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Closed-Loop Control of Deep Brain Stimulation:
A Simulation Study

Sabato Santaniello, Member, IEEE, Giovanni Fiengo, Member, IEEE, Luigi Glielmo, Senior Member, IEEE, and
Warren M. Grill, Senior Member, IEEE

Abstract—Deep brain stimulation (DBS) is an effective therapy
to treat movement disorders including essential tremor, dystonia,
and Parkinson’s disease. Despite over a decade of clinical ex-
perience the mechanisms of DBS are still unclear, and this lack
of understanding makes the selection of stimulation parameters
quite challenging. The objective of this work was to develop a
closed-loop control system that automatically adjusted the stim-
ulation amplitude to reduce oscillatory neuronal activity, based
on feedback of electrical signals recorded from the brain using
the same electrode as implanted for stimulation. We simulated a
population of 100 intrinsically active model neurons in the Vim
thalamus, and the local field potentials (LFPs) generated by the
population were used as the feedback (control) variable for closed
loop control of DBS amplitude. Based on the correlation between
the spectral content of the thalamic activity and tremor (Hua et al.,
1998), (Lenz et al., 1988), we implemented an adaptive minimum
variance controller to regulate the power spectrum of the simu-
lated LFPs and restore the LFP power spectrum present under
tremor conditions to a reference profile derived under tremor free
conditions. The controller was based on a recursively identified
autoregressive model (ARX) of the relationship between stimula-
tion input and LFP output, and showed excellent performances in
tracking the reference spectral features through selective changes
in the theta (2–7 Hz), alpha (7–13 Hz), and beta (13–35 Hz)
frequency ranges. Such changes reflected modifications in the
firing patterns of the model neuronal population, and, differently
from open-loop DBS, replaced the tremor-related pathological
patterns with patterns similar to those simulated in tremor-free
conditions. The closed-loop controller generated a LFP spectrum
that approximated more closely the spectrum present in the
tremor-free condition than did open loop fixed intensity stimu-
lation and adapted to match the spectrum after a change in the
neuronal oscillation frequency. This computational study suggests
the feasibility of closed-loop control of DBS amplitude to regulate
the spectrum of the local field potentials and thereby normalize
the aberrant pattern of neuronal activity present in tremor.

Index Terms—Autoregressive model (ARX), deep brain stimula-
tion (DBS), essential tremor, local field potentials, minimum vari-
ance control, Parkinson’s disease, recursive least-squares (RLS)
identification.
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I. INTRODUCTION

D EEP brain stimulation (DBS) is an effective therapy to
treat the symptoms of several movement disorders, in-

cluding essential tremor (ET), Parkinson’s disease (PD), and
dystonia. DBS delivers high frequency ( 130-185 Hz) pulse
train stimulation to specific subcortical targets, including the
subthalamic nucleus (STN), the internal segment of the globus
pallidus (GPi), or the ventral intermediate nucleus (Vim) of the
thalamus via a surgically implanted electrode and battery-pow-
ered implanted pulse generator [3]. Although DBS greatly re-
duces motor symptoms, limits drug-induced side effects, im-
proves performance of activities of daily living, and enhances
quality of life [3], the mechanisms of action of DBS remain un-
certain [4].

This lack of understanding makes the selection of the stimu-
lation parameters (i.e., voltage, pulse duration, and frequency),
which are programmed by a clinician following implantation of
the device, quite challenging. Experimental studies in ET [5],
[6], PD [7], [8], and dystonia [9], [10] demonstrate that motor
symptoms depend nonlinearly on the frequency and amplitude
of stimulation. There are few guidelines available to guide the
selection of appropriate stimulus parameters, and programming
is largely an ad hoc process that relies on clinical expertise and
does not necessarily result in optimal outcomes. As well, the
selection of parameters has important implications for power
consumption, and thus the battery life of the implanted pulse
generator [11].

The long-term objective of our work is to develop a closed-
loop control system that automatically adjusts the stimulation
parameters to achieve reduction of motor symptoms based on
feedback of electrical signals recorded from the brain using the
same electrode as implanted for stimulation. The aims of the
present study were to use computational modeling to design a
closed-loop control system and determine the feasibility of feed-
back control of the power spectrum of the local field potentials
(LFPs). We focused on DBS of the Vim for tremor suppres-
sion and developed an adaptive model-reference control scheme
[12] based on the recursive identification of a model of neural
activity in the thalamus during tremor. The extracellular LFPs
resulting from the superposition of the aggregate activity of a
population of model neurons around the electrode were used
as a measure of the system state (i.e., amount of tremor). LFPs
are an appropriate feedback signal as they can be readily mea-
sured using the clinically implanted DBS electrode [13], [14],
and there is very high correlation between field potentials and

1534-4320/$26.00 © 2010 IEEE
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tremor in both ET and PD [1], [2]. Further, changes in the LFPs
along the cortico–basal ganglia–thalamic motor loop are corre-
lated with changes in motor symptoms [15], [16].

In a computer simulation, we implemented a closed-loop con-
troller to modulate the neuronal activity by application of ex-
tracellular stimulation, and the neuronal activity was related to
the input (electrical stimulus) through a reduced-order linear au-
toregressive input-output model [17]. Based on the identified
input-output model, a feedback control law was designed to re-
store tremor-free conditions, i.e., modify the electrical activity
of the neurons in the target site such that the simulated LFPs ex-
hibited spectral properties akin to those observed in tremor-free
conditions [18], [19].

II. METHODS

We simulated a population of independent, noncommuni-
cating model neurons to determine the effects of extracellular
stimulation on neuronal activity and to calculate the extra-
cellular local field potentials generated by the active neurons
in tremor and tremor-free conditions. Subsequently, the re-
lationship between the applied stimulus current (input) and
the LFPs (output) was modeled with an ARX (autoregressive
with exogenous input) difference equation with parameters
identified using the minimum-prediction-error approach [17].
A minimum variance control algorithm was then implemented
to regulate the spectral character of the LFPs by altering the
stimulation intensity in the tremor condition according to a
reference spectrum from the tremor-free condition.

A. Simulation of the Evoked Local Field Potentials

One hundred model thalamocortical (TC) relay neurons were
uniformly distributed within 3 mm of a point source electrode
positioned in an infinite homogeneous isotropic medium (resis-
tivity , [20]). The model neurons had a multicom-
partment structure, with explicit geometrical representation of
the dendrites, cell body, and myelinated axon, and a full comple-
ment of nonlinear ionic membrane conductances, which repli-
cate a broad complement of the electrophysiological properties
of TC relay neurons [21]. Results obtained in previous instan-
tiations of populations of the same model neurons correlated
exceedingly well with changes in tremor from human subjects
during DBS with different patterns, rates, and intensities of stim-
ulation [22], [23].

Neuronal stimulation was determined using a two-step ap-
proach. First, the extracellular potentials generated by the elec-
trode when the stimulus was ON were calculated [24]

(1)

where is the extracellular potential generated outside the
th compartment of the th neuron at time from the current

delivered by the electrode, and is the absolute
distance of such compartment from the position of the point
source electrode. Then, potentials were applied and the
neuronal response was computed by numerical integration using
the CVODE method (time step ms). Simulations were
implemented and run in NEURON, ver. 6.1 [25].

The extracellular LFPs generated by neuronal activity were
calculated as the superposition of the potentials resulting from
transmembrane currents in each neuronal compartment [24],
[26]. At any point and time , the LFP was computed as

(2)

where is the net transmembrane current in the th com-
partment of the th neuron at time , is the absolute dis-
tance of such compartment from the position of the recording
electrode, is the number of neurons, and is the number of
compartments for each neuron. The small transmembrane cur-
rents flowing through the high impedance myelinated internodes
were not included in the computation of the LFPs to reduce the
computational effort. Field potentials were computed at three
randomly selected points, all 2 mm from the center of the pop-
ulation (i.e., from the point source stimulating electrode), and
were sampled at 25 kHz.

Simulations were repeated on three independently random-
ized neural populations. All analysis and signal processing was
conducted in MATLAB (Mathworks, Natick, MA).

B. Simulation of Neuronal Activity Under Tremor-Free
Conditions

We simulated the neuronal activity across a population of tha-
lamic neurons in the absence of tremor, and we used this activity
to develop a reference spectrum for subsequent closed-loop con-
trol. Based on single unit recordings from patients with chronic
pain (no tremor reported) [18], we implemented four different
spiking patterns, which reproduced the most prominent charac-
teristics of the measured neuronal activity including multifar-
ious spiking and bursting [18], [27]. Following the functional
classification in [18] and the multiunit analysis in [28], 98 of the
100 neurons in each population were divided into two groups,
with different average intrinsic firing rates: 74% “kinesthetic”
(i.e., their firing rate was responsive to passive, imposed joint
movements) and 26% “voluntary” (i.e., their firing rate was re-
sponsive to voluntary active joint movements). For each group,
neurons were further classified as “regular,” “random,” or “ir-
regular” according to the specific type of firing pattern they ex-
hibited (definitions in [18]). The two remaining neurons exhib-
ited irregular bursting activity [19] attributed to low-threshold
calcium spikes (LTS). The intrinsic firing activity in the regular,
random, irregular, and bursting neurons was simulated as fol-
lows (Fig. 1).

1) Regular: A binomial process with probability of success
was run at an average firing frequency of 19 Hz for

voluntary cells (7 cells) and 16.1 Hz for kinesthetic cells (5
cells) [18]. When the output was 1, a spike was generated in
the neuron by delivering a suprathreshold intracellular stimulus
to the soma.

2) Irregular: Interspike intervals (ISIs) were drawn from an
Erlang distribution with mean standard deviation equal to

Hz for voluntary cells (16 cells) and Hz for
kinesthetic cells (4 cells) [18]. When an ISI expired, a spike (and
depending on the state of the neuron, sometimes two spikes) was
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Fig. 1. Example of simulated patterns of neuronal activity under tremor-free
(top row) and tremor (bottom row) conditions. Top row, from (a) to (d): ex-
tracellular evoked potentials from single kinesthetic regular, random, irregular,
and bursting neurons. Bottom row, from (e) to (h): extracellular evoked poten-
tials from single sporadic, tremor-locked, rhythmic (LTS), and random (LTS)
bursting cells.

generated in the neuron by delivering a suprathreshold intracel-
lular stimulus to the soma.

3) Random: A Poisson process was run at an av-
erage firing frequency of 19 Hz for voluntary cells (50 cells)
and 16.1 Hz for kinesthetic cells (16 cells) [18]. For each newly
drawn value of the process, a pulse of current was delivered
to the neuron. The duration of the pulse was proportional to

according to an empirical rule ms, and the amplitude
was suprathreshold. This rule was chosen to produce a random
bursting firing pattern, and it was noted in simulation that a
suprathreshold stimulus to the soma of duration resulted in
a single burst of about spikes.

4) Bursting: In two cells we sought to match the pattern of
bursting described in [28], i.e., a weakly bimodal ISI histogram
with a group of ISIs around 200–300 ms (see below). Interspike
intervals were drawn from an Erlang distribution with mean
standard deviation equal to Hz [28]. When an ISI
expired, at least two spikes (and depending on the state of the
neuron, sometimes three or more spikes) were generated in the
neuron by delivering a suprathreshold intracellular stimulus of
15 ms to the soma.

Since there is no information regarding the spatial distribu-
tion of neurons from the different classes, a uniform distribu-
tion of each class in the 3-mm-radius sphere was assumed. Fi-
nally, random initial delays, uniformly distributed between 1
and 4 ms, were applied to the intracellular stimuli described
above to increase variability among neurons, and white noise
(mean , variance ) was injected into the
soma to simulate background synaptic activity [29].

C. Simulation of Neuronal Activity During Tremor

Similarly, we implemented four different patterns of firing ac-
tivity across neurons in the modeled populations to simulate the
intrinsic activity of thalamic neurons in persons with tremor.
We chose the patterns to reproduce the primary statistical fea-
tures (average firing rate, variance, and temporal distribution of
spikes) of each type of thalamic neuron [28].

1) Sporadic: Fifty neurons were subjected to a sequence of
10-ms pulses of suprathreshold intracellular current with the in-
terpulse intervals distributed according to an Erlang function
with mean standard deviation of Hz [28], resulting in
irregular firing of single or pairs of spikes.

2) Random (LTS) Bursting: Eleven neurons were subjected
to a sequence of 15-ms pulses of suprathreshold intracellular
current with the interpulse intervals distributed according to an
Erlang function with mean standard deviation of Hz
[28] resulting in two or three spike bursts and a weakly bimodal
distribution of ISIs.

3) Rhythmic (LTS) Bursting: Five neurons were subjected to
20-ms pulses of suprathreshold intracellular current at a con-
stant frequency. For each of them, the frequency was randomly
drawn from a uniform distribution of 2–6 Hz and resulted in a
periodic bursting activity for the neuron (each burst consisted of
3–5 spikes).

4) Tremor-Locked Bursting: Thirty-four neurons were sub-
jected to 30-ms pulses of suprathreshold intracellular current at
a frequency of 4 Hz [2] that resulted in periodic bursting activity.

The interburst intervals and proportion of neurons in each
group were faithful to the experimental data [28]. Intraburst fea-
tures (average firing rate: 235 Hz, range: 115–322 Hz [23]) were
within the ranges provided in [28], but not faithful to the ex-
perimental data. This, however, has limited impact on the pri-
mary oscillations of the LFPs at frequencies below 100 Hz. As
in the tremor-free case, neurons in different classes were ran-
domly distributed in space and were subjected to both random
delays in the timing of injected currents and noise.

D. Identification of the Input-Output Relationship

The relationship between the DBS stimulus (input) and
LFPs (output) was identified using an ARX model. The input
and output signals were low pass filtered (8-th order But-
terworth filter, cutoff frequency: 100 Hz), down-sampled to

Hz, and de-trended. We used the model structure

(3)

or, equivalently [17]

(4)

are polynomials in the Z-domain with and to
be chosen, and are the DBS stimulus and the recorded
LFP at time , respectively, and is the sampling interval

ms . Coefficients , and ,
weight the linear dependence of the output at

time on the previous output samples and the last input
values, respectively. represents unmodeled dynamics and
is assumed to be white noise with mean 0 and variance to be
estimated. We introduced the mean square prediction error

(5)
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where is the expectation operator and is the
prediction of the output at time based on the knowledge of the
actual value up to time , i.e., from (4)

(6)

The model parameters in (4) were identified in the following
three different conditions by minimizing the prediction error (5)
via a recursive least-squares (RLS) algorithm [17].

1) Tremor-free: The LFPs were calculated in the absence of
tremor as described in Section II-B. Since no extracellular stim-
ulus was applied, the ARX structure reduced to the AR structure
[17]

(7)

2) Tremor with NO DBS: The LFPs were calculated during
tremor as described in Section II-C, and since no stimulus was
applied, the AR structure was used for identification.

3) Tremor with DBS ON: The LFPs were recorded during
tremor as described in Section II-C, and fixed extracellular stim-
ulation was applied to the population. The stimulus was a se-
quence of cathodic current pulses with varying ampli-
tudes (selected uniformly from values required to excite 10%,
30%, 50%, 70%, and 90% of the neurons) and instantaneous
frequencies (selected uniformly from 10, 35, 60, 90, 130, and
185 Hz). This input was intended to probe the principal dy-
namics of the input–output relationship across both effective
and ineffective stimulation settings [23] and provide a model of
the plant for the subsequent design of the feedback controller.

In each of the three conditions, the recorded signals were split
into two segments, one for identification (65% of the length) and
the other for validation (35% of the length). The tremor-free and
tremor with NO DBS conditions used 1 s trials and the DBS
ON conditions used 10 s trials. Several model orders and

were tested, and we selected and because
such a choice provided a good fit to the available data and the
power of the prediction differed from that of the validation data
by less than 1%, independent of the position where the LFPs
were recorded and of the neural population.

E. Approach to Feedback Control

The feedback controller aimed to modify the amplitude of
the stimulus that was delivered to the neural population such
that the tremor-related oscillations in the power spectrum of
the LFPs were suppressed and the main features of the power
spectrum of the LFPs calculated during the tremor-free con-
dition were restored. The stimulation frequency was fixed at
130 Hz (aliasing-free, effective value). A generalized minimum
variance control law [12] was designed based on the identified
AR/ARX models, i.e., the control input was computed by
minimizing the variance of the modified tracking error

(8)

Fig. 2. Adaptive minimum variance control scheme. Local field potentials
(LFPs) are low-pass filtered, sampled and fed back. The reference signal
���� and filtered LFPs ���� are processed to generate the control input.
The extracellular stimulus � ��� is obtained by multiplying the output of
the controller by a pulse train. The stimulus is cathodic and the maximum
amplitude allowed is 4.5 mA. �� upsampling. �� downsampling. ��� �
identification procedure using the recursive least squares algorithm.

, where is the domain of the input amplitude (cathodic
amplitudes limited to 4.5 mA, which was approximately the
current required to activate 90% of the population) and the
reference signal, , was obtained from the LFPs recorded
in tremor-free conditions (Section II-B). In particular, the LFPs
were low-pass filtered (cutoff frequency: 100 Hz), divided into
consecutive 250 ms segments, and the individual segments
were averaged. and were chosen to guar-
antee a desired closed loop transfer function from the
reference to the output (model reference control),
thus forcing the output LFPs to reproduce the main spectral
components of . The cost function in (8) weighted the
tracking error between a filtered realization of the output signal

and the reference (i.e., ),
wherein the filter depends on the desired closed-loop be-
havior, and the control effort . As in [12], we fixed

, the polynomials

(9)

orders , , and parameters , , and ,
. Then, we designed and as

(10)

with and from (4).
A block diagram of the feedback controller is shown in Fig. 2,

where the transfer functions in the Z domain , ,
and minimize the function in (8) [12] and are given by

(11)
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was a second-order filter
with bandwidth Hz and gain 0.2. The design of
was based on the analysis of the LFPs simulated in tremor-free
conditions (Section III-A), and was intended to attenuate the
low frequency components Hz of the closed loop system
while amplifying the spectrum of in the range 15–50 Hz.
The choice of influenced the weight of in the cost (8)
and indirectly impacted the performances of the control scheme.

The controller was adaptive and at each time step the coeffi-
cients of and in (11) were recursively updated
via the RLS algorithm before a new value for the stimulus was
computed. These results were compared to a fixed minimum
variance control law, i.e., the controller used the same reference
model but the coefficients of and in
(11) were computed off line (Section II-D) and were not updated
during the controller evaluation.

III. RESULTS

We simulated the neuronal activity around the DBS electrode
in tremor and tremor-free conditions by implementing model
neurons with different firing patterns (Fig. 1) and randomizing
their positions within the volume. Under tremor-free conditions,
the LFPs had low amplitude and a dominant oscillation between
15 and 20 Hz, i.e., the average firing frequencies of the vol-
untary and kinesthetic neurons, respectively. In tremor condi-
tions, tremor-locked bursting cells dominated the LFPs, gener-
ating a main rhythm at Hz. Such features were captured by
the identified AR/ARX models and exploited in the closed loop
control strategy to eliminate the tremor-related oscillations.

A. Simulated LFPs

A population of one hundred intrinsically active model neu-
rons, randomly distributed within a 3-mm-radius sphere, was
used to simulate the extracellular LFPs. The superposition of ac-
tivity from the modeled neurons generated field potentials that
exhibited distinct characteristics in the absence and presence of
tremor. Under tremor-free conditions the LFP signal had low
amplitude as a result of the asynchronous activity across the
population of neurons [Fig. 3(a)]. The power spectrum revealed
that the bulk of the signal power was between 10 and 20 Hz
[Fig. 3(c)], consistent with the average firing rate of the volun-
tary and kinesthetic neurons. The additional peaks in the power
spectrum, between 20 and 50 Hz, were due to the secondary har-
monics of the main mode and the effects of convolution by the
Hann window used to compute the power spectrum (Welch’s
method). The LFPs during tremor [Fig. 3(b)] were character-
ized by strong periodic increases in amplitude at the tremor fre-
quency (i.e., 4 Hz) arising from the superposition of bursting ac-
tivity of the tremor cells, which fired at the same frequency and
with a small constant delay from one another. The power spec-
trum exhibited a broad peak, centered at the tremor frequency,
and the signal content decreased rapidly above 10 Hz [Fig. 3(c)].

B. Identification of an Input–Output Model

The relationship between the stimulus (input) and LFPs
(output) was identified using an autoregressive model. The
temporal and spectral results of the identification procedure

Fig. 3. Properties of the LFPs with NO DBS. Time pattern of the LFPs in the
tremor-free (a) and tremor (b) conditions. (c) Normalized power spectral density
(PSD) of the LFPs under tremor-free and tremor conditions obtained by dividing
the PSD by the total computed power. LFPs in (a) and (b) were low-pass filtered,
down-sampled and detrended to compute the PSDs in (c) using Welch’s method
with period of 250 ms (Hann window applied).

Fig. 4. Properties of the LFPs with DBS ON. Time pattern (a) and PSD (b) of
the LFPs in the tremor condition with DBS ON and the one-step ahead predic-
tion given by the identified ARX model ��� � �� �� � ��. PSD computation
and normalization methods were as in Fig. 3.

are shown in Fig. 4 for one of the simulated neural popula-
tions in the tremor condition with DBS ON. The time pattern
[Fig. 4(a)] and the power spectral density (PSD) [Fig. 4(b)]
of the validation data set were compared with those of the
one-step ahead prediction obtained using the ARX model (6).
The prediction tracked the validation data very well (average
rms error ) confirming that the model captured the
primary dynamics of the available data. Similar results were
achieved under the tremor-free condition (average rms error

) and the tremor condition with NO DBS (average
rms error ).

The Bode plots of the identified input-output models under
the tremor-free (AR), tremor with NO DBS (AR), and tremor
with DBS ON (ARX) conditions (Section II-D) are shown in
Fig. 5. The magnitude of the tremor-free transfer function was
flat below Hz with a small attenuation in the upper gamma
range (50–70 Hz) and a small resonant peak at Hz. The
phase diagram was flat below Hz and then declined almost
linearly up to Hz, thus causing phase distortion at low fre-
quencies but not affecting harmonics in the beta (13–35 Hz) and
gamma (50–70 Hz) ranges, where a linear phase delay was intro-
duced. The phase at frequencies Hz was of minor concern
since the corresponding gain was quite low. The tremor present
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Fig. 5. Bode diagrams of the ��� transfer function obtained from the AR/ARX
models identified on the LFPs in the tremor-free, tremor with NO DBS, and
tremor with DBS ON conditions.

(NO DBS) transfer function had larger magnitude ( )
than the tremor-free transfer function in the low frequency range
and a marked phase lag from 2 to 100 Hz, thus amplifying the
tremor-related activity and distorting oscillations in the other
ranges. Finally, the transfer function of the autoregressive part
of the identified ARX model in the tremor condition with DBS
ON was similar to the tremor-free case, suggesting that the stim-
ulation might mask the tremor-related activity by exciting other
intrinsic dynamics.

These results suggested that the LFPs in tremor and tremor-
free conditions were structurally different: the former exhibited
a bursting profile with spectral content focused in the theta and
alpha bands, while the latter exhibited tonic spiking and spectral
components with a wider frequency range. This was confirmed
by the substantial independence of the transfer function on the
location where the LFPs were recorded: the variance of the -
transfer function computed over three different positions was
close to 0 and the recording location did not affect its filtering
properties.

The ARX model for the case of tremor with DBS ON, on the
other hand, suggested that the LFPs depended almost linearly
on the applied input, provided that suprathreshold stimuli were
used. Moreover, since , the model population responded
to the background noise and the control input in a
very similar way. The transfer functions for the tremor condi-
tion with DBS ON and the tremor-free condition were almost
coincident up to 100 Hz (Fig. 5), with minor differences in the
high frequency range due to the applied input . The flat
shape of the magnitude plot (Fig. 5) may account for the lack of
tremor suppression by DBS when the stimulation frequency is

Hz [5].

C. Feedback Control

The application of DBS, with amplitude determined by the
adaptive feedback controller, modified the firing patterns of in-
dividual neurons, and this was reflected in the simulated LFPs
as suppression of the characteristics associated with tremor and

Fig. 6. Simulated patterns of neuronal activity represented as time series (top
row) and interspike interval distribution (bottom row) under several conditions.
(a) and (b): tremor-free (kinesthetic random firing) and tremor (tremor-locked
bursting) conditions. (c): tremor conditions as in (b) with application of the
closed-loop DBS. (d): tremor conditions as in (b) with application of open-loop,
regular DBS (i.e., fixed amplitude � ���� ��, fixed frequency� ��� Hz).
Histograms in (c) and (d) are truncated. Histograms constructed from 30 s
simulations.

restoration of the spectral features present in the tremor-free
condition. At the cellular level, stimulation altered the average
firing rate and generated patterns of spiking similar to those in
the tremor-free condition. This is shown in Fig. 6: a single model
neuron, with a random kinesthetic firing pattern [Fig. 6(a)], fired
short bursts of 2–3 spikes each (average intraburst ISI dura-
tion 7 ms) repeated quite regularly (inter-burst ISI ms).
Such a pattern was dominant in the model population in the
tremor-free condition, but was strongly altered in the tremor
condition. In the tremor condition, longer bursts were noted
with short intraburst ISIs [peak at 8 ms, Fig. 6(b)] and an inter-
burst frequency Hz (inter-burst ISIs were in the range
219–233 ms with peak at 226 ms). The application of closed-
loop DBS in the tremor condition elicited short bursts of 3–4
spikes, repeated once every ms (range 45–62 ms), and syn-
chronized the firing activity across neurons to generate larger
amplitude extracellular evoked potentials than in the case of
tremor with NO DBS [Fig. 6(c), top]. Thus, closed-loop DBS
appeared to mask the intrinsic low-frequency bursting activity
and restore the primary rhythm of the kinesthetic firing pattern
[Fig. 6(c), bottom]. In contrast, open-loop DBS (i.e., fixed am-
plitude and frequency) masked the intrinsic firing pattern by in-
troducing sustained firing at the stimulation frequency [130 Hz
in Fig. 6(d)], which suppressed the tremor-locked pattern but
did not restore the oscillations observed in the tremor-free con-
dition (more than 93% of all ISIs were shorter than 45 ms).

The effects of DBS on neuronal firing were similar across
all patterns of intrinsic activity described in Section II-B and
II-C, and led to consistent changes in the spectrum of the LFPs
(Fig. 7). The reference input , which was an average ver-
sion of the signal in Fig. 3(a), paced the model population via
its main oscillation at Hz, while the feedback information
was used to update the stimulus amplitude based on the detec-
tion of tremor-locked bursts. Finally, through the choice of the
ratio , the model-reference approach in-
creased the gain of the closed-loop system to input harmonics
in the alpha and beta bands. As a consequence, the controlled
stimulus exhibited a burst-like pattern as its amplitude
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Fig. 7. Properties of the LFPs in the tremor condition with closed-loop DBS
(a) and feedback controlled stimulation amplitude � ��� (b) generated by the
proposed control scheme. (c) Normalized PSD of the LFPs in the tremor-free
condition, in the tremor condition with NO DBS, in the tremor condition with
closed-loop DBS, and in the tremor condition with open-loop (130 Hz) DBS.
(d) Normalized PSD of the LFPs in the tremor condition with NO DBS and in the
tremor condition with low (20 Hz) and high (130 Hz) frequency open-loop DBS.
130 Hz open-loop DBS was as in Fig. 6(d). PSD computation and normalization
methods in (c) and (d) were as in Fig. 3. DBS amplitude is limited as in Fig. 2.

was modulated to adapt the stimulus to the current state of the
LFPs [Fig. 7(b)].

The normalized PSD of the LFPs across the four conditions is
depicted in Fig. 7(c): the controller restored the characteristics
of the tremor-free spectrum by reducing dramatically the power
in the tremor (i.e., theta) band Hz and amplifying the har-
monics in the alpha and beta ranges. The power spectra further
revealed dramatic differences between open- and closed-loop
DBS: both approaches reduced the spectral content in the range

Hz, but open loop stimulation also reduced power at the
intermediate frequencies and introduced a new high-frequency
component at the stimulation frequency, while closed-loop DBS
restored the primary peaks of the spectrum present in the tremor-
free condition. An additional comparison was conducted with
open-loop low frequency (20 Hz) DBS [Fig. 7(d)]: although the
frequency of stimulation was close to the main rhythm of the
signal in tremor-free conditions [Fig. 3(a)], the spectrum of the
resultant LFP poorly tracked that in tremor-free conditions, and
increased power at intermediate frequencies (peaks at 40 and
60 Hz) was noted.

D. Adaptive vs. Static Closed-Loop Control

The closed-loop control scheme was adaptive (i.e., the iden-
tification module, RLS in Fig. 2, was run online) to cope with
eventual changes in the model population, model mismatches,
cellular nonlinearities, and residual dynamics, which could vary
across the model populations and the different input ampli-
tudes. To determine the performance advantage of adaptation,
a model population was run under tremor conditions but the
tremor-locked bursting cells fired bursts at 1 Hz instead of
4 Hz (Section II-C). In that case, the adaptive control scheme
quickly updated the model parameters and achieved almost
the same performances as in the nominal case (Fig. 8). The
control scheme in Fig. 2 was then implemented without the
identification module and the functions , ,

Fig. 8. Normalized power spectral density of the LFPs in the tremor-free con-
dition, in the tremor condition with NO DBS, in the tremor condition with
open-loop 130 Hz DBS, in the tremor condition with closed-loop adaptive DBS,
and in the tremor condition with fixed closed-loop DBS. The firing pattern of
the tremor-locked cells was modified to elicit bursts at an average frequency of
1 Hz. PSD computation and normalization methods were as in Fig. 3.

Fig. 9. Recursive estimation of the parameters of ��� � (a) and ��� �
(b) in (4) ��� � �� �	 � �� during closed-loop adaptive stimulation in the
tremor condition. The firing pattern of the tremor-locked cells was as in Fig. 8.
DBS was turned ON at time � � ��� ms (grey line), after the model neurons
had reached steady state firing patterns. Initial values of the parameters were 0.

and were given by (11) with and
fixed at a nominal value (fixed closed-loop DBS, Fig. 8) pre-
viously identified under the tremor condition (4 Hz bursting).
In this case, performance quickly declined, compensation in
the tremor band was poor, and only a weak restoration of the
primary tremor-free rhythm was achieved.

Fig. 9 shows the estimation of the model parameters in
and at each time step for the adaptive

closed-loop scheme used in Fig. 8. Estimated values depended
on the actual condition of the model population (i.e., firing pat-
terns of the simulated neurons, tremor cells bursting at Hz)
and tracked the changes induced by the stimulation. Both
before and during stimulation, the parameter values estimated
in steady state conditions (i.e., from 200 and 300 ms, and after
1000 ms, respectively, Fig. 9) differed significantly from the
nominal values used for the fixed closed-loop DBS of Fig. 8
(one sample t-test, ).

Open-loop 130 Hz DBS in Fig. 8 was affected little by the
change in the intrinsic dynamics of the model population and
provided almost identical results as in Fig. 7(c) and (d). High
frequency open-loop DBS overrides the intrinsic dynamics of
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the model population and entrains neurons to fire at the stimu-
lation frequency [Fig. 6(d)].

IV. DISCUSSION

This simulation study demonstrates the feasibility of closed-
loop control of DBS amplitude to regulate the spectrum of the
LFPs, and thereby normalize the aberrant pattern of thalamic
neuronal activity present in tremor. We investigated LFPs as
the feedback (control) variable as they provide a robust proxy
of the overall firing activity of a neural population. The com-
ponents of the LFP power spectrum depend on the firing pat-
tern of a specific and detectable subset of the neural popula-
tion [30]–[32] and reflect synchronous activity in populations
of neurons [33]. Further, oscillations in the power spectrum of
the LFPs at the stimulation site appear to be correlated with the
symptoms of movement disorders (e.g., tremor [14], bradyki-
nesia, and rigidity [15], [16]), and modulation of the STN LFP
power spectrum at specific frequencies has been noted as a con-
sequence of clinically effective pharmacological therapies [15],
[34], STN DBS [16], [32], or the execution of voluntary move-
ments [35]. Further, the strong link between the activity of neu-
rons in the Vim and tremor [18], [36] suggests that LFPs in the
Vim would be a reliable marker of the pathological conditions,
and that tremor would increase the LFP oscillations in the theta
and alpha bands, in agreement with single unit analysis [2], [28].
Conversely, suppression of the LFP oscillations in the theta band
would relate to a change in the spiking activity of the tremor
cells, which is hypothesized to impact tremor [37].

A. Model Limitations

We used a population of model thalamic neurons, exhibiting
the intrinsic firing patterns present in the Vim, to develop and
validate the proposed approach to identification and control. In
particular, our models were able to generate spike trains whose
temporal distribution matched first and second order statistics of
the spike trains actually recorded from Vim neurons in tremu-
lous [28] and tremor-free [18], [19] subjects. For simplicity, we
employed a point-source approximation of the DBS electrode,
and while this appears adequate to represent stimulation [38],
the large size of the DBS contact may alter the character of
the recorded LFPs. The LFPs were computed by approximating
the neuronal membrane as a discrete sequence of point current
sources [26], and this created no apparent difference from more
detailed approximations [39]. The model included only postsy-
naptic TC neurons and did not include contributions, either to
the LFP or to the evoked neuronal activity, of presynaptic axons
and synaptic inputs.

However, the Vim has a low density of neurons and a low
level of intranuclear connections (average cellular density:

[27]). Moreover, as noted previously [23], since
DBS activates the axon of TC neurons, which is electrotoni-
cally distant from the cell body (where synapses are located),
the stimulation effects would be transmitted throughout the
network independent of the synapses [21]. Finally, the net
effects of synaptic inputs on the firing patterns of TC neurons
[18], [28] were carefully reproduced via the intracellular cur-
rents applied to generate different patterns of intrinsic activity.
However, stimulation could influence the rate and pattern of

activity in presynaptic axons and their subsequent synaptic
effects on TC cells, and this “indirect” effect of stimulation was
not considered. Further, the model was limited to consideration
of the effects of DBS on local cells, and downstream network
effects (e.g., [40]) were not considered.

B. Identification and Control

A black box approach and linear AR/ARX models were used
to describe the relationship between the stimulus (DBS) and re-
sponse (LFP) and then used for control purposes to restore the
features of the reference spectrum. The procedure to identify
the models required that the model structure and order were set
in advance. Although several criteria (e.g., Akaike information
criterion, minimum description length, final prediction error)
have been proposed to choose a structure and order for different
classes of problems [17], such criteria resulted in model orders
higher than the used here. As well, large
variability was observed in the (optimal) model order across
the different sets of identification/validation data and applied
DBS input, but the prediction error was not substantially de-
creased by the increased model order. The purpose of the model
identification was to drive the design of the closed-loop control
scheme via a simplified description of the relationship between
applied stimuli and LFPs. For that reason, we were not inter-
ested in higher order, detailed models, and, since our control
scheme targeted the spectral properties of the LFPs, we investi-
gated ARX models that provided sufficient accuracy in predic-
tion of the LFP spectrum. The order was suf-
ficiently low to enable online update of the model parameters,
and assured a power spectrum of the one-step ahead prediction
that was very close to the actual spectrum error inde-
pendent of the model population (three populations) or location
of LFP recording (three different positions for each population).
Further indication that the model order and structure were ap-
propriate came from the fitting index proposed by [17]

(12)

where is any LFP time series to be identified, is its mean
value, is the series of one-step ahead predictions produced by a
given model, and is the norm operator. For each combination
of model population and LFP recording position, the proposed
ARX model order guaranteed a fit value larger than 96% and the
identified transfer functions were similar to those in Fig. 5.

The control input (Fig. 2) was convolved with a train of
pulses to regulate the stimulation amplitude, while the

train frequency (130 Hz) was selected to lie within the effective
range of frequencies [5] and to avoid aliasing phenomena in
the control signal. The resulting spectra (Fig. 7) showed that
the closed-loop DBS restored the primary oscillations observed
in the tremor-free condition, but tracking in the gamma band
was poor. This was partly due to the choice of the reference
signal , which was designed as an average version of
the tremor-free LFPs to reduce the effects of the stochastic
variability of the neurons and decrease the noise in the evoked
potentials. The averaging appeared to amplify the primary
oscillation and attenuate the secondary harmonics in the LFPs
in the gamma and higher bands. These harmonics, however,
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would only subtly affect the movement-related neural signals
[31] and, thus, the tracking error may be of minor concern.
The closed-loop control system modulated the DBS amplitude
based on the feedback information, and was able to adapt to a
change in the neuronal oscillation frequency as well as generate
a LFP spectrum which approximated the spectrum present in
the tremor-free condition much more closely than open-loop
fixed intensity stimulation.

The performance of the closed-loop stimulation was re-
markably better than that of open-loop stimulation, both at low
(20 Hz) and high (130 Hz) frequencies (Fig. 7), suggesting
that open-loop stimulation cannot restore the neuronal activity
present in tremor-free conditions. This is further supported by
experiments [22], [41], showing that random frequency [41] or
irregular frequency [22] open-loop DBS, even when delivered
at a high average frequency (e.g., 130 Hz), is not effective at
relieving tremor.
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