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ABSTRACT2

We propose and demonstrate the use of a minimal 2θ model for endogenous bursters coupled3
in 3-cell neural circuits. This 2θ model offers the benefit of simplicity of designing larger neural4
networks along with an acute reduction on the computation cost.5

Keywords: central pattern generator, return map, stability, multistability, fixed point, phase-lag, neuron, model, network, motif6

1 INTRODUCTION
Neural networks called Central Pattern Generators (CPGs) [1, 2, 3, 4, 5, 6, 7, 8]. produce and control7
a great variety of rhythmic motor behaviors, including heartbeat, respiration, chewing, and locomotion.8
Many physiologically diverse CPGs involve 3-cell motifs such as the spiny lobster pyloric network [6],9
the Tritonia swim circuit [4], and the Lymnaea respiratory CPGs [3]. Pairing experimental studies and10
modeling studies have proven to be key to disclose basic operational and dynamical principles of CPGs11
[9, 10, 11, 12, 13, 14]. Although various circuits and models of specific CPGs have been developed, the12
mystery of how CPGs gain the level of robustness and adaptation observed in nature remains unsolved.13
It is not evident either what mechanisms a single motor system can use to generate multiple rhythms,14
i.e., whether CPGs need a specific circuitry for every function, or whether it can be multi-functional to15
determine several behaviors [15, 16, 17].16

This paper based on our original work re-emphasizes some basic principles well-established in the17
characterization of 3-cell networks made of HH-type neurons [18, 19, 20] and the Fitzhugh-Nagumo-like18
neurons [21]. We use the bottom-up approach to showcase the universality of rhythm-generation principles19
in 3-cell circuits regardless of the model selected, which can be a Hodgkin-Huxley (HH) type model of the20
leech heart interneuron [22, 23], the the generalized Fitzhugh-Nagumo (gFN) model of neurons [24], and21
the minimal 2θ bursting neuron, provided of course that all three models meet some simple and generic22
criteria.23

2 RETURN MAPS FOR PHASE LAGS
We developed a computational toolkit for oscillatory networks that reduces the problem of the occurrence24
of bursting and spiking rhythms generated by a CPG network to the bifurcation analysis of attractors in25
the corresponding Poincaré return maps for the phase lags between oscillatory neurons. The structure26
of the phase space of the map is an individual signature of the CPG as it discloses all characteristics27
of the functional space of the network. Recurrence of rhythms generated by the CPG (represented by a28
system of coupled Hodgkin-Huxley type neurons [23]) lets us employ Poincaré return maps defined for29
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Figure 1. (A) Snapshots of the transient states (shown as the blue, green and red spheres) of three weakly-
coupled Hodgkin-Huxley type cells at t = 0 and at t = 10, superimposed with a bursting orbit (grey) in the
3D phase space of the reduced interneuron model [22, 23]. A plane V =Θsyn representing a threshold for
the chemical synapses divides the active “on” phase in which the red cell 3 inhibits the quiescent green/blue
cells 1/2 in the inactive “off” phase. (B) Burst initiations in successive voltage traces define the relative
delays τi1’s and the phase-lags (given by Eqs. (1)) between its constituent bursters; see further details in
[25, 26].

phase lags between spike/burst initiations in the constituent neurons [25, 26] as illustrated in Fig. 1,2 and30
4. With such return maps, we can predict and identify the set of robust outcomes in a CPG with mixed,31
inhibitory/excretory and electrical synapses, which are differentiated by phase-locked or periodically32
varying lags corresponding, respectively, to stable fixed points and invariant circles of the return map.33

Let us introduce a 3-cell network (Fig. 1A) made of weakly coupled HH-like bursters; see the equations34
in the Appendix below. Here, “weakly” means that coupling cannot quite disturb the shape of the35
stable bursting orbit in the 3D phase space of the individual HH-model (Fig. 1A). Weak interactions,36
inhibitory (mainly repulsing) and excitatory/gap-junction (manly attracting) can only affect the phases37
of the periodically varying states of the neurons, represented by the color-coded spheres, blue/green/red38
for cells 1/2/3, on the bursting orbit in the 3D phase space of the given interneuron model. As such39
weak-coupling can only gently alter the phase-differences or phase-lags between the coupled neurons40
(Fig. 2A). Being inspired by neuro-physiological recordings performed on various rhythmic CPGs, we41
employ only voltage traces generated by such networks to examine the time delays, τ21 and τ31 between the42
burst upstrokes on each cycle in the reference/blue cell 1 and in cells 2 (green) and 3 (red). In what follows,43
we will show that like the biologically plausible HH-type networks, 3-cell circuits of coupled 2θ -bursters44
can stable produce similar phase-locked rhythms. They include, but not limited, peristaltic patterns or45
traveling waves, in which the cells burst sequentially one after the other (see Figs. 1 and 3C/E), as well as46
the so-called pacemaker rhythms, in which one cell effectively inhibits and bursts in anti-phase with the47
other two bursting synchronously (Fig. 3B/D). The symmetric connectivity implies such 3-cell networks48
can produce multiple rhythms due to cyclic permutations of the constituent cells (see Fig. 3 below). To49
analyze the existence and the stability of various recurrent rhythms produced by such networks, we employ50
our previously developed approach using Poincaré return maps for phase-legs between constituent neurons.51
We introduce phase-lags defined at specific events in time when the voltage in cells reaches some threshold52

value this signaling the burst initiation (see Fig. 1B). The phase lag ∆φ
(n)
1 j is then defined by a delay between53

This is a provisional file, not the final typeset article 2
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n-th burst initiations in in the given cell and the reference cell 1, normalized over the bursting period:54

∆φ
(n)
12 =

t
(n)
2 − t

(n)
1

t
(n+1)
1 − t

(n)
1

, ∆φ
(n)
13 =

t
(n)
3 − t

(n)
1

t
(n+1)
1 − t

(n)
1

. mod 1, (1)

Figure 2. (A) Slow exponential convergence of initial states of ∆φ21 (yellow curves) and ∆φ31 (purple
curves) to four phase-locked states: {0 ≡ 1, 1

3 ,
1
2 ,

2
3}, in the inhibitory 3-cell motif (4) with weak coupling

β = 0.003. (B) Poincaré return map defined on a unit 2D torus, T2
= S1⊗S1 of two phase-lags, showing

color-coded attraction basins of several fixed points (solid dots of same colors) corresponding to the
phase-locked rhythms by the 3-cell motif. A flatten torus is shown in Fig. 3A.

55

Sequences of phase lags {∆φ
(n)
12 , ∆φ

(n)
13 } defined on module one represent forward trajectories on a 2D56

phase-torus (Fig. 2B). The specific phase-lag values such as 0 (or 1) and 0.5 represent, respectively, in-phase57
and anti-phase relationships of cells 2 and 3 with the reference cell 1. We examine the (∆φ12, ∆φ13)-phase-58
leg structure of the 2D Poincaré return maps (such as one shown in Fig. 3A) of the 3-cell networks by59
initiating multiple trajectories with a dense distribution of initial phase-lags (50×50 grid), and by following60
their progressions over large numbers of cycles. On long runs these trajectories can eventually converge to61
some attractors, one or several. Such an attractor can be a fixed point (FP) with constant values ∆φ

∗
12 and62

∆φ
∗
13 in (1)), which correspond to a stable rhythmic pattern with phase-lags locked (Fig. 2A). All phase63

trajectories converging to the same fixed point are marked by the same color to reveal the attraction basins64
of the corresponding rhythms. This reduces the analysis of rhythmic activity generated by a 3-cell network65
to the examination of the corresponding 2D Poincaré map for the phase-legs. For example, the map shown66
Fig. 3A. reveals the existence of penta-stability in the symmetric circuit generating three pacemakers (blue,67
green and red) and two, clockwise and counter-clockwise, traveling waves (Fig. 3B). These three PM68
rhythms correspond to the blue, green and red FPs around at (0.5,0.5), (0.5,0) and (0,0.5), respectively,69
while two traveling wave pattern are associated with stable FPs located at (1/3,2/3) and (2/3,1/3),70
respectively, in the 2D return map. Other type of attractors can be a stable invariant curve corresponding to71
rhythmic pattern wit (a)periodically varying phase-lags. Such a curve can be a circle on and wrap around72
the 2D torus (see Figs. 2A and 3A). If the map has a single attractor, then the corresponding network is73
mono-stable, otherwise it is a multifunctional or multistable network capable of producing several rhythmic74
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Figure 3. Multistable outputs of the 3-cell homogeneous network with six equal synaptic connections
(β = 0.003). (A) The Poincaré return map for the (∆φ21,∆φ31)-phase lags with five stable fixed points
representing robust three pacemaker (PM) patterns: red at (0, 1

2), green at (1
2 ,0) and blue at (1

2 ,
1
2), and two

traveling wave (TW) rhythmic patterns: yellow clockwise at (1
3 ,

2
3) and teal counter-clockwise at (2

3 ,
1
3).

The color-coded attraction basins of these five FPs are determined by positions of stable sets (separatrices)
of six saddles (gray dots). The origin is a repelling FP of the map with the even number – total eight of
hyperbolic FPs in the map. Panels B-E depict the traces with phases locked to the specific values (indicated
by color-coded dots at top-left corners), corresponding to the selected FPs.

outcomes robustly. The 2D return map: Mn → Mn+1, for the phase-lags can be represented as follows:75

∆φ
(n+1)
21 = ∆φ

(n)
21 +µ1 f1 (∆φ

(n)
21 ,∆φ

(n)
31 ) ,

∆φ
(n+1)
31 = ∆φ

(n)
31 +µ2 f2 (∆φ

(n)
21 ,∆φ

(n)
31 )

(2)

with small µi being associated with weak coupling; fi are some undetermined coupling functions such that76

their zeros: f1 = f2 = 0 correspond to fixed points: ∆φ
∗
j1 = ∆φ

(n+1)
j1 = ∆φ

(n)
j1 of the map. These functions,77

similar to phase-resetting curves, can be numerically evaluated from the simulated data on all trajectories78

{∆φ
(n)
21 ,∆φ

(n)
31 } (see Fig. 4C). By treating fi as partials ∂F/∂φi j, one may try to restore a “phase potential”79

– some surface F (φ21 ,φ31) =C (see Fig. 4). The shape of such a surface defines the location of critical80
points associated with FPs – attractors, repellers and saddles of the map. With this approach one can try81
to predict bifurcations due to landscape transformations and therefore to interpret possible dynamics of82
the network as a whole. Figure 4A and B are meant to give an idea how the potential surface may look83
like in the case of the 3-cell circuit with only two stable traveling wave patterns and in the case of three84
co-existing pacemakers only, respectively.85

86
87
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Figure 4. Critical points of the sketched “pseudo-potentials” with periodic boundary conditions reveal
the location of potential dwells – attractors, as well saddles (including one with six separatrices in (B))
and repellers in the (φ21, φ31)-phase surface. These configurations correspond the network with only
two traveling waves and with only 3 pacemakers. (C) A computational reconstruction of a pseudo-
potential/coupling function corresponding to the return map in Fig. 3A.

3 MINIMALISTIC 2θ -BURSTER
The concept of the 2θ -burster is inspired by the dynamics of endogenous bursters (like ones shown in Fig. 1)88
with two characteristic slow phases often referred to as depolarized tonic-spiking and hyper-polarized89
quiescent ones. These phases are often referred to as “on” or active and “off” or inactive depending on90
whether the membrane voltage is above or below the synaptic threshold. During the active phase the91
pre-synaptic cell releases neurotransmitters to inhibit or excite other cells on the network, while during the92
inactive phase, the cell does not “communicate” to anyone. This is a feature of chimerical synapses unlike93
the electric synapses that let cells interact all the times regardless of the voltage values. The predecessor of94
the 2θ -burster is the so-called “spiking” θ -neuron [34]. Mathematically, it is a normal form for the plain95
saddle-node bifurcation on a circle through which two equilibrium state, stable and repelling, merge and96
disappear. After the phase point keeps traverse the circle. That is why this bifurcation is referred to as a97
homoclinic Saddle-Node bifurcation on an Invariant Circle, or SNIC for short. The notion of the θ -neuron98
capitalizes on the feature of the saddle-node bifurcation casing the well-known bottle-neck effect that99
results in slow and fast time-scale dynamics in such systems, see Fig. 5A. Recall that a similar saddle-node100
bifurcation controlling the duration of the tonic-spiking phase and hence the number of spikes is associated101
with a codimension-one bifurcation known as the blue-sky catastrophe [23, 27, 28, 29, 30].102

The key feature of the 2θ -neuron given by103

θ
′
= ω − cos2θ +α cosθ , mod 1 (3)

is the presence of two saddle-node bifurcations giving rise to the two slow phases into its dynamics,104
alternating by fast transitions in between, see Fig. 5B. Likewise endogenous bursters with two such slow105
states, the durations of the active tonic-spiking and the quiescent phases can be controlled independently in106
the 2θ -neuron too, respectively, the active “on” state and the inactive “off” state due to the same bottleneck107
post-effects caused by the saddle-node bifurcations. This lets us regulate the duty cycle of bursting, which108

Frontiers 5
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Figure 5. Comparison of the oscillatory dynamics generated by the spiking θ -neuron and the 2θ -burster.
Panels A and C present snapshots of typical trajectories generated by both models on a unit circle S1

(parametrized using Cartesian coordinates: x(t)= sin(θ(t)) and y(t)=−cosθ(t)) with the origin 0 at 6pm.
(A) Clustering of purple spheres near the origin is due to a bottleneck post-effect caused by a saddle-node
bifurcation (SNIC) in the θ model, while the 2θ -burster in (C) features two such bottleneck post-effects
due to two heteroclinic saddle-node connections causing the stagnation of gray spheres near the top, “on”
state and the inactive “off” state of the 2θ -burster and fast transitions in between. (B) Spiking trace (purple)
of the θ -neuron, being overlapped with 2-plateau traces of the 2θ -neuron with three values of the duty
cycles ≃ 50%, 30% and 70% (solid, short- and long-dashed gray curves, resp.)

is the fraction of the active-state duration compared to the burst period, see Fig. 5B. As seen from Fig. 5, the109
θ -model was meant to replicate phenomenologically fast spiking cells, while the “spike-less” 2θ -neuron110
mimics burster dynamics instead. In what follows we showcase that the network dynamics of a 3-cell motif111
of inhibitory coupled 2θ -bursters demonstrate the key properties observed in such motifs composed of112
Hodgkin-Huxley-type bursters (see Fig. 1).113

114

First, let us observe from Eq. 3 that the dynamics of the individual 2θ -burster is driven these following115
terms ω − cos2θ . Whenever 0 < ω ≤ 1, there exist two pairs of stable and unstable equilibria: one pair116
is near the bottom θ ≃ 0, while the other is at the top around θ ≃ π . The stable equilibria are associated,117
respectively, with the hyperpolarized active and depolarized quiescent states of neurons. Increasing ω > 1118

Figure 6. (A) Sampling the moments in phase traces, yi(t) = −cos(θi(t)), plotted against time, when
they reach a synaptic threshold θsyn = 0, defines a sequence of the phase lags (τ

(n)
21 ,τ

(n)
31 ) between

upstrokes in the reference, blue neuron and other 2θ -neurons coupled in the 3-cell network. (B) Parametric
representation of the 1D phase space of coupled 2θ -bursters traversing counter-clockwise (long gray arrows
indicating rapid transition between on-off states) on a unit circle S1. Small-downward blue and red arrows
illustrating the inhibition perturbations from the active green cell above the synaptic threshold that delays
the forthcoming upstroke of the blue cell, and speeds up the red cell toward the inactive phase.

This is a provisional file, not the final typeset article 6
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makes the 2θ -burster oscillatory through two simultaneous (if α = 0) saddle-node bifurcations (SNIC)119
on a unit circle S1, which is its phase space Moreover, as longer as ω = 1+∆ω , where 0 < ∆ ≪ 1, the120
2θ -burster possesses two slow phases: the active “on” state near θ = π , and the inactive “off” state near121
0 on S1. These slow states are alternated with fast counter-clockwise transitions, which will be referred,122
respectively, to as an upstroke and a downstroke, For greater values of ω , the active and inactive phases123
are defined bore broadly: π/2 < θ ≤ 3π/2 and 3π/2 < θ ≤ π/2, respectively. This is convenient as the124
inactive phase remains below the synaptic threshold, which is set at θth = π/2 so that cosθth = 0 for sake of125
simplicity, thus equally dividing the unit circle (see Fig. 6A). The duty cycle of the 2θ -burster is controlled126
by the term α cosθ , provided that it remains oscillatory as long as ω − ∣α∣ > 1. Note that when α = 0, the127
duty cycle of bursting is 50% and the corresponding traces have two even plateaus (see Fig. 5B). The active128
or inactive phases can be extended or shortened, respectively, with α < 0 or with α > 0.129

130
131

4 3 EQUATIONS FOR 3-CELL NETWORK
A 3-cell circuit of the 2θ -bursters coupled with chemical synapses is given by the following system:132

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ
′
1 = ω − cos2θ1+α cosθ1−[ β21

1+ ek cosθ2
+

β31

1+ ek cosθ3
] ⋅[1−

2
1+ ek sinθ1

],

θ
′
2 = ω − cos2θ2+α cosθ2−[ β12

1+ ek cosθ1
+

β32

1+ ek cosθ3
] ⋅[1−

2
1+ ek sinθ2

],

θ
′
3 = ω − cos2θ3+α cosθ3−[ β13

1+ ek cosθ1
+

β23

1+ ek cosθ2
] ⋅[1−

2
1+ ek sinθ3

],

mod 1. (4)

The 2θ -burster are coupled in the network using the fast inhibitory synapses driven by the fast-threshold133

modulation [33]. It is due to the positive “sigmoidal” term [ 1
1+ ek cosθi

] that, rapidly ((here k = 10) varying134

between 0 and 1, triggers an influx of inhibition flowing from the pre-synaptic neuron into the post-synaptic135
neuron, as soon as the former enters the active on-phase above the synaptic threshold cosθth = 0, i.e.,136
π/2 < θi < 3π/2. Note that the negative sign of this term makes the synapse inhibitory; replacing it with137
“+” makes the synapse excitatory because it would increase the rate of θ

′ during the upstroke, contrarily138
to slowing the upstroke down as in the inhibitory case. The strength of the coupling is determined by the139
maximal conductance values βi j.140

The last term [1− 2
1+ek sinθ ], breaking the symmetry, converts the synaptic input into qualitative inhibition.141

Namely, its sign is switched from + to - upon crossing the values θ = 0 and θ = π . During the fast upstroke,142
when 0 < θ < π , the this term is positive, thereby ensuring that inhibition does slow down or delay the143
transition into bursting. When π < θi < 2π during the fast downstroke, this terms [1− 2

1+ek sinθ ] < 0 to144
unsure that the inhibition speeds up the transition from the active (tonic-spiking) phase bursting into145
the inactive (quiescence) phase faster. This is phenomenologically consistent with neurophysiological146
recordings as inhibition projected onto the post-synaptic burster typically shortens the burst duration and147
extends the interburst intervals. Alternatively, this term can be replaced with [1− 1

1+ek sinθ ] as it breaks the148
symmetry was well and only acts during the upstroke of bursting.149
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The electrical coupling or the gap junction between the neurons is handled by the another term150
−Celec sin(θpre− θpost). It slows down the rate θ

′
post when θpost > θpre and speeds it up if θpost < θpre.151

The conductivity coefficient Celec is to be set around two orders of magnitude smaller than β -values to152
maintain a balanced effect in the network. When Celec and β are of the same magnitude, the dynamics of153
network are solely dictated by the electrical coupling with the inhibitory synapses insignificantly affecting154
it.155

156
157

5 POINCARÉ RETURN MAPS FOR THE PHASE-LAGS. RESULTS
Figure 6A shows how phase-lags between the are introduced (here, cell 1 (blue) is the reference one)158
between the three networked 2θ -bursters turning counter-clockwise on the unit circle S1 (panel B). Observe159
from this figure that inhibition generated by the green cell 2 in the active slow phase near θ = π above the160
synaptic threshold (given by cos(thetath) = 0) brings the other two cells closer to the bottom quiescent161
state at θ = 0, by accelerating the red burster 3 on the downstroke, and by slowing down the blue burster 1162
on the upstroke.163

Following the same approach used in the weakly coupled HH-type models above, we first create a164
uniform distribution of initial phases on S1, and therefore the phase-lags between the three 2θ -bursters.165
Next we integrate the network (4) over a large number of cycles, and record burst initiations (see Fig. 5A)166
to determine the phase-lags between the reference cell 1 and two other cells and to what phase locked167
states they can converge with increasing number of the cycles. This approach is illustrated in Fig. 2A168
for the symmetric 3-cell motif composed of identical 2θ -bursters and equal inhibitory synapses. The169
corresponding 2D Poincaré return map, with the co-existing stable fixed points and saddles is shown in170
Figs. 3. By stitching together the opposite sides of this map, we wrap it around a 2D torus as shown in171
Fig. 2B.172

The fixed points and their attraction basins are coded with different colors in the map. For example, the173
Poincaré return map for the (∆φ21,∆φ31)-phase lags represented in Fig. 3A has five stable fixed points174
representing robust three pacemaker FPs located at: red (0, 1

2), green at (1
2 ,0) and blue at (1

2 ,
1
2), and two175

traveling-wave ones: yellow clockwise at (1
3 ,

2
3) and teal counter-clockwise at (2

3 ,
1
3). The borders of the176

attraction basins of these five FPs are determined by positions of stable sets (separatrices) of six saddles177
(gray dots). The origin is a repelling FP of the map. It totals up to eight hyperbolic FPs in the map.178

Let us underline another handy feature of the 2θ -burster paradigm. Namely, we it we can easily detect179
and explore repelling FPs or invariant circles, if any, existing in the 2D Poincaré map, by reversing180
the integration direction of system (4), i.e., multiplying the right-hand sides by -1 lets one simulate the181
network in backward time. This reverses the direction and spin trajectories clockwise on S1, whereas the182
backward-time integration will make solutions dissipative systems run to infinity.183

184
185

5.1 Symmetric Motif186

It will be shown below that the 2θ -bursters weakly coupled in the 3-cell networks, symmetric, asymmetric187
and with mixed synapses, can generate the same stable rhythms as the networks of biologically plausible188
HH-type models. We will also discuss the bifurcations occurring in the networks and corresponding maps as189
the synaptic connectivity or intrinsic temporal characteristics of the 2θ -bursters are changed. Bifurcations190
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Figure 7. Bifurcations of FPs in the (∆φ21,∆φ31)-return map for the symmetric motif as the coupling
β -parameter and the duty cycle (via variations of α) are changed; parameters: β -values are
[0.001 ,0.003, 0.01, 0.03] from top to bottom labeled A to D, resp., while α-values are [-0.11,-0.05,0.0,0.11]
from left to right labeled, 1 through 4, respectively, with 50% DC at α = 0.0 in column 3. With larger
β -values, the rate of convergence to the FPs increases. The TW-rhythms dominate the network dynamics
when the DC is about 50%, as seen in the middle columns. The PM-rhythms become dominant at small
and large DC-values, as depicted in the outer panels.

in the system are identified and classified by a change of the stable phase rhythms which can be due to191
the stability loss of a particular FP, or when it merges with a close saddle so both disappear through a192
saddle-node bifurcation.193

Let us first consider a symmetric network with two bifurcation parameters: the coupling strength β = βii194
(i = 1,2,3) and the α-parameter in Eq. (3) that controls the duty cycle (DC) of the 2θ -bursters. We use195

Frontiers 9



A. Kelley et al. 2θ -burster for rhythm-generating circuits

Figure 8. (A) “King of the mountain” network motif with two synapse strengths, β13 and β12, increased
(indicated by darker connections), relative to the other synapse strengths. (B) The first of three (∆φ21,∆φ31)
return maps, with β13 and β12 synaptic strengths slightly greater than the other β s, the (blue) attraction
area extends so that the two saddles nearest the blue PM at (1

2 ,
1
2), move away from the blue PM, closer

towards the yellow and teal TWs at (1
3 ,

2
3) and (2

3 ,
1
3), respectively. (C) With further increase of β13 and

β12, these saddles and TWs merge with and annihilate each other through saddle-node bifurcations, and
the blue PM basin grows. (D) At greater β13 and β12 values, the network becomes a winner-take-all, blue
PM winning, after the red and green PMs, at (1

2 ,0) and (0, 1
2), respectively, vanish through subsequent

saddle-node bifurcations. The parameters are: ω = 1.15, α = 0.07, and β = 0.003 except β13 and β12 =
0.0038, 0.004, 0.015 for panels B-D.

five different DC-values as α is varied from -0.11 to 0.11l while synaptic strength is increased through four196
steps from β = 0.0001 through 0.1. The results are presented in Fig. 7. The Panels A2/3 represent the most197
balanced, weakly coupled network that can produce all five bursting rhythms with the DC 50%. One can see198
that increasing the β -value, the saddles separating 2 TWs and 3 PMs move toward the latter ones, and over199
some critical values, 3 pairs: a saddle and the nearest stable PM merger and vanish simultaneously. After200
that, the symmetric network can produce two only rhythms: counter- and clockwise TWs corresponding to201
the teal and yellow stable FPs at (1

3 ,
2
3) and (2

3 ,
1
3), respectively. This would correspond to the case of the202

“pseudo-potential” depicted in Fig. 4A.203

The stable PMs are promoted or dominate the dynamics of the symmetric at the extreme α-values204
corresponding to the bursting rhythms with short or long burst durations. Once can compare panels, say205
A1 and D4 reveal that this time, the separating saddles group around the stable TWs to minimize their206
attraction basins, and hence the likelihood of the occurrence of these rhythms in the network. These case207
would correspond to the “pseudo-potential” depicted in Fig. 4B.208

209
210
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5.2 “King of the mountain” motif211

The first asymmetric case considered is a motif termed the King of the Mountain. In this modeling212
scenario both outgoing inhibitory synapses from the given cell, here the reference blue burster 1 one, are213
evenly increased in the strength, see Fig. 8A. Observe that such a configuration breaks down both circular214
symmetries supporting traveling waves in the network. Let us start with Fig. 8B: no surprise that with215
initial increase in β1,2/3, two saddles shift away from the blue PM at (0.5,0.5) toward two TWs, then merge216
with them to disappear pair-wisely. Next, as β1,2/3 is increased further, two other saddles annihilate the217
green and red PMs through similar saddle-node bifurcations (Fig. 8C). At the aftermath, the 3-cell network218
with a single burster generating the repulsive inhibition much stronger than the other two cells becomes a219
monostable one producing a single pacemaking rhythm with the phase-lags locked at (0.5,0.5).220

221
222

5.3 Mono-biased motif223

Figure 9. Mono-biased network motif (F) with one different synapse due to increasing β21. (A) The first
of five (∆φ21,∆φ31) return maps, an increase in β21 value breaks down a counter-clockwise symmetry so
that the attraction basin (teal) of the corresponding TW at (2

3 ,
1
3) shrinks as a nearby saddle moves closer to

it and away from the green PM at (1
2 ,0) (A and B). (C) With further increase of β23, the counter-clockwise

TW at (2
3 ,

1
3) vanishes through a saddle-node bifurcation after merging with the nearest saddle, followed by

another saddle-node bifurcation eliminating the red PM at (0, 0.5) (D). At greater β23 values the green PM
(1

2 ,0) encompasses the majority of the network phase space, along with the blue PM at (1
2 ,

1
2) preserving

the size of its attraction basin. The parameters are: ω = 1.15, α = 0.07, and β ’s = 0.003 except β21 =
0.00042, 0.0045, 0.01, 0.02 for panels A-D.

We refer as a mono-biased motif to another asymmetric the network with a single different synapse: in224
this case the strength β21 of the outgoing synapse from cell 2 to cell 1 is increased, which violates the225
circular symmetry supporting the counter-clockwise traveling wave in the network, see Fig. 9F. So, as β21226
is increased the counter-clockwise stable FP at (2

3 ,
1
3) first disappears through a saddle-node bifurcation,227

as seen in Fig. 9A/B. Because this was the saddle between this TW and he green PM, then the attraction228
basin of the latter increases after the first bifurcation in the sequence. The next saddle-node bifurcation229
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eliminates the red stable FP at (0, 0.5). The reasoning is the following: for this rhythm to persist the red PM230
is to evenly inhibit both green and blue PMs. However, a growing inhibition misbalance between them is231
no longer reciprocal. As we pointed out earlier, the stronger inhibition from cell 2 shortens the active phase232
of the blue burster. As so they cannot be longer lined up by the burster 3, which causes the disappearance of233
this PM-rhythm and the FP itself (Fig. 9C). Same arguments can be just to justify the the disappearance of234
the green PM as cell 2 cannot not even inhibit cells 1 and 2 to hold them together as β21 is increased further235
(not shown). This is in the his case is in good agreement with the 3-cell networks of the HH-type bursters.236

Figure 10. (C) “Pairwise-biased” network motif with two reciprocal synapse strengths β23 and β32,
increased. (A) The first of five (∆φ21,∆φ31) return maps, with β23 and β32 slightly greater than other
synaptic connections the network possesses all five attracting FPs. (B) Evenly increasing β23 and β32 values
breaks down the rotational symmetry of the network so that both TWs at (1

3 ,
2
3) and (2

3 ,
1
3) vanish through

saddle-node bifurcations while that the red and green PM basins equally expand and the blue basin shrinks.
Here, two areas of the map, due to slow transitions throughout the saddle-node ghosts, are color-coded in
black because of uncertainty in ultimate convergence/destination. (D-E) With further increases of β23, β32
values, the blue basin continues to shrink until red and green basins encompass almost all of the areas of
the map. One can see from Panel E that that the red and green PMs at (1

2 ,0) and (0, 1
2) are also about to

merge with nearby saddles and disappear through two homoclinic saddle-node bifurcations (SNIC). (F) At
greater values of β23, β32, the blue PM at (1

2 ,
1
2) has only a very narrow attraction basin, corresponding

to the only phase-locked rhythm, co-exists with a dominant phase-slipping repetitive pattern. The phase
slipping (its trace shown in Panel G) corresponds to a stable invariant curve, passing throughout (1

2 ,0) and

wrapping abound the 2D toroidal phase space to re-emerge near (0, 1
2) and so forth. (G) Five exemplary

episodes of the traces vs. time showing periodically varying (slipping) phase-lags. The parameters are: ω =
1.15, α = 0.07, and β = 0.003, except β23 and β32 are 0.005, 0.006, 0.009, 0.035, in panels A, B, D-F.

237
238
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5.4 Dedicated HCO239

The abbreviation HCO stands for a half-center oscillator, which a pair of neurons coupled reciprocally240
by inhibitory synapses to produce alternating bursting. Such a dedicated HCO is formed by cells 2 and241
3 with stronger synapses due to β23 = β32 in the configuration shown in Fig. 10C. Again with start off242
with the symmetric case depicted in Fig. 10A. One can observe at once, that having the dedicated HCO243
should breaks down the circular symmetries of the network. So, the stable TWs become eliminated first244
as β23 = β32 starts increasing. As these synapses become stronger the attraction basin of the blue PM at245
(0.5 0.5) shrinks substantially, but the FP itself persists. Meanwhile increasing β23 = β32 further creates246
the inhibitory misbalance that males the further existence of the green and red PMs impossible due to247
the factors that we outlines above for the mono-biased motif. Both vanish at the same time due to saddle-248
node bifurcations. However, at the bifurcation both double FPs are connected by a heteroclinic orbit that249
transforms into a stable invariant curve wrapping around the torus (see Fig. 10F). This stable invariant250
curve is associated with a phase-slipping rhythms that recurrently passes slowly through the “ghosts” of251
all four vanished FPs except for the coexisting blue PM, see the fragments of the corresponding traces252
presented in Fig. 10G.253

254
255

5.5 Clockwise-biased motif256

The clockwise-biased motif in this case represents the 3-cell network canter-clockwise connections257
stronger than ones in the opposite direction, see Fig. 11E. This configuration does not break circular258
symmetries of the network but infers that either TW should gain over the opposite one, which should259
result in that their attraction basins should change correspondingly. Figure 11 presents four transformation260
stages of the map as β13, β32 and β21 sequentially increased. With a small increase, the shape of the map261
becomes a bit twisted with the three saddles shifting away from the stable PMs toward the teal TW at262
(2

3 ,
1
3). The further increasing brings the saddle close to the latter one thereby shrinking its attraction basin263

and substantially widening the basin of the clockwise TW at (1
3 ,

2
3). Finally, as some bifurcation threshold264

is reached, the saddles collapse at the stable FP that becomes a complex saddle with three outgoing and265
three incoming separatrices. This means that the counter-clockwise TW becomes an unstable rhythm in266
such biased 3-cell motif that is fully dominated by the clockwise TW rhythm.267

268
269

5.6 Gap junction270

In out last example we consider the symmetric motif with a gap junction or an electric synapses added271
between cells 1 and 2 as shown in Fig. 12C. Recall that a gap junction is bi-directional unlike uni-directional272
chemical synapses with synaptic thresholds. Recall that it is modeled by this term −Celec sin(θpre−θpost)273

that slows down the rate θ
′
post when θpost > θpre and speeds it up if θpost < θpre. Due to this property, the274

electrical like excitatory synapse promote synchrony between such coupled oscillatory cells, which in our275
case between cells 1 and 2.276

Observe that introducing an electrical synapse between only two of the cells of the motif ruins both277
circular symmetries in the system. This is documented in Fig. 12A/B depicting the maps for the networks278
with Celec being increased from zero to 0.0003. Once can see that both TWs were first to vanish from the279
repertoire of the network. Further increase of Celec makes the stable green and blue stable PMs disintegrate280
as both cells become synchronous to burst in alternation with the red cell 3. This completes the consideration281
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Figure 11. (E) Clockwise-biased motif with three synaptic strengths, β13, β32 and β21 sequentially
increased. (A) As all three counter-clockwise synapses are slightly strengthen, saddles shift away from the
three stable PMs, blue at (1

2 ,
1
2), green (1

2 ,0) and red (0, 1
2), towards the teal clockwise TW at (2

3 ,
1
3) (B)

thus shrinking its basin and widening the attraction basin of the dominant counter-clockwise TW (yellow)
at (1

3 ,
2
3) (C). (D) With the stronger synaptic values, the three saddles collapse into the CC TW, which

becomes a complex saddle with three incoming and three outgoing separatrices. The parameters are ω =
1.15, α = 0.07, β = 0.003 except β12, β23 and β31 = 0.0033, 0.025, 0.035, 0.055 for panels A-D.

of the mono-stable network with a relatively strong gap junction between cells 1 and 2 that can only produce282
the only one pacemaker rhythm.283

284
285

6 DISCUSSION
The goal of this paper is to demonstrate the simplicity and usability of the 2θ -bursters to construct286
multistable, polyrhythmic neural networks that have the same dynamical and bifurcation properties as ones287
composed of biologically plausible models of Hodgkin-Huxley type bursters and synapses. Our de-facto288
approach is based on the computational reduction to the clearly visible Poincaré return maps for phase-lags289
extracted from voltage traces. These maps serve as a detailed blueprint containing all necessary information290
about the network in questions, including its rhythmic repertoire, stability of generated patterns, etc, and in291
addition to ability to predict possible transformations before that occur in the system. Our greater goal is to292
gain insight into the fundamental and universal rules governing pattern formation in complex networks of293
neurons. We believe that one should first investigate the rules underlying the emergence of cooperative294
rhythms in basic neural motifs, as well as the role of coupling and in generating a multiplicity of coexisting295
rhythmic outcomes [35].296
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Figure 12. Gap junction in the symmetric 3-cell network (C) is represented by a resistor symbol placed
between cells 1 and 2. (A) At Celec = 0.00015 the network yet generates five phase-locked rhythmic
rhythms with comparably sized basins of attraction. (B) Increased Celec breaks the circular symmetries of
the network that makes both TWs at (1

3 ,
2
3) and (2

3 ,
1
3) vanish through saddle-node bifurcations while the

basin of the red PM at (0, 1
2) widens. (D) With an even greater electrical coupling the red PM becomes

the winner-takes-all after the electrical connection ensures the in-phase synchrony between cells 1 and
2 (C) that eliminates the blue and green PMs in the map after subsequent saddle-node bifurcation. The
parameters are: ω = 1.15, α = 0.07, β = 0.003, and Celec = 0.00015, 0.0003, 0.0015 for panels A, B, and D.
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7 APPENDIX
The time evolution of the membrane potential, V , of each neuron is modeled using the framework of the308
Hodgkin-Huxley formalism, based on a reduction of a leech heart interneuron model:309

CV ′
= −INa− IK2− IL− Iapp− Isyn,

τNah′Na = h∞Na(V)−h,
τK2m′K2 = m∞K2(V)−mK2,

(5)

see [23] and the references therein. Its dynamics involve a fast sodium current, INa with the activation310
described by the voltage dependent gating variables, mNa and hNa, a slow potassium current IK2 with the311
inactivation from mK2, and an ohmic leak current, Ileak:312

INa = ḡNa m3
Na hNa (V −ENa),

IK2 = ḡK2 m2
K2(V −EK),

IL = ḡL (V −EL).
(6)

C = 0.5nF is the membrane capacitance and Iapp = 0.006nA is an applied current. The values of maximal313
conductances are ḡK2 = 30nS, ḡNa = 160nS and gL = 8nS. The reversal potentials are ENa = 45mV,314
EK = −70mV and EL = −46mV. The time constants of gating variables are τK2 = 0.9s and τNa = 0.0405s.315
The steady state values, h∞Na(V), m∞Na(V), m∞K2(V), of the of gating variables are determined by the316
following Boltzmann equations:317

h∞Na(V) = [1+ exp(500(V +0.0325))]−1

m∞Na(V) = [1+ exp(−150(V +0.0305))]−1

m∞K2(V) = [1+ exp(−83(V +0.018+Vshift
K2 ))]−1

.

(7)

Fast, non-delayed synaptic currents in this study are modeled using the fast threshold modulation (FTM)318
paradigm as follows [33]:319

Isyn = gsyn(Vpost−Esyn)Γ(Vpre−Θsyn),
Γ(Vpre−Θsyn) = 1/[1+ exp{−1000(Vpre−Θsyn)}];

(8)

here Vpost and Vpre are voltages of the post- and the pre-synaptic cells; the synaptic threshold Θsyn =−0.03V320
is chosen so that every spike within a burst in the pre-synaptic cell crosses Θsyn, see Fig. 1. This implies that321
the synaptic current, Isyn, is initiated as soon as Vpre exceeds the synaptic threshold. The type, inhibitory or322
excitatory, of the FTM synapse is determined by the level of the reversal potential, Esyn, in the post-synaptic323
cell. In the inhibitory case, it is set as Esyn = −0.0625V so that Vpost(t) > Esyn. In the excitatory case the324
level of Esyn is raised to zero to guarantee that the average of Vpost(t) over the burst period remains below325
the reversal potential. We point out that alternative synapse models, such as the alpha and other detailed326
dynamical representation, do not essentially change the dynamical interactions between these cells [19].327
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