolarization, whereas spiking

was transiently suppressed (after-hyperpolar-

izations) following depolarization (Figure 2Ai,

single trial; Figure 2Aii, averaged response).

Importantly, these after-depolarizations and

after-hyperpolarizations were comparable in

duration: this finding suggests that a single

conductance could underlie both properties.
Finally, their timescales were similar to those of spontaneous,

regenerative bursts seen near threshold (Figure 1Aii).

For a subset of cells from the previous protocol (n = 3/6),

we looked for additional adaptation on longer timescales by

tracking voltage responses for �7 s after current offset. For all

cells examined (three of three), we saw no evidence for addi-

tional adaptation (Figure 2B).

Slow Modulation Occurs Distal to the Soma
Where is the site of the slow conductance relative to the soma? If

located electrotonically proximal to the soma (and therefore con-

trolled by somatic voltage), application of TTX should eliminate
–166, February 23, 2012 ª2012 The Authors 157
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Figure 3. Results from Pharmacological Manipulations Are

Consistent with Modulation by an M-Type K Conductance
(A) LP increased spikes/burst in the AII.

(B) Summary data from cells not exhibiting complete loss of burst mode

(control versus LP spikes/burst: 3.9 ± 1.1 versus 15.3 ± 3.0; n = 3; p < 0.05).

(C) Example trace from an AII where bursting was abolished (n = 4 total).

(D) In the presence of TTX, an AII was ramped (i) from�75 to +75 pA over 2 s in

control (black) and after LP was applied (red). Following current offset (ii), the

small after-hyperpolarization was eliminated in the presence of LP.

(E) Summary of input resistances, after partitioning the ramp response into

5 mV voltage intervals, in control and LP (see Experimental Procedures;

p > 0.05 for voltages intervals below�55 mV, and p < 0.05 otherwise; only five

of ten cells reached voltages of at least�40 mV in both control and LP and the

[�45 mV, �40 mV] data point represents data from this subset of cells; n = 10

for all other intervals).

(F) Summary of the change in resting potential following the addition of LP

(control: �45.2 ± 1.5 mV, LP: �39.2 ± 2.0 mV; n = 10; p < 0.01).

All error bars indicate SEM. See also Figure S1.
spiking but not the underlying slow after-potentials. Alternatively,

if the slow conductance is located distally (e.g., close to regen-

erative conductances), TTX might exert large effects on the

after-potentials by blocking the large local voltage spikes driving

slow modulation.

We found that blocking Na channels with TTX strongly

reduced the transient after-depolarizations and after-hyperpo-

larizations (example trace, Figure 2Ci; averaged response,

Figure 2Cii). This finding supports our assertion that the slow

conductance is located distal to the soma and likely found at

the spike initiation site(s).

The fact that TTX blocked both after-depolarizations and after-

hyperpolarizations is again consistent with both these effects

potentially being attributable to a single conductance. However,

because these findings provide only indirect support for this

assertion, we next sought to directly identify a single conduc-

tance responsible for both phenomena.

The Slow Conductance Appears to Be an M-Type K
Conductance
The slow conductance modulating bursting in AIIs resembled an

M-type K conductance for three reasons. One, it was active near

spike threshold and modulated spiking bidirectionally; two, the

timescales of afterpotentials were on the order of M-type current

kinetics observed in other systems; three, no further adaptation

occurred following the afterpotentials, in agreement with the

noninactivating nature of M channels (Adams et al., 1982a;

Robbins et al., 1992). Therefore, we tested the hypothesis that

an M-type K conductance interacts with the Na conductance

to generate bursting behavior. We blocked the underlying chan-

nels with the M-type K channel antagonist linopirdine dihydro-

chloride (LP; 30 mM) (Aiken et al., 1995; Schnee and Brown,

1998) and observed the effect on burst duration: if an M-type K

conductance is critical for terminating bursts, LP should increase

burst duration.

In the presence of LP, the durations of evoked bursts were

prolonged (n = 7). In three of seven AIIs, spikes/burst increased

and bursting was maintained (control versus LP spikes/burst:

3.9 ± 1.1 versus 15.3 ± 3.0; n = 3; p < 0.05; Figures 3A and

3B). In the remaining four of seven AIIs, bursting was abolished

altogether, and cells exhibited only tonic spiking following depo-

larization (Figure 3C). LP did not affect the height of spikes within

the bursts, suggesting that it did not block the A-type K conduc-

tance to any appreciable extent (Figure S1G available online).

Separately, we investigated how LP affected input resistance

and resting membrane potential by injecting current ramps

into recorded AIIs. These recordings were done in the presence

of TTX to prevent changes in spiking from confounding these

measurements. LP depolarized AIIs and increased Rn at

potentials depolarized to �55 mV (Figure 3Di). For recordings

in which after-hyperpolarizations were evident following current

offset (six of ten AIIs), LP either decreased their amplitudes

(n = 2/6) or abolished them entirely (n = 4/6) (Figure 3Dii).

These results are consistent with LP blocking an M-type K

conductance.

Qualitatively identical results were obtained using Ba2+

(250 mM) to block M-type K conductances (Adams et al., 1982b;

Kotani et al., 2000; Figures S1A–S1C and S1G), as well as with
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the high-affinity antagonist XE-991 (10 mM) (Wang et al., 1998;

Zaczek et al., 1998; Figures S1D–SG). Furthermore, we elimi-

nated contributions to bursting from other, non-M-type K
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(A) Experimentally recorded action currents (i) and

bursts (ii).

(B) A model with a single initiation site (see Table S1)

reproduced experimental behavior in both voltage- (i) and

current-clamp (ii).

(C) A model with two initiation sites produced simulated

somatic recordings which were disorganized and incon-

sistent with experimental results.

(D) A single dendritic spike was evoked by applying a 1ms,

10 pA current pulse at the initiation site, which was

otherwise kept from firing via STC injection at the soma.

The voltages across the AII compartments are shown (i), as

well as an expanded view of the somatic response relative

to the initiation site response to illustrate the change in

time course (ii).
conductances (voltage-gated Ca channels, persistent Na chan-

nels, HCN channels, and Ca-gated channels; Figures S1H and

S1I). These findings therefore suggest that spiking undergoes

slow modulation from an M-type K conductance exclusively.

Spikes Are Initiated in a Single Compartment Only
The previous results illustrate that spikes are generated electro-

tonically distal to the soma, but do not address the number of

independent spike initiation sites. Therefore, we employed a

compartmental model of the AII (constrained by our previous

experiments; see Experimental Procedures and Table S1) to

examine how the activity of one or more distal initiation sites

would be reflected in somatic responses. Model AIIs were sub-

jected to the same current injections and voltage steps that

were applied experimentally (Figure 4A), and simulated and

recorded responses were compared.

Simulated responses from a model with a single initiation site

reproduced the features of spiking seen experimentally (Fig-

ure 4B): voltage steps evoked repetitive, stereotyped action

currents, and current injections elicited bursts of superposing

spikes with the interspike interval exhibiting a clear refractory

nature. A model with two initiation sites, however, failed to reca-

pitulate the experimental data (Figure 4C). Specifically, action

currents and spikes exhibited haphazard superposition and the

refractory period between spikes was eliminated. Incorporating

additional spiking compartments (>2) caused the model’s pre-

dictions to deviate further from the experimental responses.

Thus, these simulations attest to the existence of a single, distal

spike initiation site.
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To understand how spikes from a single

initiation site transformed and superposed

in current-clamp recordings, we tracked the

propagation of a single spike across the model

AII membrane (Figure 4D). We found that the

somatic response was a highly filtered repre-

sentation of the fast, distally initiated spike: as

the spike arrived at the soma its waveform was

attenuated and broadened, acting to conceal

the initiation site AHP and recovery. As the
somatic potential did not reflect the recovery dynamics at the

initiation site, rapid distal firing events from a single site could

produce superposing waveforms at the soma.

The Model AII Captures and Elucidates Experimental
Recordings
Having verified that a simple AII model with one initiation site

could capture basic properties of AII spiking, we confirmed the

robustness of this model by simulating the experiments of

Figures 1–3 and used the model to gain mechanistic insight

into these results.

First, we found that the model AII exhibited bursts with super-

posing spikes near spike threshold, whereas tonic spiking

occurred at more elevated potentials (Figure 5A, cf. Figure 1A).

Bursting arose from rapid firing being gradually overwhelmed

by recruitment of the slow K conductance; tonic firing occurred

at more depolarized potentials when the slow K conductance

could not suppress spiking completely (Figures S2A–S2D).

Second, simulating the antagonism of K channels recapitu-

lated experimental results (Figure 5B, cf. Figure 1B). A 75%

reduction in the A-type K conductance, mimicking application

of 2 mM TEA (Tian et al., 2010), produced a small increase in

initial spike height. Moreover, this A-type K reduction also pro-

duced a perturbed burst waveform similar to that seen in exper-

iments; this somatic response represented the filtered initiation

site voltage after recovery was impaired (Figures S2E and

S2F). Conversely, reducing or completely eliminating the slow

K conductance did not change the initial spike height (cf.

Figure S1).
–166, February 23, 2012 ª2012 The Authors 159
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Figure 5. The Single Initiation Site Model Captures Many Features of AII Behavior

(A) Somatic responses to small (10 pA) and large (30 pA) current steps following STC showed bursting and tonic firing, respectively. See also Figures S2A–S2D.

(B) Somatic voltage traces following K channel reduction, simulating the effects of TEA/4AP and LP/Ba/XE application. Results are shown for control (black), for

a 75% reduction of fast A-type K density (purple, 143% initial spike height relative to control), and for a 50% reduction of slow K density (gold, 100% initial spike

height relative to control). See also Figures S2E and S2F.

(C) Somatic voltages following large depolarizing (i) or hyperpolarizing (ii) current offsets are illustrated. After-hyperpolarizations and after-depolarizations were

present and greatly reduced by eliminating Na channels from the model (red).

(D) Reducing the density of slow K prolonged the burst mode in the model AII.
Third, the AII model captured the transient TTX-sensitive after-

potentials (Figure 5C, cf. Figure 2), which emerged from the

difference in kinetics between fast Na and slow K channels

observed upon long depolarizations/hyperpolarizations of the

AII. After-depolarizations occurred because the Na conductance

activated more quickly than the slow K conductance following

return from hyperpolarization; after-hyperpolarizations occurred

because the slow K conductance deactivated slowly upon return

from depolarization.

Fourth, the model captured LP-, XE-, and Ba-induced prolon-

gation of bursts (Figure 5D, cf. Figure 3; Figure S1). At interme-

diate reductions in slow Kdensity, bursts were prolonged but still

terminated; for larger reductions in density, the burst mode was

eliminated altogether and themodel AII exhibited only tonic spik-

ing. More in-depth analysis of this transition determined that the

model underwent a subcritical Hopf bifurcation as slow K density

was increased, and exhibited hysteresis when slow K density

was subsequently decreased (data not shown) (Izhikevich,

2007).

Experimental Evidence for a Single, Distal Initiation Site
Our model neuron with a single initiation site reproduced

the experimental data well, and we therefore sought to verify
160 Cell Reports 1, 155–166, February 23, 2012 ª2012 The Authors
the existence of such a site experimentally. We did this in

three ways.

One, we applied TTX locally to individual neurites visualized

after filling recording AIIs with a fluorescent tracer (see Experi-

mental Procedures). We targeted a single process that appeared

to be distinct from the dendritic arbor; in some cases, this neurite

could be observed clearly extending away for some distance

from its origin on the primary dendrite (Figure 6Ai, arrow; see

also Wu et al., 2011). Local application of TTX (50 nM) to the

distal termini of these neurites suppressed or completely elimi-

nated spikes recorded at the somata (Figure 6Aiv). In contrast,

application of TTX to other portions of the dendritic tree, in-

cluding compartments as close as 10–20 mm to the distal termini,

had noticeably weaker effects (Figures 6Aii–iv). In particular, in

every cell tested, the strongest suppression of spiking was ob-

served following application of TTX to the distal terminus. It is

notable that in some instances, this terminus was physically

well-separated from the remainder of the neuron (e.g., Fig-

ure 6Ai), likely minimizing TTX exposure to the vast majority of

the AII membrane.

Two, we removed the distal portion of the target neurite to

demonstrate that its presence was required for spike initia-

tion: while recording spikes with a somatic recording pipette



containing a fluorescent tracer, the visualized neurite was drawn

into a second pipette and pulled away from the cell. After re-

moving the distal portion of this neurite, spiking was completely

abolished in the AII (Figure 6Bi; n = 7). Importantly, this occurred

despite peak ramp currents typically inducing depolarizations

>20 mV above the previous Vthres (Figure S3).

This loss of spiking was likely not due to deterioration of cell

health. In a subset of cells from the previous protocol (n = 2), prior

to removing the putative initiation site, we were able to excise

additional neurites without affecting spiking (filled symbols, Fig-

ure 6Biii). Moreover, in a separate group of cells (outlined sym-

bols, Figure 6Bii,iii; n = 3), removing noninitiation site neurites

did not affect spiking. Thus, the removal of the distal portion of

a single and specific neurite was sufficient to eliminate spiking

in the AII.

Three, if spiking is indeed initiated at a single site on the AII

morphology before propagating passively toward the soma, it

would be expected that Na channel expression also would be

concentrated at a single site. Therefore, we used immunohisto-

chemistry to examine the localization of Na channels and the

Na channel-binding protein ankyrin-G on AIIs: retinae in which

AIIs express GFP under the control of the Fbxo32 promoter

(Gong et al., 2003; Siegert et al., 2009; Figure 6Ci) were incu-

bated with antibodies against GFP, ankyrin-G, and Na channels

(see Experimental Procedures). In tranverse sections, we found

that anti-Na channel and anti-ankyrin-G antibody labeling

was colocalized and restricted to individual neurites like those

studied electrophysiologically (Figure 6Cii). We examined these

processes in more detail in retinal whole mounts: GFP-express-

ing neurites exhibiting ankyrin-G expression clearly extended

from the proximal portions of individual AIIs (Figure 6Ciii; note

the anti-Na channel antibody was not used in whole-mount ex-

periments because it generated more nonspecific (background)

signal than the anti-ankyrin-G antibody). These results are con-

sistent with a recent report (Wu et al., 2011) and bolster our elec-

trophysiological and computational evidence for a single, distal

site underlying spiking.

A Morphologically Realistic Model Reproduces
Experimental Results
Having described the dendritic compartment constituting the

spike initiation site, we thought it important to extend our inqui-

ries beyond a three-compartment model and to verify that a

model with a realistic morphology captured the experimental

results. An AII was filled and imaged (see Experimental Proce-

dures and Table S2), revealing the presence of a long cable

branching asymmetrically from the primary dendrite (Figure 7A;

arrow: putative initiation site). A morphologically realistic model

based on this imaged AII yielded attenuation between the in-

itiation site and soma similar to that generated by the three-

compartment AII (Figures 7B and 7C; cf. Figure 4D). Additionally,

the morphologically realistic model generated the dual modes of

firing seen experimentally and in the simple model (Figure 7D; cf.

Figures 1 and 5A).

Importantly, this detailed model illustrated that the extent of

attenuation was very similar at the soma, lobular appendages,

and arboreal dendrite (Figure 7C). Therefore, the reduction of the

morphologically complex AII into a simple three-compartment
C

model is justified when considering spike dynamics. In addi-

tion, this finding suggests that spike heights are similar at the

physically separated locations where AIIs contact ON and

OFF cone bipolar cells (via electrical and chemical synapses,

respectively).

DISCUSSION

Here, we demonstrated that spikelets recorded in the soma of

the axonless AII amacrine cell represent large events generated

at a single, electrotonically distal initiation site. At this distal

dendritic location, a voltage-gated Na conductance appears to

be colocalized with a slowM-type K conductance. Spikes gener-

ated at this site resemble action potentials that undergo filtering

as they propagate to the soma where they are recorded. A

morphologically realistic model suggests the waveform of spikes

in the complex dendritic arbor is similar to that at the soma. The

AII exhibits an unexpected and interesting electrotonic structure:

despite its small size, it contains an electronically remote den-

dritic compartment that, due to the interplay between resident

Na and K conductances, modulates the electrical behavior of

the neuron as a whole.

Dual Modes of Firing in the AII
Owing to modulation by an M-type K conductance, the AII

exhibits two firing modes: bursting near threshold and tonic

firing at more depolarized potentials. Na channel-mediated

amplification of inputs, then, is likely to vary with the resting

potential of the AII, as has been demonstrated previously (Tian

et al., 2010).

The resting membrane potential of the AII in vivo is unknown.

Reports of AII resting potentials from experiments in vitro vary

significantly and do not exhibit a clear dependence on either

species or the adaptational state of the retina: �65 mV (dark-

adapted mouse, Pang et al., 2004), �59 mV (light-adapted rat,

Boos et al., 1993), �50 mV (light-adapted mouse, Tian et al.,

2010), �46 mV (dark-adapted mouse, Dunn et al., 2006),

�37 mV (dark-adapted mouse, Tamalu and Watanabe, 2007).

Although the reason(s) for this variability is (are) unclear, it is

notable that these resting potentials span a voltage range in

which both modes of firing can occur. Thus, it is reasonable to

expect that the AII might exploit both in a physiological setting.

The AII’s resting membrane potential appears to depend on

the voltage of coupled ON cone bipolar (CBs). It has been shown

that application of L-AP4, which hyperpolarizes both rod bipo-

lars (RBs) and ON CBs by agonizing their metabotropic gluta-

mate receptors, also produces large (15–20 mV) hyperpolariza-

tions in AIIs (Tamalu and Watanabe, 2007). We have found

similar results when transmission from RBs is blocked (data

not shown), suggesting that synaptic activity in gap junction-

coupled ON CBs can shape the AII resting potential. This

arrangement could provide a means by which activity in ON

CBs modulates the excitability of AIIs; in particular, hyperpolar-

ized ON CBs could bias AIIs toward bursting in darkness,

whereas depolarized ON CBs might induce tonic spiking in

brighter scenes.

Bursts may also act as a mechanism to enhance drive to gap

junction-coupled cells. Individual spikes in AIIs are heavily
ell Reports 1, 155–166, February 23, 2012 ª2012 The Authors 161
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Figure 6. Direct Experimental Evidence for a Single, Distal Initiation Site

(A) TTX application to a visualized putative initiation site (i, scale bar = 5 mm; illustrated schematically in ii) reversibly suppressed spiking during a slow current ramp

(iii). (iv) Summary of the reduction in normalized spike frequency following local application of TTX (see Experimental Procedures) (initiation site ‘‘IS’’: 0.40 ± 0.08,

n = 7; soma: 0.76 ± 0.12, n = 5; other: 0.80 ± 0.10, n = 3; branch: 0.83 ± 0.11, n = 5; arbor: 0.97 ± 0.08, n = 4; error bars indicate SEM).
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Figure 7. AMorphologically Detailed Model Behaves Similarly to the

Reduced Three-Compartment Model and Captures Experimental
Responses

(A) A confocal image of an individual AII. A long, unbranched cable with

a putative initiation site was present (arrow).

(B) The morphologically detailed model AII (see Table S2), with respective

recording locations illustrated.

(C) A single dendritic spike was evoked in the detailed AII by applying a 1 ms,

10 pA current pulse at the initiation site, which was otherwise kept from firing

via STC injection at the soma (cf. Figure 4D). The spike attenuated significantly

as it propagated toward the primary dendrite. After reaching this neurite,

however, voltage responses were similar at the soma, lobular appendages,

and distal dendritic arbor (traces offset for clarity).

(D) The detailed morphological model exhibited both burst and tonic firing.
filtered across gap junctions and therefore propagate poorly

between coupled cells (Veruki and Hartveit, 2002a, 2002b).

Superposing spikes, as typically seen in burst waveforms, may

provide a way to circumvent this filtering by producing amplified

responses that are relatively broad in time. In this way, the mode

of firing (burst versus tonic spiking) may be an important determi-

nant in transmitting Na-mediated events across gap junctions.

This could provide a means of modulating the receptive field

size of the AII, complementing the plasticity inherent to the AII-

AII gap junctions themselves (Bloomfield and Völgyi, 2004;

Veruki et al., 2008).
(B) Following excision of the putative initiation site (i), a ramped AII became quies

eliminating firing. (iii) Summary of the normalized change in initial spike height follo

p > 0.05; error bars indicate SEM). See also Figure S3.

(C) (i) A confocal image of a transverse, in vitro slice preparation of the Fbxo32-GF

morphology of AIIs. Scale bar = 5 mm. (ii) In a transverse section of retina, a GFP-ex

channels (pan-Na; blue). The Na channels and ankyrin-G were colocalized in a sing

5 mm. (iii) In a retinal whole-mount, GFP-expressing AII somata and dendrites were

(arrows) expressed ankyrin-G (red). Scale bar = 10 mm.

C

A Single Initiation Site Is Consistent with Published
Observations
A recent study of Na channel expression in AIIs indicated that

Na channels in these neurons are clustered primarily in a single

process (Wu et al., 2011; see also Figure 6). Here, we demon-

strate not only that this process functions as a spike initiation

site, but also that its electrophysiological characteristics control

the surprisingly complex firing patterns observed in the AII.

Our finding that the spike initiation site is electrotonically

isolated from the neuron as a whole is consistent with various

studies of AII function. Specifically, in studies of AIIs’ electrical

synapses, passive transmission of spikes between coupled neu-

rons was observed (Veruki and Hartveit, 2002a, 2002b). This

result suggests that spikes are not generated near gap junctions,

which are found in the distal dendritic arbor (Strettoi et al., 1992;

Tsukamoto et al., 2001). In addition, our morphologically realistic

model predicts passive propagation of spiking across the arbor

(Figure 7C).

Additional evidence that the spike-generating mechanism is

isolated comes from the observation that TTX has equivalent

effects on the timing of AII output to the ON and OFF pathways

(via gap junctions and inhibitory glycinergic synapses, respec-

tively) (Tian et al., 2010). As gap junctions are located primarily

on the distal dendrites and glycinergic presynaptic terminals

are found in proximal lobular appendages (Habermann et al.,

2003; Strettoi et al., 1992; Tsukamoto et al., 2001), it is likely

that active spiking does not occur at or between these sites.

Finally, the AII’s soma can be excluded as the site of spike initi-

ation, as no Na currents are found in nucleated patches excised

from the soma (Tian et al., 2010). Na channels, however, are

likely located close to the soma and proximal dendrite (Tamalu

and Watanabe, 2007). The identification of a single, thin neurite

that branches from the AII’s primary dendrite as the spike initia-

tion site (Figures 6A and 7A) fulfills the requirement that Na chan-

nels be spatially close to the AII soma while remaining electro-

tonically isolated from the rest of the cell.

Implications for Circuit Processing
The AII is a multifunctional neuron that plays important roles in

both rod- and cone-mediated vision (Deans et al., 2002; Field

et al., 2009; Manookin et al., 2008; Münch et al., 2009; Völgyi

et al., 2004). How does the unconventional electrotonic structure

of the AII contribute to processing within these various path-

ways? Based on our finding of an isolated functional spiking

zone on a distinct AII process, it is natural to ask whether this

process has its own dedicated inputs or outputs. Such strategi-

cally placed inputs could control the firing of the cell, and with it,

modulate the processing of the other inputs that are distributed

across the remainder of the dendrite. At the same time, outputs

on the specialized process would likely have characteristics that
cent. In a different AII (ii), a putatively nonspiking neurite was removed without

wing removal of nonspiking neurites (postremoval = 105 ± 8% of control, n = 5;

P retina revealed GFP fluorescence confined largely to neurons with the distinct

pressing AII (green) was labeled with antibodies against ankyrin-G (red) and Na

le process that appeared to extend from the AII’s primary dendrite. Scale bar =

visualized (green). GFP-positive processes that were clearly connected to AIIs
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are quite different from those throughout the remainder of the

dendrite as a consequence of direct coupling to spiking.

While such inputs and outputs have not been established

functionally, anatomical work using immunohistochemistry (Wu

et al., 2011) and EM (Anderson et al., 2011) indicates that they

may exist (but see Van Wart et al., 2005, which failed to localize

synaptic vesicle markers to Na-channel dense processes re-

sembling these neurites). Moreover, in recordings, weak RB

input reliably evoked firing in control conditions but generated

almost no somatic response after TTX application (Figure 5 in

Tian et al., 2010). This finding is suggestive of some RB inputs

being electrotonically close to the spike initiation site, and raises

the intriguing possibility that spiking may preferentially amplify

scotopic inputs. Thus, an important goal is to determine whether

there are indeed functional synaptic contacts that are electroton-

ically proximal to the AII initiation site, and if so, to what type(s) of

cell(s) it establishes connections. This will provide substantial

insight into the contributions of the AII to the visual processing

performed by the retinal circuitry.

Conclusions
It is interesting to note that, in addition to the AII, two other

classes of amacrine cells have been shown to be noncompact.

These two cell types exploit different advantages of this electro-

tonic structure. In the starburst amacrine cell, individual neurites

act as independent electrical units to produce direction-selec-

tive dendritic calcium signals (Euler et al., 2002). In the A17

amacrine cell, serial dendritic varicosities are separated by thin

processes and function in isolation of one another, acting to pro-

cess signals in parallel whileminimizingwiring cost (Grimes et al.,

2010). Thus, of the three largest known populations of amacrine

cells (Strettoi and Masland, 1996), all have been shown to

behave in a noncompact fashion.

EXPERIMENTAL PROCEDURES

Tissue Preparation and Electrophysiological Experimentation

Retinal slices (200 mm thick) were prepared from retinae isolated from adult

(P28-56) light-adapted C57BL/6 wild-type and Cx36 knockout (Deans et al.,

2001) mice, as described previously (Tian et al., 2010). Cx36 knockout mice

exhibited much higher input resistances (Rn = 1.6 ± 0.6 GU; n = 6) compared

to wild-type mice (Rn �400–500 MU; Figure 3E), consistent with gap junctions

being disrupted in Cx36 knockout mice. The Animal Care and Use Committee

of Northwestern University approved all procedures involving animal use.

Current- and voltage-clamp recordings were made from AIIs superfused

with an artificial CSF at near-physiological temperature (�34�C) as described

previously (Tian et al., 2010) (see Extended Experimental Procedures for solu-

tion composition). Chemical synaptic transmission was blocked pharmaco-

logically (see Extended Experimental Procedures). Access resistances were

typically <25 MU; compensation was not used and junction potentials were

not corrected.

In experiments where TTX was applied locally, we blocked Na channels by

pressure ejection of 50 nM TTX to visualized neurites via a small pipette (tip

diameter < < 1 mm; tip resistance �12 MU) filled with HEPES-buffered ACSF

(40 mMHEPES substituted for NaH2CO3) and positioned near structures visu-

alized by epifluorescent illumination of Alexa tracers included in the somatic

recording pipette. TTX-containing solution was ejected by gentle pressure

applied bymouth: we found this to be better at generating a spatially restricted

bolus of TTX within the slice than the use of a mechanical apparatus like a

Picospritzer. We first targeted varicosities distributed asymmetrically around

the AII primary dendrite, which often seemed to be coupled to the primary

dendrite via an unbranched neurite (e.g., Figure 6Ai, arrow). When these asym-
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metrical neurites could be visualized clearly, TTX application to them sup-

pressed dramatically or completely reduced the somatically recorded spikes.

In some recordings, no asymmetric neurite stood out as a clear candidate

initiation site, likely because one was obscured by other structures. When

this occurred, multiple compartments were targeted in succession until a

TTX-sensitive one was identified. In such instances, only one site exhibited a

strong TTX sensitivity; other candidate sites are included in the analysis and

denoted as ‘‘Other’’ in Figure 6Aiv. In this figure, spike frequency was calcu-

lated as the spike rate averaged over the 300 ms time window following the

initial spike (average of 3–4 trials).

To excise the putative initiation site from a spiking neuron, after the target

neurite was visualized (as above), the distal terminus was drawn by gentle

suction (applied by mouth) into a pipette filled with HEPES-buffered ACSF

(as above). Once the distal terminus was within the pipette, the pipette was

then gently pulled away from the recorded cell and the process was observed

to separate from the recorded cell.

Data analysis was performed using IGOR Pro (Wavemetrics) and Microsoft

Excel (Microsoft). Paired, two-tailed t tests were used to compare paired

datasets, with significance accepted as p < 0.05. Data are presented as

mean ± SEM, with some figures also including symbols denoting individual

cells.

Analysis of Recordings

Spikes were detected by applying a threshold to the derivative of current-

clamp recordings, and bursts were identified as groups of spikes with sequen-

tial interspike intervals of <20 ms. As intraburst spiking tended to exhibit

interspike intervals %8 ms and interburst intervals generally were > = 40 ms

(e.g., Figure 1Aii), the choice of a 20 ms window was able to separate periods

of bursting from quiescence. The amplitude of individual spikes exhibited

some dependence on the timing within a burst; therefore, when examining

the effects of K channel antagonists on spike height (Figure 1B; Figure S1),

we restricted our analysis to the first spike within a burst. The initial spike height

was defined as the maximal difference in voltage in the window of time

between the onsets of the first and second spikes in a burst (illustrated on

representative bursts in Figure 1Bi).

Computational Model

All numerical simulations were performed with the computational software

NEURON (Hines and Carnevale, 1997) using the variable timestep (CVODE)

method.

The three-compartment morphology consisted of the following: a large

cylinder (the ‘‘soma’’) connecting to a thin cable (the ‘‘cable’’) terminating in

a varicosity (the ‘‘initiation site’’). The large model soma was taken to represent

the electrical equivalent of the soma and arboreal dendrite of the AII. The cable

and initiation site were taken to represent the long neurite and terminal varis-

cosity branching asymmetrically from the AII primary dendrite, with respective

lengths and diameters taken from measurements obtained through confocal

imaging (LSM 510; Carl Zeiss) of an individual AII filled with Alexa 594. The

morphologies, as depicted in Figure 4, have had the cables and initiation sites

enlarged only for purposes of illustration. The cable was taken to be passive,

and Hodgkin-Huxley-like active conductances were added to the soma and

initiation site. An incompletely inactivating A-type conductance, with parame-

ters constrained by voltage-clamp recordings (Tian et al., 2010), was inserted

into both sections. The initiation site contained additional fast Na and slow

noninactivating K conductances. For simulations incorporating two spiking

compartments, a second identical cable and initiation site were included

and connected to the soma. For comprehensive details on simulations using

the stylized morphologies, see Extended Experimental Procedures and

Table S1.

For simulations of a morphologically realistic AII, we reproduced an AII filled

with a fluorescent tracer (see Extended Experimental Procedures and Table S2

for specific measurements). As in the three-compartment model, active con-

ductances were inserted into the initiation site whereas the associated cable

was passive. The soma was also taken to be passive, as has been demon-

strated experimentally (Tian et al., 2010). A-type K was distributed uniformly

across the remaining structures, with the density employed in the three-

compartment model. All parameters associated with the active and passive



conductances were identical to those used in the three-compartment model.

See Extended Experimental Procedures for details.

Immunohistochemistry

Retinae were isolated from Fbxo32-GFP mice generated by the GENSAT

project (Gong et al., 2003; Siegert et al., 2009). Frozen sperm (FVB back-

ground) was obtained from the NIHMutant Mouse Regional Resource Centers

(MMRC), and in vitro fertilization of ova from c57bl/6 mice and implantation

of fertilized ova into c57bl/6 females was performed by the Transgenic and

Targeted Mutagenesis Laboratory at Northwestern University. Mice were

bred for > 5 generations into the c57bl/6 background before being used for

experiments.

After isolation into oxygenated Ames’ medium, retinae were fixed for 15 min

in paraformaldehyde (4% in 0.1 M PBS) and then washed extensively in stan-

dard solution (0.1 M sodium phosphate buffer plus 0.5% Triton X-100 and

0.1% NaN3 [pH 7.4]) and blocked overnight in standard solution plus 4%

donkey serum and Mouse on Mouse (M.O.M) Blocking Reagent (Vector

Labs, MKB-2213). Retinae were then incubated with primary antibodies

including a chicken antibody against GFP (1:100, Aves Labs, GFP-1020),

a mouse antibody against Ankyrin G (1:100, Santa Cruz Biotechnology,

sc-12719) and a rabbit antibody against Pan Nav (1:50, Alomone, ASC-003)

for 5 days at 4�C. After washing, secondary antibodies (Alexa 488-conjugated

donkey anti-chicken, Cy3-conjugated donkey anti-mouse and Cy5-conju-

gated donkey anti-rabbit antibodies) were applied overnight at 4�C.
Retinae were also embedded in 5% agarose and cut into 150 mm sections

on a vibratome and stained with above described primary (overnight at 4�C)
and secondary antibodies (1 hr at room temperature).

Images were acquired with a LSM-510 confocal microscope (Zeiss) and

processed in Zeiss Zen and Photoshop software.
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