
Abstract. The coordinated reset of neural subpopula-
tions is introduced as an effectively desynchronizing
stimulation technique. For this, short sequences of high-
frequency pulse trains are administered at different sites
in a coordinated way. Desynchronization is easily
maintained by performing a coordinated reset with
demand-controlled timing or by periodically adminis-
tering resetting high-frequency pulse trains of demand-
controlled length. Unlike previously developed methods,
this novel approach is robust against variations of model
parameters and does not require time-consuming cali-
bration. The novel technique is suggested to be used for
demand-controlled deep brain stimulation in patients
suffering from Parkinson’s disease or essential tremor. It
might even be applicable to diseases with intermittently
emerging synchronized neural oscillations like epilepsy.

1 Introduction

In several neurological diseases like Parkinson’s disease
(PD) or essential tremor, brain function is severely
impaired by synchronization processes (Elble and Koller
1990). Parkinsonian resting tremor appears to be caused
by a population of neurons located in the thalamus and
the basal ganglia. These neurons fire in a synchronized
and intrinsically periodical manner at a frequency
similar to that of the tremor, regardless of any feedback
signals (Llinás and Jahnsen 1982; Pare et al. 1990; Lenz
et al. 1994). In contrast, under physiological conditions
these neurons fire incoherently (Nini et al. 1995). In
patients with PD, this cluster acts like a pacemaker and
activates premotor areas and the motor cortex (Alberts
et al. 1969; Volkmann et al. 1996), where the latter
synchronize their oscillatory activity (Tass et al. 1998).

In patients with advanced PD or essential tremor who
no longer respond to drug therapy, depth electrodes are

chronically implanted in target areas like the thalamic
ventralis intermedius nucleus or the subthalamic nucleus
(Benabid et al. 1991; Blond et al. 1992). Electrical deep
brain stimulation (DBS) is performed by administering a
permanent high-frequency (HF) (> 100 Hz) periodic
pulse train via the depth electrodes (Benabid et al. 1991;
Blond et al. 1992). HF DBS has been developed empiri-
cally, and its mechanism is not yet fully understood.
Permanent HF stimulation basically mimics the effect of
tissue lesioning by suppressing neuronal firing, which in
turn suppresses the peripheral tremor (Wielepp et al.
2001). HF DBS is reversible and has a much lower rate of
side effects than lesioning with thermocoagulation
(Schuurman et al. 2000). Nevertheless, due to current
spread, for example, HF DBS may lead to severe side
effects like dysarthria, dysesthesia, or cerebellar ataxia.

For this reason stimulation techniques have been
developed that aim at desynchronizing the pacemaker’s
pathologically synchronized firing in a demand-con-
trolled way instead of by simply suppressing the neu-
ronal firing (Tass 2001a,b,c, 2002a,b,d). These methods
share one particular feature: each stimulus consists of
two qualitatively different stimuli. The first stimulus is
stronger and resets (restarts) the cluster, whereas the
second, weaker stimulus is a single pulse that is admin-
istered after a constant time delay and desynchronizes by
hitting the cluster in a vulnerable state. The goal of the
reset is to control the dynamics of the cluster by
restarting the cluster in a stereotypical way. The reset
may be achieved by means of a strong single pulse (Tass
2001a,c, 2002d), a HF pulse train (Tass 2001b), or a low-
frequency pulse train (Tass 2002a,b).

A desynchronizing single pulse is effective only if it
hits the population very precisely at a vulnerable phase
(Tass 1999). Hence the composite stimulation techniques
only work with an effective reset that may require high
stimulation intensities, and minor variations of critical
stimulation parameters (especially the delay between
resetting stimulus and desynchronizing single pulse) may
abolish the desynchronizing effect (Tass 2001c, 2002b).
Thus these methods are not robust against larger vari-
ations of the model parameters (frequencies of the
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neurons and strength of synaptic interactions). Fur-
thermore, these techniques require a time-consuming
calibration procedure lasting more than 30 min (based
on series of test stimuli) (Tass 1999). Unlike resetting
stimuli, the desynchronizing methods have not yet been
sufficiently tested during operation. They will be tested
after operation in selected patients with an external
connection to their implanted electrodes. In summary,
the previous methods can only be applied to synchro-
nized oscillations if their dynamical features are rea-
sonably stable and if there is enough time for
calibration.

In this paper, these difficulties are surmounted by
separately stimulating subpopulations. A coordinated
reset of neural subpopulations with demand-controlled
timing or with demand-controlled length of periodically
administered HF pulse trains causes, in my model, an
effective desynchronization. These novel techniques are
robust with respect to variations of model parameters,
and there is no need for time-consuming calibration.
Their robustness and rapid availability make the novel
stimulation techniques clearly superior to the previously
developed methods. The novel methods should be tested
in patients with advanced PD or essential tremor and
might even be applicable to diseases with intermittently
emerging synchronized neural oscillations like epilepsy.

2 Model

The dynamics of a neuronal population can be modeled
with a network of phase oscillators (Kuramoto 1984;
Ermentrout and Kopell 1991; Grannan et al. 1993;
Hansel et al. 1993). The population of N interacting
phase oscillators subject to stimulation and to random
forces obeys

_wwj ¼ X� K
N

XN

k¼1
sinðwj � wkÞ þ XjðtÞSjðwjÞ þ FjðtÞ ð1Þ

where wj denotes the phase of the jth phase oscillator.
All oscillators have the same eigenfrequency X and are
globally coupled with strength K > 0. In neurons, the
impact of an electrical stimulus depends on the neuron’s
phase (Best 1979; Guttman et al. 1980). Hence the
stimulus is modeled by a 2p-periodic function like
SjðwjÞ ¼ I coswj with intensity parameter I .

XjðtÞ ¼ 1 : neuron j is stimulated at time t
0 : else

n
ð2Þ

takes into account switching on and off stimulation of
the jth oscillator. The random forces FjðtÞ are Gaussian
white noise with hFjðtÞi ¼ 0 and hFjðtÞ Fkðt0Þi ¼ Ddjk
dðt � t0Þ, where D is the constant noise amplitude. For
vanishing stimulation (X ¼ 0), Eq. 1 is a well-known
standard model of coupled phase oscillators (Kuramoto
1984). Compared to a previously introduced model for a
homogenously stimulated population of phase oscilla-
tors (with Sj ¼ Sk for j; k ¼ 1; . . . ;N ) (Tass 1999), Eq. 1
takes into account that different oscillators may be
stimulated differently.

3 Coordinated reset of neural subpopulations

A phase-dependent stimulus, like SjðwjÞ ¼ Ij cosðwjÞ,
resets the jth oscillator to a particular phase if the
intensity parameter Ij is large compared to the coupling
strength and to the noise amplitude and provided the
stimulation duration is long enough (Tass 1999, 2002c).
Such a reset can be achieved with a strong single pulse
(Tass 1999, 2001a, 2002d), a HF pulse train (with a pulse
rate 20 times larger than the mean eigenfrequency X)
(Tass 2001b) or a low-frequency pulse train (with a pulse
rate similar to X) (Tass 2002a,b). Here we use a HF
pulse train for the reset.

First, let us assume that there is no noise (D ¼ 0). A
HF pulse train with SjðwjÞ ¼ Ij cosðwj þ hÞ resets the jth
neuron close to the phase wres

j þ h (Tass 1999, 2002c).
Thus, we could easily desynchronize the population by
stimulating each neuron separately to achieve equidis-
tant resets. For this, we would administer HF pulse
trains of identical timing (i.e., XjðtÞ ¼ X ðtÞ for
j ¼ 1; . . . ;N ) but different stimulation mechanisms
SjðwjÞ ¼ Ij cos½wj þ 2pðj� 1Þ=N �. After stimulation the
population would be perfectly desynchronized, with a
uniform distribution of the phases wres

j þ 2pðj� 1Þ=N .
However, stimulating each neuron separately would re-
quire the use of many electrodes and would easily
damage or even destroy the neural tissue. Furthermore,
noise makes the reset less perfect: the jth phase after
stimulation would be wres

j þ 2pðj� 1Þ=N þ nj with a
deviation nj due to noise. Therefore, we choose a dif-
ferent goal. Instead of forcing the population into a state
with a perfectly uniform distribution of the phases, we
simply split the population into a few, say four, sub-
populations equally spaced in a cycle ½0; 2p�.

We denote as subpopulations 1, 2, 3, and 4 the groups
of neurons j ¼ 1; . . . ;N=4, j ¼ N=4þ 1; . . . ;N=2,
j ¼ N=2þ 1; . . . ; 3N=4, and j ¼ 3N=4þ 1; . . . ;N , res-
pectively (with N divisible by 4). To split the population
in four equally spaced subpopulations we may choose
qualitatively different strategies. (i) Simultaneous stimu-
lation of all four subpopulations: phase shifts of the reset
neurons are induced by phase shifts of the stimulation
mechanisms. We may stimulate neuron j of subpopula-
tion k ¼ 1; . . . ; 4 with a HF pulse train with SjðwjÞ ¼
I cos½wj þ 2pðk � 1Þ=4�. (ii) The four subpopulations are
stimulated at different times with identical stimulation
mechanisms Sj. The delay between subsequent HF pulse
trains is equal to T=4, where T ¼ 2p=X is the period of
the population without stimulation. We may stimulate
neuron j of subpopulation k ¼ 1; . . . ; 4 at time
t0 þ T ðk � 1Þ=4 with a HF pulse train with
SjðwjÞ ¼ I cosðwjÞ. (iii) Strategies (i) and (ii) can be
combined, e.g., by performing two subsequent antiphase
resets of pairs of subpopulations with a time delay of T=4
(Fig. 1a). Subpopulation 1 and 2 are stimulated simul-
taneously at time t0 but with different polarity. A neuron
of subpopulation 1 is stimulated with SjðwjÞ ¼ I cosðwjÞ,
whereas a neuron of subpopulation 2 is stimulated with
SjðwjÞ ¼ I cosðwj þ pÞ ¼ �I cosðwjÞ. Analogously, sub-
populations 3 and 4 are simultaneously stimulated at
time t0 þ T=4. A neuron of subpopulation 3 is stimulated
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with SjðwjÞ ¼ I cosðwjÞ, whereas a neuron of subpopu-
lation 4 is stimulated with SjðwjÞ ¼ �I cosðwjÞ.

Variants (i)–(iii) work comparably well. Due to space
restrictions, only version (iii) will be demonstrated. To
estimate the extent and type of synchronization of the
whole population, we use the cluster variables

ZmðtÞ ¼ RmðtÞeiumðtÞ ¼ 1

N

XN

j¼1
eimwjðtÞ ð3Þ

where RmðtÞ and umðtÞ are the corresponding real
amplitude and real phase, where 0 � RmðtÞ � 1 for all
times t (Daido 1992; Tass 1999). Cluster variables are
convenient for characterizing synchronized states of
different type: perfect in-phase synchronization corre-
sponds to R1 ¼ 1, whereas an incoherent state, with
uniformly distributed phases, is associated with Rm ¼ 0
ðm ¼ 1; 2; 3; . . .Þ. R1 ¼ 0 combined with large Rm is
indicative of an m-cluster state consisting of m distinct
and equally spaced clusters, where within each cluster all
oscillators have similar phase. Analogously, we use

ZðkÞm ðtÞ ¼ RðkÞm ðtÞeiu
ðkÞ
m ðtÞ ¼ 4

N

X

j2Kk

eimwjðtÞ ð4Þ

as cluster variables for the four subpopulations sepa-
rately. k ¼ 1; . . . ; 4 is the index of the subpopulation
introduced above, m is the index referring to an m-cluster
state (Eq. 3), and Kk is the set of indices belonging to the
kth subpopulation, e.g., K1 ¼ f1; . . . ;N=4g. With ZðkÞ1 we
estimate the extent of in-phase synchronization within
subpopulation k. The latter is perfectly in-phase syn-
chronized if RðkÞ1 ¼ 1.

The effect of the coordinated reset is visualized in
Fig. 1b by showing a snapshot of ZðkÞ1 ðtEÞ, the centers of
mass of all four subpopulations at the end of the stim-
ulation. All four subpopulations are strongly synchro-
nized, where their mean phases uðkÞ1 are equally spaced in
the cycle. Rð1Þ1 and Rð2Þ1 are slightly smaller than Rð3Þ1 and
Rð4Þ1 . This follows from the fact that at the end of HF
pulse trains 1 and 2 (i.e., at time tE � T=4) Zð1Þ1 and Zð2Þ1
are located exactly where Zð3Þ1 and Zð4Þ1 are located at the
end of HF pulse trains 3 and 4 (i.e., at the end of the
stimulation, at time tE). Between tE � T=4 and tE sub-
populations 1 and 2 spontaneously run in counter-
clockwise direction through a quarter of a cycle and
relax to a less synchronized state with smaller Rð1Þ1 and
Rð2Þ1 . The arrangement of Zð1Þ1 ; . . . ; Zð4Þ1 at the end of the
stimulation is a symmetrical four-cluster state of the
whole population, with R4 from Eq. 3 close to 1 and R1

close to 0. The coordinated reset splits the whole pop-
ulations in four distinct, symmetrically arranged sub-
populations.

4 Effective desynchronization

To understand how a stimulus-induced clustering leads
to an effective desynchronization, we have to study the
dynamics of the leading modes Z1; . . . ; Z4. We first recall
the dynamical behavior of Eq. 1 without stimulation
(with X ðtÞ ¼ 0 in Eq. 2). For large N it has been shown
that noisy in-phase synchronization emerges out of the
incoherent state due to a decrease of the noise amplitude
D (Kuramoto 1984) or, analogously, because of an
increase of the coupling strength (Tass 1999). For K > D
a stable limit cycle Z1ðtÞ ¼ Y expðiXtÞ emerges, where Y
is a complex constant (Tass 1999). When K exceeds its
critical value Kcrit ¼ D, Z1 from Eq. 3 becomes an order
parameter, which according to the slaving principle
(Haken 1983) governs the dynamics of the other, stable
modes Zm (m ¼ 2; 3; . . .) on the center manifold (Pliss
1964): the order parameter Z1 acts on a slow time scale,
whereas the stable modes Zm act on a fast time scale and
relaxes to values given by the order parameter Z1

(Wunderlin and Haken 1975; Haken 1983). In Eq. 1
with large N , this relationship reads (Tass 1999):

Rm / Rm
1 with m � 2; m ¼ 2; 3; 4; . . . ð5Þ

The collective dynamics will be visualized not only with
the cluster variables Zm but also by considering the
collective firing. A single firing/bursting model neuron
fires/bursts whenever its phase is close to zero (modulo
2) (Kuramoto 1984; Ermentrout and Kopell 1991;
Grannan et al. 1993; Hansel et al. 1993; Tass 1999).
The cluster’s collective firing activity is given by the
relative number of neurons producing an action potential
or burst:

nfireðtÞ ¼
number of neurons with coswj > 0:99

N
ð6Þ

0 � nfireðtÞ � 1 for all t. Varying the threshold parameter
0.99 in a reasonable range does not change the results.

Fig. 1. a Two subsequent antiphase resets of pairs of subpopulations
are achieved by administering two pairs of high-frequency (HF) pulse
trains with different polarity with a time delay of T=4, where
T ¼ X=ð2pÞ is the period of the population. Time course and polarity
of HF pulse trains is schematically indicated with X 0ðtÞ ¼ X ðtÞSjð0Þ,
where the numbers indicate the subpopulation to which the
corresponding HF pulse train is administered. Single pulses are
highlighted by shaded regions. Each HF pulse train consists of 15
single pulses with duration 0.02 intersected by pauses of length 0.03.
HF pulse trains 1 and 3 have positive polarity, SjðwjÞ ¼ I cosðwjÞ,
whereas HF pulse trains 2 and 4 have negative polarity,
SjðwjÞ ¼ �I cosðwjÞ, with I ¼ 30. Stimulation starts at time tB ¼ 0
and ends at tE ¼ 0:97. b Stimulating Eq. 1 according to (a) results
in a configuration at the end of the stimulation given by ZðkÞ1 ðtEÞ,
where numbers indicate the corresponding subpopulation k ¼ 1; . . . ; 4.

The unit circle marks the maximal range of jZðkÞ1 j. Model parameters:
N ¼ 100, K ¼ 2, X ¼ 2p, noise amplitude D ¼ 0:4
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nfireðtÞ ¼ 0 means that no neuron fires/bursts, while all
neurons fire/burst at time t if nfireðtÞ ¼ 1.

Figure 2 shows the dynamics before, during, and after
stimulation. The phase at which the coordinated reset
from Fig. 1 is applied to the same neuronal population is
varied within one cycle. The impact of this stimulus is
independent of the phase at which it is administered. At
the end of the stimulation the system has reached the
four-cluster state shown in Fig. 1a: R4 has a value sim-
ilar to the prestimulus range, whereas R1, R2, and R3 are
close to zero. In the poststimulus period, the system does
not remain in the four-cluster state. Rather, due to the
slaving principle, R4 rapidly decays to zero, so that the
system approaches a perfectly desynchronized state
characterized by Rm ¼ 0 (m ¼ 1; 2; 3; 4; . . .). The vanish-
ing R1 suppresses R4 according to Eq. 5. Without cou-
pling (but with noise) the four-cluster state would decay
more slowly (see (Tass 1996)).

From the mathematician’s viewpoint the relaxation of
R4 is due to the system being attracted by the center
manifold as characterized by Eq. 5. By imposing a four-
cluster state, the stimulation does only half of the de-
synchronizing work. The rest, namely, approaching a
uniformly desynchronized state, is done by the system
itself. In this way, the coupling, which causes the syn-
chronization, is used for improving the desynchronizing
effect. In the course of the poststimulus transient R1 and

according to Eq. 5, R2, R3, and R4 also recover again.
The system finally reaches its stable in-phase synchro-
nized state again. The results are stable with respect to
variations of N between 20 and 1000 and more.

5 Block of resynchronization

The effectively desynchronizing coordinated reset of
subpopulations can be used to block the resynchroniza-
tion. For this, we may use two different strategies:

(i) Demand-controlled timing of the administration of
identical stimuli. Whenever the population tends to re-
synchronize, the same stimulus is administered (Fig. 3).
The larger the coupling strength K, the more often a
stimulus has to be administered to maintain an uncor-
related firing. In an experimental application, one has to

Fig. 2a–e. The stimulus from Fig. 1a is administered to the in-phase
synchronized neuronal population from Eq. 1 at different initial
phases. At the beginning of each simulation the phases are given by
wj ¼ Wþ Dwj, where Dwj is normally distributed with variance

ffiffiffiffiffiffiffi
0:3
p

.
The time course of R1 (a), R2 (b), R3 (c), R4 (d) from Eq. 3 and the
relative number of firing neurons nfire from Eq.6 (e) is shown in 101
simulations, where the normalized mean initial phase H ¼ W=ð2pÞ is
varied in equidistant steps within one cycle ½0; 1�. Equation 1 is
integrated with Euler’s technique with a time step of 0.0001. The first
30,000 time steps were discarded to guarantee that the stimuli hit the
population in a stable synchronized state. Same stimulation param-
eters and model parameters as in Fig. 1. Stimulation starts at tB ¼ 0
and ends at tE ¼ 0:97. Pairs of HF pulse trains 1, 2 and 3, 4 are
indicated by green and blue horizontal bars, respectively

Fig. 3. Time course of R1 from Eq. 3 (a, c, e), and of nfire from Eq. 6
(b, d, f) during different types of stimulation.Demand-controlled timing
of stimulus administration (a, b): As soon as the amplitude R1 of the
recovering order parameter reaches the value of 0:5, the stimulus from
Fig. 1a is administered again. Periodical stimulation with demand-
controlled length of HF pulse train (c, d): The stimulus from Fig. 1a is
administered periodically, where the length of the HF pulse trains is
adapted to R1 according to Eq. 7 with Mmax ¼ 15 and Mmin ¼ 0.
Standard permanent HF pulse train stimulation (e, f): Each neuron is
stimulated with the same HF pulse train: XjðtÞ ¼ X ðtÞ in Eqs. 1
and 2. a–f: Numerical integration, model parameters, and initial
conditions as in Fig. 2. Beginning and end of stimuli are indicated by
vertical lines. a–d: Upper and lower shaded regions correspond to pairs
of HF pulse trains 1, 2 and 3, 4, respectively. e, f: HF pulse train is
indicated by one shaded region
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observe the synchronized oscillation during a sufficiently
long period of time in order to perform a frequency
analysis that yields the period T of the population in the
absence of stimulation and, thus, the critical stimulation
parameter T=4 (the time delay between the two pairs of
HF pulse trains, Fig. 1a).

(ii) Entrainment with periodically administered HF
pulse trains of demand-controlled length. The stimuli are
periodically administered with offset times tn ¼ nms,
where n ¼ 0; 1; 2; 3; . . . is the index labeling the various
stimuli, s ¼ T þ e is a time interval in the range of the
period T of the population without stimulation, and m is
a small integer such as 2 or 3. This means we perform a
1 : m entrainment of the four subpopulations, where the
spontaneous frequency of the neurons is approximately
m times larger compared to the frequency of stimulus
administration. The smaller jej, the smaller is the stim-
ulation strength necessary to achieve an entrainment.

Unlike in Sect. 3 (Fig. 1a), we use HF pulse trains of
demand-controlled length: the length of the HF pulse
trains increases linearly between a minimal value Mmin

and a maximal value Mmax of single pulses (except for
rounding), where the latter is initially used for desyn-
chronizing the fully synchronized population. R1 is
measured at times t0n ¼ tn � tmax, where tmax is the max-
imal duration of a HF pulse train (containing Mmax

single pulses). R1ðt0nÞ determines the number of pulses of
the HF pulse trains 1–4 of the nth stimulus according to

Mn ¼ min
R1ðt0nÞðMmax�MminÞ

R1ðt0Þ

� �

Z

þMmin;Mmax

� �

ð7Þ

where n ¼ 0; 1; 2; 3; . . ., ½x�Z stands for rounding x to the
nearest integer, and minfx1; x2g stands for the minimum
of fx1; x2g. The nth stimulus ends precisely at time
tn ¼ nms, whereas it starts somewhere between t0n (for
Mn ¼ Mmax) and tn (for Mn ¼ Mmin ¼ 0), depending on
its duration. With this adaptive entrainment we stabilize
the periodic motion of Zð1Þ1 ; . . . ; Zð4Þ1 , the centers of mass
of the four subpopulations. In this way, only minor
corrections are necessary to keep the centers of mass
Zð1Þ1 ; . . . ; Zð4Þ1 sufficiently close to their corresponding
attractors (Fig. 1a) at times tn ¼ nms. If the suppression
of R1 is not sufficient, we may (i) choose a larger
intensity parameter I in SjðwjÞ ¼ I coswj, (ii) increase
Mmin, (iii) administer the stimuli at a higher rate, i.e.,
decrease m so that the interstimulus interval tnþ1� tn ¼ ms
gets smaller, and/or (iv) increase the duration of each
single pulse of the pulse trains. The feedback value of R1

can also be evaluated before time t0n, especially in case of
a slow order parameter dynamics (i.e., when the
coupling is weak with respect to the noise). We could
also use the mean of R1 in a period of evaluation.

Applying the standard, permanent HF pulse train
stimulation (Benabid et al. 1991; Blond et al. 1992) to
our Eq. 1 (in a first approximation) corresponds to
stimulating each neuron with the same HF pulse train
[XjðtÞ ¼ X ðtÞ in Eqs. 1 and 2]. During a permanent HF
stimulation a high-frequency entrainment of the order
parameter Z1 captures Z1 in a small portion of the

Gaussian plane (Tass 2001b), so that the individual
neurons’ firing is stopped, but no desynchronization
occurs (Fig. 3e,f). In contrast, during stimulation R1 is
larger compared to its prestimulus level, and after
stimulation the synchronous firing continues immedi-
ately. To suppress the firing with such a simple pulse
train persistently, it has to be administered permanently.
The number of single pulses used to suppress the firing
in Fig. 3e,f is 5:35 and 8:02 times larger than that used
for blocking the resynchronization in Figs. 3a,b and
3c,d, respectively.

6 Demand-controlled deep brain stimulation

I suggest using the demand-controlled stimulation
techniques shown in Fig. 3a–d for the therapy of
neurological diseases like Parkinson’s disease or essen-
tial tremor. The demand-controlled stimulation tech-
niques may be realized technically in different ways by
using several electrodes or an electrode with several
contacts. The main point is to achieve a coordinated
reset of neural subpopulations central to the patholog-
ical dynamics.

For the feedback control of the stimulation we need a
signal reflecting the extent of synchronization within the
target population (corresponding to R1 in Fig. 3). This
signal may be a local field potential (LFP) measured via
the electrodes used for stimulation. Alternatively, we
may use an epicortical electrode measuring the electrical
activity in cortical areas that are sufficiently strongly
synchronized with the target area stimulated via the
depth electrodes (e.g., premotor areas, primary motor
cortex). A desynchronizing coordinated reset (Fig. 1a) is
performed either with a demand-controlled timing
(Fig. 3a,b) or periodically with a demand-controlled
length of the HF pulse train (Fig. 3c,d). The goal of this
approach is to effectively block the resynchronization
and, hence, keep the firing as close as possible to the
physiological (i.e., uncorrelated) firing mode.

To illustrate how a coordinated reset of different
parts of a target population is achieved by simply
stimulating at four different sites (Fig. 4b), we model the
impact of the four stimulating electrodes on the jth
neuron by

XjðtÞSjðwjÞ ¼
X4

k¼1
YkðtÞI cosðwjÞq

ðkÞ
j ð8Þ

where k is the index referring to the electrode. The time
course of the HF pulse train administered via the kth
electrode is given by Yk. It is identical to the kth HF
pulse train shown in Fig. 1a. Yk is 0 when there is no
stimulation and þ1 or �1 else, depending on the polarity
of the electrode. HF pulse trains 1 and 2 as well as 3 and
4 have opposite polarity: Y1 ¼ �Y2, Y3 ¼ �Y4, where HF
pulse trains 3 and 4 are delayed by T=4. The influence of
the kth electrode on the jth neuron is modeled by
I cosðwjÞ as in the simulations of Figs. 1–3. The effect of
stimulation decays with increasing distance between
neuron and electrode, where the spatial activation
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profile is not known in detail (Ranck 1975). We model
the ring-type distance dependence by qðkÞj ¼
exp½ð�a � kxj � XðkÞkÞb� with a ¼ 0:75 and b ¼ 4 (see
Figs. 1 and 2 in Ranck 1975). Results are qualitatively
invariant with respect to variations of a between 0.25
and 0.75 and b between 2 and 6.

Both a demand-controlled timing of the stimulus
administration (Fig. 4c,d) and a periodical stimulation
with demand-controlled length of the HF pulse trains
(Fig. 4e,f) effectively desynchronize the target popula-
tion.

7 Discussion

Novel, effectively desynchronizing stimulation tech-
niques are presented: a coordinated reset of neural sub-
populations with demand-controlled timing (Fig. 3a,b)

or with demand-controlled length of periodically admin-
istered HF pulse trains (Fig. 3c,d). Applied to Eq. 1
these methods work very well and are superior to
permanent HF pulse train stimulation, the standard
method for DBS (Benabid et al. 1991; Blond et al. 1992):
permanent HF stimulation simply suppresses the firing
(Fig. 3e,f ), whereas the novel techniques desynchronize
it and, thus, bring it close to the physiological mode
(Fig. 3a–d). Moreover, the energy consumption of the
novel methods is considerably smaller (Sect. 5). This
difference is even more pronounced in the case of
realistic (i.e., weaker) coupling, when it takes the
population much longer to resynchronize. In this paper,
rather strong coupling has been used for the sake of
clearness.

Compared to previously developed demand-con-
trolled techniques that act on a population homoge-
nously (with Sj ¼ Sk for j; k ¼ 1; . . . ;N in Eq. 1) (Tass
2001a,b,c, 2002a,b,d), the novel techniques presented
here may have a slightly larger energy consumption
when applied to Eq. 1. For a decrease of the firing by
70% the previous techniques require 8.82, 8.11, and 4.25
times less energy compared to standard permanent HF
stimulation, provided the reset is achieved with a strong
pulse, a HF pulse train, and a low-frequency pulse train,
respectively (Tass 2002b). These ratios were determined
for Eq. 1 with N !1, where N is the number of
oscillatory neurons. In contrast, the corresponding ra-
tios of the novel methods read 5.35 for demand-con-
trolled timing and 8.02 for demand-controlled length of
HF pulse trains and were determined with N ¼ 100
(Sect. 5). Because of the different values of N , compar-
isons of the different ratios have to be drawn cautiously.
A detailed comparison of the energy consumption will
be presented soon.

The absence of critical stimulation parameters, the
robustness of the desynchronizing effect, and the quick
availability (without time-consuming calibration) make
the novel stimulation techniques, in particular the peri-
odical stimulation with demand-controlled length of the
HF pulse trains (Figs. 3c,d and 4e,f), superior to the
previously developed demand-controlled techniques that
act on a population homogenously (Tass 2001a,b,c,
2002a,b,d). Concerning the effects on Eq. 1, periodi-
cal stimulation with demand-controlled length of the
HF pulse trains (Fig. 3c,d) is more powerful compared
to the demand-controlled timing of the stimuli (Fig.
3a,b):

1. The demand-controlled adaptation of the length of
the HF pulse trains needs less energy: during the
entrainment Zð1Þ1 ; . . . ; Zð4Þ1 , the centers of mass of the four
subpopulations run in counterclockwise direction along
the unit circle. After two cycles (m ¼ 2) we control
whether they are equally spaced, as shown in Fig. 1a.
The more their arrangement deviates from this perfect
four-cluster state, the more often we kick the subpopu-
lations toward their attractors. The larger the distance
between ZðkÞ1 and its corresponding attractor, the longer
the chosen HF pulse train has to be in order to move ZðkÞ1
close to its attractor (Tass 2001b). A stable entrainment
guarantees that we need only short HF pulse trains to

Fig. 4. a The effect of the kth electrode on the jth neuron, qðkÞj ¼
exp½ð�0:75 � kxj � XðkÞkÞ4�, decays with increasing distance between
neuron and electrode kxj � XðkÞk. b 113 neurons (dots) are placed on
a grid within the unit circle. The four stimulation electrodes (indicated
by stars labeled by numbers) are placed at the corners of the unit
square. Time courses of R1 from Eq. 3 (c, e) and of nfire from Eq. 6 (d,
f). As in Fig. 3a–d, demand-controlled stimulation techniques are
applied, where four different HF pulse trains (modeled by YkðtÞ in
Eq. 8 and shown in Fig. 1a) are administered via the four electrodes
from b, respectively. Demand-controlled timing of stimulus administra-
tion (c, d): as soon as R1 ¼ 0:5, the next stimulus is administered.
Periodical stimulation with demand-controlled length of HF pulse train
according to Eq. 7, where Mmax ¼ 15 and Mmin ¼ 0 (e, f). c–f Model
parameters, initial conditions, and format as in Fig. 3, except for
I ¼ 40 (used for compensating for the decay of qðkÞj )
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perform minor corrections of the periodic trajectories of
Zð1Þ1 ; . . . ; Zð4Þ1 . We use the inner tendency of the neurons
to be active periodically in order to save stimulation
energy. In contrast, if we administer a long HF pulse
train whenever the amplitude of the order parameter R1

exceeds a critical value (Fig. 3a,b), Zð1Þ1 ; . . . ; Zð4Þ1 may be
far away from their corresponding attractors, so that
short HF pulse trains are not sufficient.

2. The demand-controlled adaptation of the length of
the HF pulse trains can be applied without a preceding
time-consuming frequency analysis. In an experimental
application, the time delay between HF pulse trains 1
and 2 on the one hand and HF pulse trains 3 and 4 on
the other hand is simply chosen to be a quarter of s, the
period of the entrained oscillation, instead of a quarter
of T , the period of the spontaneous oscillation (Fig. 1a
and Sect. 4). By entraining the neural population with a
periodical stimulation, we know the right value of the
time delay between the HF pulse trains from the very
beginning, since we dictate s, the period of the entrained
oscillation. The consequences are obvious. (i) The
periodical stimulation with demand-controlled length of
HF pulse trains is much more robust with respect to
variations of the eigenfrequencies of the neurons. (ii)
This stimulation method does not require a time-con-
suming calibration. It may, thus, even be used to quickly
react on intermittently emerging synchronized neural
oscillations, provided the typical frequency range is
known approximately. Accordingly, this stimulation
might also be beneficial to patients suffering from
epilepsy.

A demand-controlled adaptation of the intensity I (as
opposed to a demand-controlled adaptation of the
length of the HF pulse trains) would not lead to a
comparably effective desynchronization. Decreasing I
may change the attractor of a single pulse drastically,
and instead of stable fixed points (Fig. 1b) qualitatively
different attractors like limit cycles may occur (Tass
1999, 2001c). A demand-controlled intensity I would
lead to a hopping between qualitatively different
attractors.

Already in the late 1950s it was shown that Parkin-
sonian tremor is entrained by periodic DBS of the pal-
lidum at rates similar to the peripheral tremor frequency
(Hassler et al. 1960). A desynchronization by means of a
coordinated entrainment of neural subpopulations
(Fig. 3c,d) has not yet been applied.

The desynchronizing effect of directly stimulating the
target population at four different sites (Fig. 4) is stable
with respect to variations of the spatial position of the
stimulation electrodes, at least in the model. Asymme-
tries of the spatial arrangement can be compensated for
by adjusting the intensity parameter I for the different
electrodes separately: the smaller the rhythmic compo-
nent of the measured LFP, the stronger the chosen
intensity parameter has to be for this particular elec-
trode. With the simple spatial electrode arrangement
shown in Fig. 4b the four subpopulations cannot be
stimulated in a perfectly separate way. Therefore, the
second mode (R2 from Eq. 3 of the population is not
completely suppressed after stimulation, not shown due

to space constraints; cf. Figs. 2, 3), and the extent of
uniform desynchronization is smaller. As an alternative
to a direct stimulation of the target population, we
might stimulate the target population indirectly by
stimulating different parts of fiber connections or dif-
ferent brain areas projecting on different parts of the
target population.

A similar order parameter-driven rapid relaxation of
excited stable modes (Sect. 4) has already been studied
in detail in the context of dynamical side effects of
spatially homogenous stimulation techniques (with
Sj ¼ Sk for j; k ¼ 1; . . . ;N ; Sect. 6.2.3 in (Tass 1999)):
the larger m, the faster an excited mth mode relaxes. For
this reason a separate stimulation of four subpopula-
tions has been chosen here. In contrast, separately
stimulating only two subpopulations would not yield the
desired effect, since the second mode decays too slowly,
so that no uniform desynchronization occurs. Separately
stimulating three subpopulations is already clearly bet-
ter, and the separate stimulation of four subpopulations
is a sufficient compromise between perfect uniform de-
synchronization and the use of a minimal number of
electrodes (necessary to prevent tissue damage and
especially bleeding). A coordinated reset of more than
four subpopulations is performed similarly as explained
above. For instance, to desynchronize by resetting six
subpopulations, we may administer three pairs of HF
pulse trains (of opposite polarity) separated by time
delays of s=6, where s is the period of the entrained
collective oscillation (cf. Fig. 1a).

An effective desynchronization only requires the
stimulus to be strong enough to suppress the order
parameter at the end of the stimulation. The stronger the
stimulus, the stronger the excitation of the fourth mode,
and the longer it takes R4 to relax to zero (Sect. 4).
Hence increasing the stimulation strength far beyond
values sufficient for suppressing the order parameter
may counteract desynchronization.

The stimulation techniques presented here also work
(i) if both eigenfrequencies and coupling constants are
not homogenous but vary within the population
(X! xj and K ! Kj;k in Eq. 1) and (ii) if the stimula-
tion mechanism contains higher-order terms like
I2 cosð2wjÞ. Alternatively, to perform a coordinated re-
set, we can replace the HF pulse trains by strong single
pulses. Future studies will be dedicated to modeling both
the neuronal dynamics and the stimulation mechanism
on a more microscopic level.
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