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Abstract We consider finite and infinite all-to-all coupled networks of identical
theta neurons. Two types of synaptic interactions are investigated: instantaneous
and delayed (via first-order synaptic processing). Extensive use is made of the
Watanabe/Strogatz (WS) ansatz for reducing the dimension of networks of identi-
cal sinusoidally-coupled oscillators. As well as the degeneracy associated with the
constants of motion of the WS ansatz, we also find continuous families of solutions
for instantaneously coupled neurons, resulting from the reversibility of the reduced
model and the form of the synaptic input. We also investigate a number of simi-
lar related models. We conclude that the dynamics of networks of all-to-all coupled
identical neurons can be surprisingly complicated.

Keywords Theta neurons · Watanabe/Strogatz ansatz · Bifurcation

Abbreviations
WS Watanabe/Strogatz
SNIC saddle-node on invariant circle
ODE ordinary differential equation
QIF quadratic integrate and fire
OA Ott/Antonsen

1 Introduction

Due to their analytical intractability, many investigations of large networks of model
neurons involve extensive numerical simulation [1–4]. Without any detailed knowl-
edge of the connectivity between neurons, one might assume the simplest form of
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我们考虑有限和无限的全对全同神经元的耦合网络。研究了两种类型的突触相互作用:瞬时和延迟(通过一级突触加工)。广泛使用了Watanabe/Strogatz (WS) ansatz，以降低相同正弦耦合振荡器网络的维数。除了与WS ansatz运动常数相关的简并性外，我们还发现了由简化模型的可逆性和突触输入形式导致的瞬时耦合神经元的连续解族。我们还研究了一些类似的相关模型。我们的结论是，所有对所有耦合的相同神经元网络的动力学可能是令人惊讶的复杂。
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由于分析难度大，许多对模型神经元的大型网络的研究都涉及大量的数值模拟[1 4]。如果对神经元之间的连接没有任何详细的了解，人们可能会假设最简单的连接形式:所有对所有。人们也可以(为了简单起见)假设神经元是相同的。这种高度对称的网络具有典型的吸引子，要么是完美的同步，要么是更一般的同步，其中神经元遵循相同的周期轨道，但它们之间有相移。其他可能的吸引子是簇状态，其中一些神经元子集是完美同步的，或者是部分同步状态，其中单个振荡器显示准周期行为，而网络作为一个整体是周期性的[5,6]。由于系统的对称性，这种网络的可能动力学可能非常复杂[7,8]。
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connectivity: all-to-all. One might also (again, for simplicity) assume that the neurons
are identical. Typically such highly-symmetric networks have as attractors either per-
fect synchrony or more general synchrony, in which neurons follow the same periodic
orbit, but with phase shifts between them. Other possible attractors are cluster states
in which some subsets of neurons are perfectly synchronised, or partial synchrony
in which individual oscillators show quasiperiodic behaviour while the network as a
whole is periodic [5, 6]. The possible dynamics of such networks can be very com-
plicated due to the symmetry of the system [7, 8].

Perfect synchrony corresponds to a form of dimension reduction, since the net-
work is effectively replaced by a single self-coupled neuron. However, the stability
of this state depends on the linearisation of the full dynamics around it. In this paper
we use another form of dimension reduction, the Watanabe/Strogatz (WS) ansatz [9,
10], applicable to all-to-all coupled networks of identical phase oscillators. For the
ansatz to be applicable, the velocity field of an oscillator has to contain only the first
harmonics of the phase variable. The theta neuron [11, 12] is such a model oscillator.

The derivation of a network of coupled phase oscillators from a general weakly-
coupled network of oscillators is well known [7, 13, 14]. Unlike those derivations,
the equation for a theta neuron, involving just one phase variable, is the normal form
of a saddle-node-on-a-circle (SNIC) bifurcation, and will thus describe all neurons
undergoing this bifurcation, at least in some neighbourhood in a parameter space
of the bifurcation. Such a bifurcation leads to the neuron being of Type I [15, 16],
i.e. capable of firing at arbitrarily low frequencies.

A number of previous authors have used the WS ansatz in order to study the dy-
namics of networks of identical all-to-all coupled phase oscillators, but the underly-
ing oscillator models used have been of Kuramoto [17, 18] or Kuramoto–Sakaguchi
type [19–21], or Josephson junctions [22, 23]. We will build on these results, but to
the best of our knowledge, this is the first application to theta neurons.

The structure of the paper is as follows. In Sect. 2 we consider instantaneous
synaptic transmission between neurons, and in Sect. 3 we consider delayed synaptic
transmission, where the delay is due to synaptic processing. Section 4 discusses four
other related types of model neurons, whose networks can be analysed in a similar
way to that in Sect. 2. We conclude in Sect. 5.

2 Instantaneous Synapses

In this section we consider instantaneous synapses in the sense that the synaptic input
to a neuron, in the form of a current, depends on the present state of the neurons
which are connected to it.

2.1 Derivation of Equations

Suppose we have a network of N (3 < N ) identical theta neurons, all-to-all coupled
by instantaneous synapses. The dynamics is described by [24–27]

dθk

dt
= 1 − cos θk + (1 + cos θk)(η + κI) (1)
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完美的同步对应于一种降维形式，因为网络被一个单独的自耦合神经元有效地替代了。然而，这个状态的稳定性取决于它周围的整个动力学的线性化。在本文中，我们使用另一种形式的降维，Watanabe/Strogatz (WS) ansatz[9,10]，适用于相同相位振荡器的所有到所有耦合网络。为了使安萨茨适用，振子的速度场必须只包含相位变量的第一次谐波。神经元[11,12]就是这样一个模型振荡器。
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从一般的弱耦合振子网络推导耦合相位振子网络是众所周知的[7,13,14]。与这些推导不同的是，只涉及一个相位变量的神经元方程是一个环上鞍节点(SNIC)分岔的标准形式，因此将描述所有经历这个分岔的神经元，至少在分岔的参数空间的某个邻域内。这种分岔导致神经元具有I型[15,16]，即能够以任意低的频率放电。
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许多以前的作者使用WS ansatz来研究相同的全对全耦合相振子网络的动力学，但使用的基本振子模型是Kuramoto[17,18]或Kuramoto Sakaguchi型[19 21]或Josephson结[22,23]。我们将以这些结果为基础，但据我们所知，这是第一次应用于theta神经元。
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在本节中，我们考虑瞬时突触的意义，即神经元的突触输入以电流的形式，取决于与之相连的神经元的当前状态。
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for k = 1,2, . . . ,N , where

I = 1

N

N∑

j=1

(1 − cos θj )
2, (2)

κ is the strength of coupling (which could be positive or negative), and η is the input
current to all neurons when uncoupled. The j th term in the sum (2) represents the
pulse of current emitted by the j th neuron as it fires, i.e. θj increases through π . The
function (1 − cos θ)2 is non-zero except when θ = 0, and thus this form of coupling
may be regarded as non-physical, but the pulse can be localised more around θ = π

by increasing the second power in (2) as will be discussed below. Note that each
neuron is actually coupled to itself, but this term is only one out of N in the sum (2),
so will be negligible for large N .

We can write (1) as

dθk

dt
= ω + Im

[
He−iθk

]
, (3)

where ω = η+κI +1 and H = i(η+κI −1). Note that ω is real and H is imaginary.
The WS ansatz [9, 28] states that there is a transformation

tan

(
θk(t) − Φ(t)

2

)
= 1 − ρ(t)

1 + ρ(t)
tan

(
ψk − Ψ (t)

2

)
; k = 1,2, . . . ,N, (4)

giving almost any solution of (1)–(2) (θk) in terms of N constants ({ψk}, k =
1,2, . . . ,N ) and three variables (ρ,Φ and Ψ ), where these variables satisfy the ODEs

dρ

dt
= 1 − ρ2

2
Re

[
He−iΦ

]
, (5)

dΦ

dt
= ω + 1 + ρ2

2ρ
Im

[
He−iΦ

]
, (6)

dΨ

dt
= 1 − ρ2

2ρ
Im

[
He−iΦ

]
. (7)

Thus, while it may seem possible that (for a given initial condition) a solution of (1)–
(2) can explore the full N -dimensional phase space described by the N values of
θk , the solution is actually constrained to lie on a three-dimensional manifold with
coordinates ρ,Φ and Ψ . The dynamics on this manifold will depend on the values of
the constants {ψk}.

There are N variables {θk}, N constants {ψk} and three variables ρ,Φ and Ψ ,
and thus one needs to specify three constraints so that there is a unique relationship
between {θi} and {ψk,ρ,Φ,Ψ }, to determine initial conditions, for example. One
way to do this is to set ρ(0) = Φ(0) = Ψ (0) = 0, so that {ψk} = θk(0). Then in-
tegrate (5)–(7) with ρ(0) = Φ(0) = Ψ (0) = 0 and use the solutions ρ(t),Φ(t) and
Ψ (t) to reconstruct {θk(t)} using (4). Here, the constraints are on ρ(0),Φ(0) and
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Ψ (0). Another set of constraints often taken is [28]

N∑

k=1

eiψk = 0; Re

[
N∑

k=1

e2iψk

]
= 0. (8)

Given the N initial values θk(0), one can usually uniquely determine the values of
ρ(0),Φ(0) and Ψ (0) and {ψk} such that both (4) and (8) hold [9]. “Usually” refers to
solutions for which fewer than half of the neurons have exactly the same state. This
rules out full synchrony, which is often a state of interest; however, we can understand
the fully-synchronous state by simply considering the behaviour of one self-coupled
neuron. We will use (8) unless specified otherwise.

In order to use (5)–(7), we need to write I (and thus ω and H ) in terms of the new
variables and the constants {ψk}. Now [28]

I = 3/2 − 1

N

N∑

j=1

(
eiθj + e−iθj

) + 1

4N

N∑

j=1

[(
eiθj

)2 + (
e−iθj

)2] (9)

= 3/2 − (zγ + z̄γ̄ ) + (
z2γ2 + z̄2γ̄2

)
/4, (10)

where overbar indicates complex conjugate, z = ρeiΦ ,

γ = 1

N

N∑

k=1

1 + |z|−2z̄ei(ψk+Φ−Ψ )

1 + z̄ei(ψk+Φ−Ψ )
= 1

Nρ

N∑

k=1

ρ + ei(ψk−Ψ )

1 + ρei(ψk−Ψ )
(11)

and

γ2 = 1

N

N∑

k=1

(
1 + |z|−2z̄ei(ψk+Φ−Ψ )

1 + z̄ei(ψk+Φ−Ψ )

)2

= 1

Nρ2

N∑

k=1

(
ρ + ei(ψk−Ψ )

1 + ρei(ψk−Ψ )

)2

. (12)

We define

Cn = 1

N

N∑

k=1

einψk (13)

and see that C0 = 1, and from (8), C1 = 0. Using a series expansion of [1 +
ρei(ψk−Ψ )]−1, we can write in the general case

γ = 1 + (
1 − 1/ρ2)

∞∑

n=2

Cn

(−ρe−iΨ
)n

. (14)

For the special case of ψk = 2πk/N , i.e. evenly spaced ψk , Cn = 0 except when n is
a multiple of N , when it equals 1. Then (14) is a geometric series and

γ = 1 + (1 − 1/ρ2)(−ρe−iΨ )N

1 − (−ρe−iΨ )N
(15)

(note that this expression is given incorrectly in [17, 21]).
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In the general case,

γ2 =
∞∑

n=0

(n + 1)
(−ρe−iΨ

)n
[
Cn + 2e−iΨ

ρ
Cn+1 + e−2iΨ

ρ2
Cn+2

]
. (16)

For evenly-spaced ψk ,

γ2 =
∞∑

k=0

(Nk + 1)
(−ρe−iΨ

)Nk +
∞∑

k=1

Nk
2e−iΨ

ρ

(−ρe−iΨ
)Nk−1

+
∞∑

k=1

(Nk − 1)
e−2iΨ

ρ2

(−ρe−iΨ
)Nk−2 (17)

= N

∞∑

k=1

k
(−ρe−iΨ

)Nk +
∞∑

k=0

(−ρe−iΨ
)Nk − 2N

ρ2

∞∑

k=1

k
(−ρe−iΨ

)Nk

+ N

ρ4

∞∑

k=1

k
(−ρe−iΨ

)Nk − 1

ρ4

∞∑

k=1

(−ρe−iΨ
)Nk

(18)

= 1 + (1 − 1/ρ4)(−ρe−iΨ )N

1 − (−ρe−iΨ )N
+ N

(1 − 1/ρ2)2(−ρe−iΨ )N

[1 − (−ρe−iΨ )N ]2
. (19)

Irrespective of ψk , if ρ = 1 then γ = γ2 = 1. If ρ < 1 and {ψk} are uniformly dis-
tributed, then as N → ∞ we see that γ → 1 and γ2 → 1. In these cases (γ = γ2 = 1)
I becomes independent of Ψ and (5) and (6) decouple from (7), i.e. the dynamics
becomes two-dimensional.

An alternative description of the dynamics of (1)–(2) when N = ∞ is given by
writing the continuity equation governing the evolution of the probability density of
θs, p(θ, t) [26]. One can then use the Ott/Antonsen (OA) ansatz [29, 30] to reduce
the dynamics of this evolution equation to a single complex equation for the evolution
of the order parameter z ≡ ∫ 2π

0 p(θ, t)eiθ dθ :

dz

dt
= i(η + kI)(1 + z)2/2 − i(1 − z)2/2 = iωz + H/2 − H̄ z2/2, (20)

where ω and H are as above and I = 3/2 − (z + z̄) + (z2 + z̄2)/4. Substituting
z = ρeiΦ into (20) and taking real and imaginary parts, we recover (5) and (6). Thus
the OA ansatz corresponds to a special case of the WS ansatz: when N = ∞ and the
constants {ψk} are uniformly spread over [0,2π] [28]. Note that while the OA ansatz
gives dynamics on an invariant manifold in the space of all p(θ, t), if the neurons
are identical, the manifold is not attracting, and thus the full dynamics is not given
by (20) and must be described using the WS ansatz [17, 28].
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Fig. 1 (a): Fixed points
of (21)–(22) with ρ = 1. Solid:
stable, dashed: unstable.
(b): Fixed points of (21)–(22)
with Φ = 0. Dash-dotted: focus,
dashed: saddle. κ = 1

2.2 Infinite N , Equally-Spaced Constants

We now consider the case of N = ∞ with uniform density of ψk . Thus we are inter-
ested in solutions of (20), written as

dz

dt
= i(η + κI + 1)z + i(η + κI − 1)

(
1 + z2)/2, (21)

where

I = 3/2 − (z + z̄) + (
z2 + z̄2)/4. (22)

Note that (21)–(22) are invariant under (z, t) �→ (z̄,−t), i.e. simultaneous reflection
in the real axis and reversal of time. This has a significant effect on the possible
dynamics.

2.2.1 Excitatory Coupling

First consider κ = 1. From setting dρ/dt = 0 in (5) and recalling that H is imaginary,
we find two sorts of fixed points of (21)–(22): (i) those with ρ = 1 and (ii) those with
Φ = 0. From (6), those with ρ = 1 satisfy

0 = ω + Im
[
He−iΦ

] = η + κI + 1 + (η + κI − 1) cosΦ, (23)

where

I = 3/2 − 2 cosΦ + cos (2Φ)/2. (24)

These solutions are plotted in Fig. 1(a). Note that these solutions can be found directly
from (1)–(2). For identical neurons, ρ = 1 corresponds to full locking, so all θi are
equal to Φ and a simple trigonometric identity gives (24) from (2).

Solutions of type (ii) with Φ = 0 have z = ρ. From (6), they satisfy

0 = ω + 1 + ρ2

2ρ
Im[H ] = η + κI + 1 + 1 + ρ2

2ρ
(η + κI − 1), (25)

where I = 3/2 − 2ρ + ρ2/2. These solutions (restricted to −1 ≤ ρ ≤ 1 for physical
reasons) are shown in Fig. 1(b). Two solutions are created in a saddle-node bifurcation
as η is increased (at a negative value of η). One is a saddle whose eigenvalues sum
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Fig. 2 (a) Solutions
of (21)–(22) in the z plane, with
arrows showing the direction of
increasing time. Fixed points are
shown with solid squares
(ρ = 1) and triangles (Φ = 0).
η = −0.5, κ = 1. (b) Solutions
for η = 0.5, κ = 1

to zero, and the other is a focus with purely imaginary eigenvalues; these properties
result from the reversibility of the system [31]. These fixed points correspond to splay
states in which all neurons follow the same trajectory but are equally displaced from
one another in time such that average quantities such as z are constant [9, 32, 33].
Note that the solutions shown in Fig. 1(a) collide with the saddle solution in Fig. 1(b)
at (η, z) = (0,1).

A selection of solutions and the fixed points are shown in Fig. 2(a) for η = −0.5.
We see that for these parameter values, initial conditions either tend to the stable fixed
point in the lower half plane (i.e. quiescence), or (if they are in the region enclosed by
the homoclinic orbit to the saddle fixed point) follow one of a continuous family of
periodic orbits. For η > 0, the only remaining fixed point is the focus, and the phase
space (ρ ≤ 1) is filled with a continuous family of periodic orbits (see Fig. 2(b)),
again, as a result of the system’s reversibility.

2.2.2 Inhibitory Coupling

Now consider κ = −0.5. As with excitatory coupling, there are fixed points with
ρ = 1, given by (23)–(24) and shown in Fig. 3(a). For η > 0, there is also a focus
fixed point (a splay state), as shown in Fig. 3(b). This fixed point is surrounded by a
continuum of periodic orbits, as in Fig. 2(b). (Note that for strong inhibition, i.e. κ

large and negative, the situation shown in Fig. 3(a) can become more complex, with
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Fig. 3 (a): Fixed points
of (21)–(22) with ρ = 1. Solid:
stable, dashed: unstable.
(b): Focus fixed point
of (21)–(22) with Φ = 0.
κ = −0.5

multiple stable fixed points. This is due to the finite width of the pulses in (2), and the
region of multistability disappears as the pulses are made narrower.)

In summary, the dynamics of (21)–(22) is non-generic due to their reversible na-
ture, which can lead to the existence of continuous families of neutrally-stable peri-
odic orbits.

2.3 Finite N , Equally-Spaced Constants

We now consider the case of finite N but with equally-spaced {ψk}. Thus we con-
sider (5)–(7) where I depends on Ψ via γ and γ2. First we point out the reversibility
of this system under the transformation (ρ,Φ,Ψ, t) �→ (ρ,−Φ,−Ψ,−t). This trans-
formation interchanges the products zγ and z̄γ̄ , and z2γ2 and its conjugate. This
leaves I (and thus ω and H ) unchanged. Keeping in mind that H is imaginary, we
see that this transformation leaves (5)–(7) unchanged, i.e. they are reversible.

2.3.1 Fixed Points

The fixed points of type (i) with ρ = 1 persist, independent of N , since these solu-
tions have γ = γ2 = 1. The values of Φ are given by solving (23)–(24). However,
these fixed points have arbitrary values of Ψ since dΨ/dt = 0. Regarding the fixed
points of type (ii) that exist for N = ∞ as analysed in Sect. 2.2.1, they had constant
and generically non-zero dΨ/dt . Thus, for finite N , we expect these to appear as
time-dependent orbits, with the amplitudes of fluctuations in ρ and Φ going to zero
as N → ∞. To understand this, assume to a first approximation that ρ is constant.
Then γ and γ2 will have N periods of oscillation as Ψ goes through one period of
oscillation. Thus I,ω and H will all have N oscillations in one period of Ψ and so
will ρ and Φ . Thus the fixed points of type (ii) which exist for infinite N will appear
for finite N as quasiperiodic orbits in which ρ and Φ undergo N oscillations for each
full rotation in Ψ . An example for N = 4 is shown in Fig. 4, where Ψ decreases from
π to −π .

The amplitude of this type of periodic orbit goes to zero exponentially as N → ∞;
see Fig. 5. Even though N is physically an integer, the expressions for γ and γ2 do not
require it to be so. Thus we can, for example, continue the saddle-node bifurcation
seen in Fig. 1(b) as a function of the continuous parameter N . The result is shown in
Fig. 6, where we also show interpolated values at integer N . Interestingly, while the
curve oscillates, the values at integer N are monotonic.
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Fig. 4 The periodic orbit corresponding to the focus fixed point in Fig. 1(b). κ = 1, η = −0.2,N = 4

Fig. 5 max(ρ) − min(ρ) over
one period for the type of
periodic orbit shown in Fig. 4,
as a function of N (circles). The
dashed straight line is the best fit
to the data. κ = 1, η = −0.2

Fig. 6 Location of the
saddle-node bifurcation shown
in Fig. 1(b) as a function of N

(solid curve). The circles show
interpolated values at integer N .
κ = 1

In terms of the original system (1)–(2), the periodic orbit shown in Fig. 4 corre-
sponds to a periodic orbit with all Floquet multipliers having magnitude 1, i.e. com-
pletely neutrally stable. Two of the multipliers are a complex conjugate pair corre-
sponding to the rotation seen in Fig. 2, while the remaining N − 2 are equal to 1.
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Fig. 7 Values of z on the
Poincaré section
α (mod 2π) = 0, dα/dt > 0. 11
different initial conditions were
used, and each orbit is shown
with a different colour.
κ = 1, η = 0.5,N = 4

Fig. 8 Values of z on the
Poincaré section
α (mod 2π) = 0, dα/dt > 0.
Transients of duration 4000
were discarded. 15 different
initial conditions were used, and
each orbit is shown with a
different colour.
κ = −0.5,N = 4, η = 0.6

2.3.2 Other Orbits

Consider the continuous family of periodic orbits which exist in the infinite-N case
for κ = 1 and η sufficiently positive (see Fig. 2(b)). These persist as what seems to
be a continuous family of quasiperiodic orbits. Some are shown in Fig. 7 where we
plot the value of z when α ≡ Φ − Ψ increases through a multiple of 2π .

Now consider the case κ = −0.5. The dynamics in this case seems much more
complex. An example is shown in Fig. 8 for η = 0.6. For some initial conditions, the
dynamics seems quasiperiodic, while for others the orbits appear to be chaotic (as
indicated by a positive Lyapunov exponent, not shown). This mixture of quasiperi-
odic and chaotic behaviour has been previously observed in reversible systems [34]
including a resistively-loaded series array of Josephson junctions also studied using
the WS ansatz [22]. The overall trend for this system is that the dynamics becomes
more regular as η is increased. We leave the investigation of this dynamics for a future
publication.

2.4 Finite N , Non-Uniform ψk

Now consider non-uniformly spaced constants ψk . We follow [28] and distribute
these values along two arcs each of length qπ , where 0 < q ≤ 1 is a parameter.
Choosing N to be even, we have ψk = (1 − q)π/2 − qπ/N + 2πqk/N for k =
1,2, . . . ,N/2 and ψk = (3 − q)π/2 − qπ/N + 2πqk/N for k = N/2 + 1,2, . . . ,N .
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Fig. 9 Location of the
saddle-node bifurcation shown
in Fig. 1(b) as a function of q

for N = 4,10. κ = 1

Fig. 10 Values of z on the Poincaré section α (mod 2π) = 0, dα/dt > 0. q increases left to right, then
top to bottom, in steps of 1/12 starting at q = 1/12 (top left). For each plot, 11 different initial conditions
were used, and each orbit is shown with a different colour. κ = −0.5, η = 0.6,N = 4

For q = 1, this is a uniform distribution, and as q → 0 the distribution tends to the
two points ±π/2. The saddle-node bifurcation shown in Fig. 1(b) moves as a function
q , as shown in Fig. 9. Varying q for κ < 0 also gives a variety of different dynam-
ics, as shown in Fig. 10. Here we see a mixture of quasiperiodic and more complex
behaviour, as seen in Fig. 8.

2.5 Summary

In summary, for instantaneous synapses of the form studied here, there may be con-
tinuous families of periodic orbits (for drive η > 0 and for some η < 0 if κ > 0) in the
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infinite-N uniformly distributed ψk case. This is due to the reversibility of (21)–(22).
For finite N , some of these orbits become quasiperiodic, with some initial conditions
showing either quasiperiodic or more complex types of behaviour. This type of net-
work can be thought of as having two sources of degeneracy: even if the constants
{ψk} are fixed, depending on parameters, there may be continuous families of neu-
trally stable periodic or quasiperiodic orbits. Choosing different initial conditions for
the WS variables ρ,Φ and Ψ selects between these orbits. Secondly, even for fixed
initial conditions of the WS variables, there are many continuous families of orbits
that can be obtained by varying {ψk}.

Note that if the system is bistable (for excitatory coupling and sufficiently small
negative drive η), then even for fixed initial values of ρ,Ψ and Φ , changing either
N (for evenly spaced constants ψk) or the distribution of ψk (for fixed N ) can lead
to very different outcomes, as these changes can move the system from one basin of
attraction to another.

3 Synaptic Dynamics

We now consider including some synaptic processing, which amounts to delaying the
synaptic input, still in the form of a current input. We thus replace (2) with

τ
dI

dt
= u − I, (26)

where

u = 1

N

N∑

j=1

(1 − cos θj )
2. (27)

The network of neurons is still described by (5)–(7) but with the addition of

τ
dI

dt
= 3/2 − (zγ + z̄γ̄ ) + (

z2γ2 + z̄2γ̄2
)
/4 − I, (28)

where z, γ and γ2 are as in Sect. 2.1.

3.1 Infinite N , Equally Spaced Constants

Repeating analysis as in Sect. 2.1, we now have

dz

dt
= i(η + κI + 1)z + i(η + κI − 1)

(
1 + z2)/2, (29)

τ
dI

dt
= 3/2 − (z + z̄) + (

z2 + z̄2)/4 − I. (30)

Fixed points of this pair of equations are the same as those of (21)–(22), but the
stability of some of them has changed. Fixed points of type (i) shown in Fig. 1(a)
gain another negative eigenvalue. The focus fixed point shown in Fig. 1(b) becomes
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Fig. 11 Frequency of the stable
periodic orbit of (29)–(30).
τ = 1, κ = −0.5

stable, while the saddle fixed point in that figure remains a saddle, but with two stable
directions. The continuum of periodic solutions shown in both panels of Fig. 2 is
destroyed, and the system has either one stable fixed point, or two (in the region
of bistability for η < 0 but not too negative). In terms of attractors, (29)–(30) show
what one would expect from an excitatorily self-coupled network. We have stable
quiescence for large negative drive, bistability between quiescence and an active splay
state for small negative drive, and a stable splay state for positive drive.

For the case of inhibitory coupling, fixed points of type (i) shown in Fig. 3(a)
gain another negative eigenvalue (as for excitatory coupling). The focus fixed point
in Fig. 3(b) now has one stable direction and two unstable ones. The continuum of
periodic orbits seen for η > 0 mentioned in Sect. 2.2.2 is now replaced by a single
stable periodic orbit with ρ = 1. The frequency of this orbit increases from zero as η

does, as shown in Fig. 11.

3.2 Finite N , Equally Spaced Constants

As was found in the case of instantaneous synapses, solutions with ρ = 1 are un-
affected by this change. However, for κ = 1, the stable fixed point that exists for
η > 0 and N = ∞ now has small amplitude oscillations, as discussed in Sect. 2.3.1.
The size of these oscillations decays exponentially with N , as was seen in Fig. 5.
The only difference with the case discussed in Sect. 2.3.1 is that this low-amplitude
periodic orbit is stable, whereas the one discussed in Sect. 2.3.1 was neutrally stable.

3.3 Finite N , Unequally Spaced Constants

Here we distribute the constants ψk as in Sect. 2.4 and investigate the effects of
varying q on the amplitude of the oscillations in ρ of the stable periodic orbit that
exists for κ = 1, η = 1, τ = 1. The results are shown in Fig. 12. For q = 1, we saw
previously that the amplitude of oscillations decays exponentially to zero as N in-
creases. However, for q < 1, the amplitude is always finite and has a limiting value
as N → ∞. As q → 0, the amplitude increases and the value of N becomes less
relevant. This can be seen by examining the coefficients Cn (13). For q = 0, the first
N/2 of ψk equal π/2, while the last N/2 equal −π/2. Inserting this into (13), we
find that Cn = 0 for n odd, and C2n = (−1)n, independent of N .

3.4 Summary

In summary, adding synaptic dynamics of the form examined in this section de-
stroys the reversibility of (21) and thus the non-generic behaviour of solutions of
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Fig. 12 Amplitude (in ρ) of the
stable periodic orbit of (29)–(30)
as a function of q for
N = 4,6,20.
τ = 1, κ = 1, η = 1

that equation. In terms of attractors, (29)–(30) show what one would expect from a
self-coupled network. The only effect of having finite N is to add small fluctuations
to the stable splay state.

However, in the full network (1)–(2) there can still be continuous families of at-
tracting periodic orbits near the splay state of (29)–(30) which differ in their initial
conditions, and therefore their {ψk}. The way to understand this is to imagine pick-
ing {θi(0)}. Setting ρ = Ψ = Φ = 0 gives {ψk}, via (4), which are now fixed. (These
{ψk} will typically not satisfy (8).) We can integrate (5)–(7) and (28) with these {ψk}
and essentially arbitrary ρ(0),Ψ (0),Φ(0) and I (0), and since κ and η are both pos-
itive, this system will have only one attractor. On this attractor the dynamics will be
determined by {ψk}. Hence different initial conditions of the {θi(0)} give different
attractors. These orbits have N − 2 Floquet multipliers of 1 and three which are less
than 1 in magnitude. These three are associated with the stability of the splay state
fixed point of (29)–(30).

4 Other Similar Models

In this section we discuss several similar models and consider the case of identical
oscillators.

4.1 Gap Junction Coupling

Here we consider a network of all-to-all gap junctionally coupled theta neurons.
Laing [25] showed, using the equivalence of a theta neuron and a quadratic integrate-
and-fire neuron [35], that a network of N identical gap junctionally coupled theta
neurons can be written as follows:

dθj

dt
= 1 − cos θj − g sin θj + (1 + cos θj )(I + gQ), (31)

where g is the strength of coupling, I is a constant input, and

Q = 1

N

N∑

k=1

sin θk

1 + cos θk + ε
, (32)
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Fig. 13 (a): Fixed point of (37)
with ρ �= 1. (b): Fixed points
of (37) with ρ = 1. Solid: sink;
dashed: source; dash-dotted:
saddle. g = 0.5, ε = 0.01. The
sum in (34) is truncated after
100 terms

where 0 < ε � 1. We can write (31) as

dθj

dt
= ω + Im

[
He−iθj

]
, (33)

where ω = 1 + I + gQ and H = g + i(I + gQ − 1). Thus the solutions of (31)
can be described by the three ODEs (5)–(7) with the above definitions of ω and H .
Extending the results of Laing [25], we find that

Q =
∞∑

m=1

bmγmzm + c.c., (34)

where z = ρeiΦ , “c.c.” indicates the complex conjugate of the previous term,

bm = i(rm+1 − rm−1)

2(r + 1 + ε)
(35)

r ≡ √
2ε + ε2 − 1 − ε and

γm ≡ 1

N

N∑

k=1

(
1 + |z|−2z̄ei(ψk+Φ−Ψ )

1 + z̄ei(ψk+Φ−Ψ )

)m

. (36)

For N = ∞ and equally-spaced ψk , one can show [28] that all γm = 1 and thus (5)–
(6) are sufficient to describe this system. Written in complex form, (5)–(6) are

dz

dt
= i(1 + I + gQ)z + [

g + i(I + gQ − 1)
]
/2 − [

g − i(I + gQ − 1)
]
z2/2. (37)

Note that unlike (21)–(22), equation (37) with (34) is not invariant under (z, t) �→
(z̄,−t) if g > 0. In a similar way to the synaptically coupled network, (37) has two
fixed points with ρ = 1 for I < 0 (these correspond to all neuron states being equal).
From (5)–(6), these satisfy

0 = I + gQ + 1 + (I + gQ − 1) cosΦ − g sinΦ, (38)

which could also be derived directly from (31). These fixed points are shown in
Fig. 13(b).
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For large and negative I , the fixed points with ρ = 1 are a source and a sink,
and there exists another unphysical saddle fixed point with ρ > 1 (Fig. 13(a)). As I

is increased, the unphysical solution is involved in a transcritical bifurcation with the
source fixed point having ρ = 1, and it enters the unit circle. As I is increased through
zero, the synchronous fixed points are destroyed in a saddle-node on invariant circle
(SNIC) bifurcation, leading to synchronous oscillations with ρ = 1, with a source
fixed point inside the unit circle.

The only attractors for this system have ρ = 1, and for these it is clear that all
γm = 1 for finite N and any ψk , and thus their dynamics will still be described by (37)
in this case. Solutions with ρ < 1 (none of which are attracting) will, however, be
described by (5)–(7), and their dynamics will depend on N and the distribution of ψk .

4.2 Conductance Dynamics

Coombes and Byrne [36] considered a model in which synaptic input was in the form
of a current, equal to the product of a conductance and the difference between the
voltage of a quadratic integrate-and-fire neuron and a reversal potential. A particular
case of their model can be written as follows:

dθj

dt
= 1 − cos θj + (1 + cos θj )

[
η + g(t)Vsyn

] − g(t) sin θj , (39)

where η is a constant drive, Vsyn is the reversal potential (positive for excitatory cou-
pling, negative for inhibitory one), and

g(t) = 2k

N

N∑

j=1

δ
(
θj (t) − π

)
, (40)

where k is the coupling strength (0 < k) and δ is the Dirac delta. Equation (39) can
be written as follows:

dθj

dt
= ω + Im

[
He−iθj

]
, (41)

where ω = 1 + η + gVsyn and H = g + i(η + gVsyn − 1). Thus, as in Sect. 4.1, the
solutions of (39) can be described by the three ODEs (5)–(7) with these definitions
of ω and H . We have

g = κ

[
1 +

∞∑

m=1

(−z)mγm + c.c.

]
, (42)

where z = ρeiΦ , κ = k/π , and γm is given in (36). For infinite N and equally spaced
ψk , the system is described by

dz

dt
= i(1 + η + gVsyn)z + [

g + i(η + gVsyn − 1)
]
/2

− [
g − i(η + gVsyn − 1)

]
z2/2, (43)
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where all γm = 1. Synchronous fixed points have ρ = 1 and g = 0, and thus satisfy
0 = 1 + η + (η − 1) cosΦ , which we could obtain directly from (39). These fixed
points only exist for η ≤ 0.

For excitatory coupling (Vsyn = 2, κ = 1), the fixed points are qualitatively the
same as in Fig. 1, although the pair with ρ �= 0 do not have Φ = 0. This pair (analo-
gous to those in panel (b) of Fig. 1) are a stable focus and a saddle, just as in Sect. 3.1,
leading to a region of bistability. For inhibitory coupling (Vsyn = −2, κ = 1), the fixed
points are qualitatively the same as in Fig. 3; although, again, the fixed point for η > 0
does not have Φ = 0, and it is a stable focus.

We note that this model does not have the reversibility of that in Sect. 2, and thus
none of the non-generic behaviour seen there. The analysis of this model for finite N

should be similar to that in Sect. 3, but we do not present the results here.

4.3 Winfree Model

The Winfree model of N pulse-coupled oscillators dates from 1967 [37–39] and is
written for identical oscillators as

dθi

dt
= Ω + ε

Q(θi)

N

N∑

j=1

P(θj ), (44)

where we choose Q(θ) = sinβ − sin (θ + β) and P(θ) = an(1 + cos θ)n where an is
a constant such that

∫ 2π

0 P(θ)dθ = 2π . The function Q is the phase response curve
of an oscillator, which can be measured experimentally or determined from a model
neuron [40], and P(θ) is the pulsatile signal sent by a neuron whose state is θ . We
can write (44) as

dθi

dt
= ω + Im

[
He−iθi

]
, (45)

where ω = Ω + εσh and H = εe−iβh and

h = 1

N

N∑

j=1

P(θj ). (46)

Thus the solutions of (44) can be described by the three ODEs (5)–(7) with the above
definitions of ω and H . To be concrete, choose n = 2, in which case

h = 1 + 2(zγ + z̄γ̄ )/3 + (
z2γ2 + z̄2γ̄2

)
/6, (47)

where z = ρeiΦ and γ and γ2 are as given in (11)–(12). As for the network of theta
neurons, in the case of N = ∞ and equally-spaced ψk , γ = γ2 = 1 and (7) decouples
from (5)–(6), which are, for this system,

dρ

dt
= εh

(
1 − ρ2

2

)
cos (Φ + β), (48)
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Fig. 14 Fixed points of the
system of Winfree oscillators,
(48)–(49). (a): Φ = π/2 − β .
(b): ρ = 1. Solid: sink; dashed:
source; dash-dotted: saddle.
Parameters: β = 0.1

dΦ

dt
= 1 + εh

[
sinβ −

(
1 + ρ2

2ρ

)
sin (Φ + β)

]
, (49)

where we have rescaled time so that Ω = 1, and h = 1 + (4ρ/3) cosΦ + (ρ2/3) ×
cos (2Φ). Equations (48)–(49) are equations (12a) and (12b) in [37] once identical
oscillators are considered. Equations (48)–(49) have two types of fixed point: (i) one
for which Φ = π/2 − β , with ρ satisfying

0 = 1 + ε
[
1 + (4ρ/3) sinβ − (

ρ2/3
)

cos (2β)
][

sinβ − (
1 + ρ2)/(2ρ)

]
(50)

and (ii) up to two for which ρ = 1 (locked states), satisfying

0 = 1 + ε
[
1 + (4/3) cosΦ + (1/3) cos (2Φ)

][
sinβ − sin (Φ + β)

]
. (51)

These fixed points and their stability are shown in Fig. 14 as a function of ε for
β = 0.1. For small ε, the only attractor is a periodic orbit with ρ = 1 corresponding
to synchronous oscillations. As ε is increased, there is a saddle-node on invariant
circle (SNIC) bifurcation destroying the periodic orbit and leading to the creation of
type (ii) fixed points, one of which is stable. As ε is increased further, the type (i) fixed
point undergoes a transcritical bifurcation with the saddle fixed point on ρ = 1 and
leaves the unit circle, thereby becoming unphysical. This sequence of bifurcations
happens for all 0 ≤ β < π/2. Note the similarity between this scenario and that for
the gap junction coupled neurons in Sect. 4.1: both have a SNIC bifurcation on the
circle ρ = 1, with the saddle later becoming a source as another fixed point leaves the
unit circle.

As was the case in Sect. 4.1, since the only attractors have ρ = 1, these will persist
unchanged for finite N and any ψk , as γ and γ2 will both equal 1 in this case.

4.4 QIF Neurons

The correspondence between a theta neuron and a quadratic integrate-and-fire (QIF)
neuron is well known [11, 25, 41]. Thus, some of the degenerate behaviour seen here
in the networks of identical theta neurons should also appear in all-to-all coupled
networks of identical QIF neurons [32]. Consider the network in [41]:

dVi

dt
= V 2

i + I0 + J r(t) (52)

for i = 1,2, . . . ,N , with the rule that when Vi = ∞ (i.e. neuron i fires) Vi is set to
−∞. Here, I0 is a constant, J is the strength of coupling between the neurons, and
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r(t) is the rate at which the network is firing:

r(t) = 1

N

N∑

j=1

∑

k

δ
(
t − tkj

)
, (53)

where tkj is the kth firing time of the j th neuron, and the sum over k is only over past
firing times. Using the transformation Vj = tan (θj /2), (52) becomes

dθj

dt
= 1 − cos θj + (1 + cos θj )(I0 + J r), (54)

which is the same form as (1). Thus, under the assumption of infinite N and equally
spaced constants ψk , the dynamics of (54) is governed by

dz

dt
= i(I0 + J r + 1)z + i(I0 + J r − 1)

(
1 + z2)/2 (55)

(see (21)). The authors [41] showed that defining

w = 1 − z̄

1 + z̄
(56)

equation (55) can be written

dw

dt
= i(I0 + J r) − iw2 (57)

and that the real part of w, divided by π , is the firing rate r , while the imaginary
part of w is the mean of the voltages Vi in the original network (52). Thus writing
w = πr + iV̂ , (57) can be written as two real equations:

dr

dt
= 2rV̂ , (58)

dV̂

dt
= V̂ 2 + I0 + J r − π2r2. (59)

Note the reversibility: (V̂ , t) �→ (−V̂ ,−t). Equations (58)–(59) are the same as equa-
tions (12a) and (12b) in [41], once identical neurons are considered. Equations (58)–
(59) will describe the dynamics of (52) in the limit N → ∞, and when the constants
ψk are equally spaced. We now briefly discuss initial conditions for (52) and their
relationship to ψk . Using (4) and Vk = tan (θk/2), we have

Vk = tan

{
Φ

2
+ tan−1

[
1 − ρ

1 + ρ
tan

(
ψk − Ψ

2

)]}
. (60)

Equally-spaced ψk means ψk = 2πk/N , k = 1,2, . . . ,N , and since tan is periodic
with period π , we see that in the limit N → ∞, the value of Ψ becomes irrelevant
in determining Vk . (We expect this, as in this case—as we have seen a number of
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Fig. 15 (a): Mean voltage V̂ and firing rate r , extracted from simulations of the network (52). The three
different curves correspond to three different choices of Φ and ρ in (61). (b): Results of a single simulation
in which Vk(0) were randomly chosen from a unit normal distribution. Simulations are of duration 100
time units. Parameters: I0 = 0.2, J = 0.1,N = 1000

times—(5)–(6) decouple from (7).) For finite N , we will set Ψ = 0 and initialise Vk

as

Vk(0) = tan

{
Φ

2
+ tan−1

[
1 − ρ

1 + ρ
tan

(
πk

N

)]}
. (61)

Varying Φ and ρ corresponds to moving through a two-parameter family of initial
conditions for (52) which, in the limit N → ∞, corresponds to varying the initial
conditions of (58)–(59).

We implemented (52) just as in [41] but with N = 1000 and identical neurons.
Setting I0 = 0.2, J = 0.1 and using three different values of Φ and ρ to initialise
Vk , we obtained the results in Fig. 15(a). (Both the mean voltage and firing rate were
smoothed by convolving with a Gaussian of standard deviation 0.07 time units.) We
see three out of a continuous family of periodic orbits. They match very closely nu-
merical simulations of (58)–(59) (not shown) even though (58)–(59) are only valid in
the limit N → ∞. Conversely, if we choose Vk(0) not using (61), for example, taking
them randomly from a unit normal distribution, we obtain the results in Fig. 15(b).
The solution is quasiperiodic and clearly not described by a planar system. To un-
derstand this, consider the transformation (4) with θk(0) = 2 tan−1(Vk(0)). For large
N , it is generally impossible to choose Φ(0),Ψ (0) and ρ(0) such that ψk are uni-
formly distributed. Thus the system must be described by three coupled equations of
the form (5)–(7) which, even in the limit N → ∞, will not reduce to a planar system
due to the non-uniformity of the distribution of ψk .

Note that while (52) is synaptically driven by the instantaneous rate r , the net-
work (1) is driven by the average of the pulse-like functions in (2). However, replac-
ing (1 − cos θ)2 in (2) by an(1 − cos θ)n, where an is chosen so that the integral of
this function over [0,2π] is independent of n, and taking the limit n → ∞, one can
obtain a drive equal (up to a scale factor) to the rate given in terms of delta functions
in (53) [24, 36].
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5 Discussion and Conclusion

In conclusion, we studied finite and infinite networks of identical all-to-all coupled
theta neurons, with both instantaneous and delayed synaptic interactions, and several
related models (gap junction-coupled theta neurons, theta neurons with conductance
dynamics, Winfree oscillators and quadratic integrate-and-fire neurons). For all mod-
els, the WS ansatz gives a reduced description of the model in terms of three ODEs
and a set of constants. Changing these constants while keeping the initial conditions
of the WS variables fixed gives different dynamics in the original models, and thus
there is a continuum of such solutions. For instantaneous synapses, even keeping the
constants fixed, there can be many solutions, due to either the reversibility of the dy-
namics of the WS variables, or the coexistence of many quasiperiodic orbits. It is only
this case, of instantaneous synapses, which seems non-generic. Adding synaptic pro-
cessing destroys this reversibility, and none of the other models (gap junction-coupled
theta neurons, theta neurons with conductance dynamics or Winfree oscillators) have
such a reversibility.

We have considered identical sinusoidally-coupled oscillators, for which the WS
ansatz [9] gives the correct description in the form of the three ODEs (5)–(7), together
with the constants {ψk}. This is an idealisation, so we should discuss the case of
non-identical oscillators. For an infinite number of non-identical oscillators, one can
consider the continuity equation governing the evolution of the probability density of
the phases [9, 26, 29]. Solutions of this decay onto the Ott/Antonsen (OA) manifold,
on which their dynamics can be found using the OA ansatz [24–26, 29, 30, 37, 42,
43]. The OA equations are simpler than those resulting from the Watanabe/Strogatz
ansatz: only a pair of real equations are needed to describe (1)–(2) when the value of
η for each neuron is different, for example, rather than (5)–(7) and {ψk} (although we
must take N → ∞ for them to be valid). The OA equations typically have hyperbolic
and isolated fixed points, unlike those obtained using the Watanabe/Strogatz ansatz,
which can be perturbed to a nearby similar state by varying one of ψk , for example.
However, there remains a gap: is there a dimension reduction applicable to finite
networks of non-identical sinusoidally-coupled oscillators? See [44] for ideas in this
direction. Another approach is that of [28] who consider a number of subpopulations,
each of which has identical oscillators although parameters are different between
subpopulations, and the WS ansatz can be applied to each subpopulation.

There are several extensions that could be performed using the ideas presented
here. The first is time-dependant forcing of the network [45]. As long as each neu-
ron experiences the same force, the WS ansatz will apply. The second involves each
neuron receiving common noise [46, 47]. Again, the WS ansatz will apply. We could
also consider introducing a discrete delay in the synaptic processing, i.e. replacing
I (t) in (1) by I (t − τ) for some delay τ > 0. Another extension involves investigat-
ing a pair of populations of neurons, one excitatory and one inhibitory [41]. Coupling
these may result in a PING rhythm [48], and if neurons are identical within each
population, the coupled network may show interesting dynamics.
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