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Abstract

Neuronal rhythms are ubiquitous features of brain dynamics, and are highly correlated with cognitive processing. However, the
relationship between the physiological mechanisms producing these rhythms and the functions associated with the rhythms
remains mysterious. This article investigates the contributions of rhythms to basic cognitive computations (such as filtering signals
by coherence and/or frequency) and to major cognitive functions (such as attention and multi-modal coordination). We offer sup-
port to the premise that the physiology underlying brain rhythms plays an essential role in how these rhythms facilitate some cog-
nitive operations.

Introduction

It is well known that the brain produces rhythms that are highly cor-
related with cognition. However, the underlying mechanisms that
bring about their existence and the specificity of the rhythm to the
task at hand are still largely debated. The information presented
throughout this article offers evidence that addresses these questions
and provides strong support for a functional role for rhythms in cog-
nitive functions. We will argue that the physiological processes
underlying the multiple mechanisms that generate brain rhythms
help to gate the flow of signals within and among brain regions.
Furthermore, we offer examples of how the underlying physiology
gives clues to the functions of those rhythms.
The brain rhythms that we have in mind are those initially and

superficially uncovered in the earliest electroencephalography (EEG)
measurements, now studied though a variety of invasive and non-
invasive techniques, including electrophysiology in vitro (Carracedo
et al., 2013) and in vivo (Jutras et al., 2013), optogenetics (Cardin
et al., 2009), EEG (Tallon-Baudry et al., 1999), and magnetoen-
cephalography (Siegel et al., 2012). The old classification (e.g.
alpha, 9–11 Hz; beta, 12–30 Hz; gamma, 30–90 Hz; delta, 1–4 Hz)
based on early human EEG studies has been shown (unsurprisingly)
to be too simple. Now, it is understood that any given frequency
band may be produced by multiple mechanisms in different areas of
the brain (Ainsworth et al., 2011), and that one area may simulta-
neously produce multiple frequency bands, again via multiple mech-
anisms (Roopun et al., 2008a,b). Motivated by the working
hypothesis made above, we explore ways in which the various

rhythms and interactions of rhythms permit, or even compel, specific
dynamical processing that is useful for cognitive activity.
We investigate the contributions of rhythms to basic cognitive

computations (such as filtering signals by coherence and/or fre-
quency) and to major cognitive functions (such as attention and
multi-modal coordination). The first part of this article focuses on
gamma rhythms in the sensory and parietal cortices; however, cur-
rent experimental and modeling work suggests that this point of
view is highly relevant for frontal cortices, as well as for regions of
the brain outside the neocortex. The second part looks at instances
of interactions among multiple cortical rhythms, mainly gamma and
beta. The final part discusses the multiple ways in which beta
rhythms may come about mechanistically throughout the neocortex
and basal ganglia, and the multiple roles that this rhythm (in all of
its various forms) is presumed to play. This section raises many
more questions than it answers, but puts these questions in the con-
text of the analyses and simulations discussed in the earlier sections.

Computational properties of gamma rhythms

Physiology of gamma rhythms

Much has already been written about the gamma rhythm (Whitting-
ton et al., 2000, 2011; Bartos et al., 2002; B€orgers & Kopell, 2005,
2008; B€orgers et al., 2005, 2008; Fries et al., 2007; Marinazzo
et al., 2007; Kopell et al., 2010a,b; Wang, 2010) . The term
‘gamma rhythm’ is used in multiple ways (Canolty et al., 2006;
Colgin et al., 2009). We will use this term to mean rhythms that
require the involvement of fast-spiking (FS) interneurons, with fre-
quencies related to the time scale of the decay of inhibition in the
range of 30–90 Hz (Whittington et al., 2000).
Even within this definition, there are multiple mechanisms that

produce gamma rhythms. In the interneuron network gamma, a

Correspondence: Nancy Kopell, as above.
E-mail: nk@math.bu.edu

*J.C. and M.M.C. contributed equally to this work.

Received 10 September 2013, revised 29 October 2013, accepted 11 November 2013

© 2013 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

European Journal of Neuroscience, Vol. 39, pp. 705–719, 2014 doi:10.1111/ejn.12453



population of tonically excited mutually inhibitory FS interneurons fires
in synchronous volleys, each followed by a short (~20-ms) interval
of quiescence, during which the mutual inhibition decays sufficiently
to allow another volley. In a family of processes collectively
referred to as pyramidal–interneuronal network gamma (PING), syn-
chronous FS volleys are triggered by spikes from excitatory pyrami-
dal cells and separated by intervals of quiescence, during which
FS-to-pyramid inhibition decays sufficiently to allow more pyrami-
dal spiking. PING is subdivided into rhythms in which individual
pyramidal cells spike on most gamma cycles (strong PING), and
rhythms in which individual pyramidal cells spike only occasionally
(weak PING). We associate strong PING with active coding and cell
assemblies, and weak PING with attention and arousal (B€orgers
et al., 2005, 2008; B€orgers & Kopell, 2008). In addition, experi-
mental conditions designed to mimic the background state of excit-
ability in the awake brain (cholinergic neuromodulation alone and/or
weak glutamatergic tone) are capable of generating a persistent
PING-like gamma rhythm in which ongoing, patterned noise in prin-
cipal cell axons provides the excitatory drive (Traub et al., 2000).
These general physiological properties of gamma rhythms have been
supported by work in vivo (Atallah & Scanziani, 2009; Cardin
et al., 2009) and in vitro (Whittington et al., 2000). Note that the
cells required by ING and (strong or weak) PING, namely FS inter-
neurons and pyramidal cells, are ubiquitous in the brain.
The presence and power of gamma rhythms depends strongly on

the level of tonic drive delivered to the cell populations involved.
Gamma rhythms are produced in a simple model of PING only if
there is an appropriate balance between excitation and inhibition in
the network (B€orgers & Kopell, 2003, 2005). In particular, if the FS
cells are sufficiently excitable, they lose their phasic relationship
with pyramidal cell firing and become incoherent; their activity may
lead to the suppression or partial suppression of the pyramidal cells.
Thus, gamma rhythms may be modulated by the addition of inhibi-
tion to the FS cells [e.g. by another class of interneurons, such as
low-threshold spiking (LTS) cells], which can increase the gamma
power by preventing this ‘suppression transition’ (B€orgers & Kopell,
2005; B€orgers et al., 2008; B€orgers & Walker, 2013).
In each of the gamma mechanisms listed above, FS volleys are

separated by the decay of inhibition. Therefore, the inhibitory decay
time and the size of the population inhibitory postsynaptic potential
(IPSP) are crucial to determining the period (when more FS cells
fire on a given cycle, the period will be longer). The time scale of
this inhibitory decay is the longest important time scale in the
gamma rhythm – the rise time of the GABA and AMPA synapses
involved is short, currents with longer time constants are generally
not as strong during bouts of this rhythm, and, as the inhibition
from FS cells decays over the course of a gamma cycle, the effec-
tive membrane time constant of inhibited cells (capacitance over the
total of all conductances, inward and outward) is small, owing to
the large amount of conductance allowed by open inhibitory chan-
nels. In particular, the separation between the time scales of inhibi-
tory decay and membrane integration causes pyramidal and FS cells
to act as leaky integrators while inhibition persists – if an inward
excitatory postsynaptic current to one of these cells does not imme-
diately evoke a spike, it quickly leaks away. This property is impor-
tant to the processing of inputs, as described below.

Controversy over function of the gamma rhythm

In this article, we argue that the physiology underlying the gamma
rhythm is naturally suited to creating cell assemblies and facilitating
selective neuronal communication through coherence and frequency

selectivity. Some researchers, however, are skeptical about the role
of gamma rhythms in the active processing and routing of informa-
tion. Burns et al. (2011) measured the autocorrelation of gamma
phase and frequency over time in the macaque V1, and found that
the lengths of gamma cycles were too unpredictable for gamma
rhythms to be used as a ‘clock’ for time-dependent calculations.
Ray & Maunsell (2010) showed that the frequency of gamma
rhythms in V1 depended strongly on stimulus contrast, and varied
across the visual cortex, casting doubt on its capacity to coordinate
the timing of V1 output. These observations do seem to limit the
capacity of gamma rhythms to perform any function that requires a
reliable, precise and uniform gamma frequency. However, they do
not rule out functions that rely on phase alignment between directly
coupled regions, which could remain phase-aligned despite varia-
tions in frequency over time and space.
Some controversy over gamma rhythms stems from the suspicion

that gamma power represents the high-frequency component of action
potentials rather than network-generated rhythms. Ray et al. (2008)
observed that high gamma power (~60–100 Hz) in the local field
potential (although not in electrocorticography recordings) was
strongly correlated with local firing rates, suggesting that much of this
power reflects currents associated with action potentials. However,
they found that low gamma power (40–80 Hz) in the local field was
not strongly correlated with firing rates, and concluded that their
results were ‘not inconsistent’ with the many suggested functional
roles of gamma rhythms. Here, we exclude from consideration gamma
power associated with firing rates by limiting our scope to the band
30–90 Hz and to rhythms with frequencies related to the decay time
of inhibition.
Part of the controversy over the cognitive roles of gamma

rhythms and over rhythms in general may stem from the objection
that these roles can also be filled by non-oscillatory mechanisms. In
the following, we make no claim that rhythms are absolutely neces-
sary for their proposed cognitive functions, but only that they
enhance the performance of those functions.

Gamma rhythms and cell assemblies

We use the term ‘cell assembly’ to mean a group of cells that tran-
siently fire together, whether or not they are synaptically connected.
Such assemblies are often hypothesized to encode objects or concepts
in the brain. The relationship of gamma rhythms to the formation of
cell assemblies has been reviewed several times (Olufsen et al., 2003;
Fries et al., 2007; Kopell et al., 2010a). To summarize, strong PING
is a perfect set-up for the formation of assemblies – when one subset of
pyramidal cells receives more tonic drive than another, those cells
overcome inhibition first and activate a shared FS cell population,
which inhibits the other subset and prevents it from spiking (Olufsen
et al., 2003; B€orgers et al., 2008). This competitive interaction of
pyramidal cell populations has been referred to as ‘winner-take-all’
dynamics (Lumer, 2000; Fries et al., 2007). Because the time scale
of membrane dynamics and the synaptic rise time constant are sig-
nificantly shorter than the gamma period, the leakiness of both pop-
ulations erases any spiking history while the inhibition persists
during each cycle. Thus, the active assembly represents the most dri-
ven subset of cells on each cycle – if the inputs change, so does the
assembly. The coding associated with the gamma rhythms is thus a
dynamically changing set of assemblies in which the roster of partic-
ipants is a thresholded representation of the relative strengths of the
tonic input drives during each gamma period. However, the response
of such a circuit to inputs that vary on time scales shorter than the
gamma period can be subtle, as described below.
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Gamma rhythms as coherence filters

Although the properties of gamma rhythms have been much investi-
gated (see references cited above), there has been less work on how
the physiology of the gamma rhythm affects the processing of the
temporally patterned input. We will now refer to FS cells as I-cells
(for inhibitory) and to pyramidal cells as E-cells (for excitatory).
Gamma-oscillatory networks of E-cells and I-cells receiving

periodic input at a gamma frequency have special properties that are
not shared by other kinds of forced oscillators [e.g. phase oscillators
(Ermentrout & Terman, 2010)]. Because both cell types act as leaky
integrators during a gamma cycle, they are driven to spike more
readily by a pulse of current concentrated into a time window that is
short relative to the time scale of the leak. Figure 1 demonstrates
that, in a simple model, an E-cell population recovering slowly from
inhibition responds preferentially to short, sharp pulses over long,
shallow ones. This property leads the PING network to act as a
coincidence detector – a collection of periodic pulses that arrive at
nearly the same time evoke volleys of spikes in the network more
effectively than the same pulses in a less coherent distribution.
Spike volleys evoked in this way restore inhibition to the network,
resetting the phase of the gamma oscillation, so a periodic train of
pulses that successfully evokes volleys on every cycle entrains (or

‘phase-locks’) the gamma rhythm. Coincidence detection by the
E-cell population results in preferential phase-locking to more coin-
cident volleys of input, i.e. more ‘coherent’ periodic input trains, a
behavior that we refer to as ‘coherence filtering’.
Coincidence detection is commonplace, but coherence filtering is

not – coherence filtering requires coincidence detection within the
context of an oscillating system. A simple one-dimensional model
neuron can effectively detect coincidences or oscillate, but not both
– an oscillating neuron is generally receiving sufficient tonic drive to
overwhelm its leak current, and therefore no longer acts as a leaky inte-
grator capable of coincidence detection. Coherence filtering is explored
analytically with quadratic integrate and fire neurons in an upcoming
paper. See also Sedley & Cunningham (2013), who review the potential
cognitive importance of filtering through gamma rhythms.
Coincidence detection (and hence coherence filtering) may be rein-

forced by feedforward inhibition. Projections from the thalamus to
the neocortex generally send stronger afferents to FS interneurons
than pyramidal cells, so a pulse of synaptic input triggers a volley of
FS spikes several milliseconds after its arrival (Hull & Scanziani,
2007). If this pulse carries enough current to an E-cell in its first few
milliseconds to push it past threshold, it spikes in response; if not,
the rest of the excitatory current arrives under strong inhibition and
leaks away. The coincidence-detecting effect of feedforward

Fig. 1. An E–I network acts as a coherence filter. Four different pulses are delivered to the E-cell after an inhibitory spike. V is the membrane potential of a
quadratic integrate and fire neuron (Latham et al., 2000) recovering from inhibition, and s is the strength of the inhibitory current (as a fraction of peak inhibi-
tion). V asymptotes to a stable resting voltage, which increases as s decays. The threshold voltage (above which V spikes) decreases with s. When s = 0.2, the
stable resting voltage meets the threshold voltage, and the cell spikes. The lower branch of the solid parabola is the stable resting voltage, and the upper branch
is the threshold voltage. During a square pulse of height 0.2 (purple, cyan), the resting and threshold voltages shift to the dashed parabola. The membrane
potential asymptotes to the new resting voltage and returns after the pulse, so a 6-ms-long pulse has the same effect as a 2-ms-long pulse. During a square pulse
of height 0.4, the resting and threshold voltages shift to the dotted parabola – the leak current is overpowered, and the resting and threshold voltages disappear.
A 2-ms-long pulse of this height (red) evokes a spike even though it carries less current than the longer, shorter pulse. However, at very short time scales, the
amount of current can still be a limiting factor – a 1-ms-long pulse of height 0.6 (blue) does not carry enough current to reach a high voltage before the pulse
is over.
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inhibition is discussed in Hull & Scanziani (2007). The feedforward
inhibition motif may also affect assembly formation, as it creates a
hard time window in which active cells must spike in addition to the
competitive winner-take-all interaction created by feedback inhibition.
One consequence of coherence filtering concerns multiple inputs

to an excitatory–inhibitory (E–I) network. B€orgers & Kopell (2008)
examined periodic input from different streams to an E–I network
with a single E-cell and I-cell, tuned so that it was quiet in the
absence of input. The two streams had (usually somewhat different)
frequencies in the gamma range, and one stream was more coherent
than the other. They found that the more coherent stream of input
entrained the E–I network to its frequency, and that the other input
had little effect (Fig. 2). More specifically, a periodic input that is
not able to phase-lock a network at its frequency may be largely

ignored in the presence of an input that is able to entrain the target.
Hence, a stream of coherent pulses may effectively (but not perfectly)
filter out a stream of less coherent pulses; increasing the feedback
inhibition makes it harder for signals to entrain the target (shown in
Fig. 3), changing which sets of inputs can be effectively separated.
It has been shown that input associated with attended stimuli can

be more coherent than input from distracting stimuli (Fries et al.,
2002; Bichot et al., 2005), and that this is associated with a larger
gamma power in the input. The computational and analytical work
described above implies that the coherent input associated with
attention can act to prevent the distracting stimuli from being heard
by the downstream target. Below, we describe other consequences
of coherence filtering or closely related phenomena, and discuss rea-
sons why attention is expected to lead to coherence in the gamma
band (see section on top-down beta rhythms and attention).

Gamma rhythms and frequency matching/filtering

In vitro, gamma rhythms have been found over a frequency range
of tens of hertz. One important question is whether the frequency in
a given cell assembly showing an oscillation in the gamma range
can affect whether the input is heard by a target network that has its
own ongoing rhythm, and whether the input having another nearby
frequency is filtered out. An example of the importance of such fre-
quency matching is given by a striking observation (Middleton
et al., 2008) that the rodent entorhinal cortex, in vitro, can produce
two different frequencies of gamma rhythm, separated by ~10 Hz,
depending on the activity of N-methyl-D-aspartate (NMDA) recep-
tors; furthermore, the slower (low NMDA activity) and faster (nor-
mal NMDA activity) frequencies match the in vitro natural
frequencies of hippocampal CA3 and CA1, respectively. If the target
network listens preferentially to input similar to its own frequency,
this suggests that, in the presence of the normal NMDA activity,

Fig. 2. A coherent pulse phase locks a PING circuit and blocks a less
coherent signal. The less coherent input is greater not only in temporal aver-
age, but also in amplitude. Nonetheless, the target network (an E–I pair)
mostly follows the more coherent input, with some perturbations being
caused by the less coherent one. Reproduction of fig. 3C of B€orgers & Kop-
ell (2008).

A B

Fig. 3. Feedback inhibition determines frequency selectivity. Gamma frequency is more selective for pulse frequency when feedback inhibition is stronger.
This is because a pulse can only evoke an excitatory spike and end the gamma cycle if it arrives under sufficiently low inhibition. In this figure, a pulse arrives
after an inhibitory spike with four different delays. V is the membrane potential of a quadratic integrate and fire E-cell, and s is the saturation of the E–I syn-
apse. The lower branch of the parabola is the stable resting voltage, and the upper branch is the threshold voltage. (A) When E–I connections are strong, only
the latest pulse arrives under low enough inhibition to evoke an excitatory spike and shorten the period of this gamma cycle. (B) In a system with the same nat-
ural frequency but weaker E–I connections, the three later pulses can all evoke excitatory spikes.
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CA1 would be more responsive to entorhinal cortex input via the
temporo-ammonic pathway, whereas lowered NMDA activity would
favor CA3 activation by the input (Kopell et al., 2010b).
The work on coherence by Cannon, B€orgers and Kopell described

above suggests a modulatable mechanism for frequency matching.
We start, for simplicity, with a pulsatile excitatory input to the
E-cell population alone, when there is a background gamma rhythm
in the target network. Such input can shorten but not lengthen the
period of oscillation; therefore, inputs below its intrinsic frequency
cannot phase-lock the firing of the network, and many arrive while
the network is in its heavily inhibited, insensitive phase. This causes
the network to filter out frequencies lower than the natural network
frequency, while phase-locking readily to slightly higher frequen-
cies. Thus, any modulation of the natural frequency modulates the
range of selected input frequencies. (We note that ‘filter out’ does
not preclude some spikes from being evoked; for example, if the
input is near half the natural frequency, it may arrive at an
appropriate phase at every other gamma cycle).
The amount by which an input pulse can shorten the period of

the receiving network depends on how soon the input pulse can
overcome the decaying inhibition resulting from a spike volley of
the local feedback inhibitory circuit. Larger and/or more coherent
pulses can force the network into shorter periods, and weaker E–I
connections (e.g. if fewer I-cells participate) allow a pulse to shorten
the network period more (Fig. 3). If a set of pulses arrives with a
period shorter than the shortest network frequency that it can evoke,
then it too cannot phase-lock the network; many pulses arrive to
find the network in its heavily inhibited, insensitive phase. This
causes input at a sufficiently high frequency to be filtered out by the
feedback inhibition. (Some subset of the pulses may still cause
spikes.) Thus, the upper bound of the range of selected frequencies
can be adjusted by modulating the strength of local target network
E–I connections and the strength and coherence of the input pulses.
We now consider input to the I-cells as well. Akam et al. (2012)

observed, in CA3, that when excitatory inputs did not quickly evoke a
spike, they slightly delayed the gamma period, allowing them to
phase-lock the network at frequencies slightly lower than the natural
network frequency. This effect can be accounted for by assuming that
a few quiescent interneurons are recruited by every excitatory input,
slightly raising the local inhibition and extending the network period.
Such inhibitory recruitment may extend the range of selected periods.
Akam & Kullmann (2012) proposed a different mechanism for

input frequency selectivity at gamma frequencies. The authors con-
sidered asynchronous and oscillatory inputs to both pyramidal and
FS interneuronal populations, and showed that an input oscillating
at a specific frequency could be decoded from the other inputs by a
spiking network filter. (The coherence of the oscillation is also a
factor in decodability, so their model may also be considered to be
a mechanism for coherence selectivity.) A central feature of their
model is feedforward inhibition from interneurons. These interneu-
rons are close to asynchrony, but their firing rates resonate selec-
tively with certain frequencies, owing to mutual connectivity, and
allow the population to act as a bandpass filter. By contrast, the
work of Cannon, B€orgers and Kopell relies centrally on the feed-
back inhibition that is found in most networks that produce gamma
rhythms, and on the near-synchrony of the oscillating cell popula-
tions that is often observed in experiments (Whittington et al.,
2011). Feedforward inhibition creates a coarse initial filter – the
E-cells must be very excited to overcome this inhibition. Feedback
creates a more temporally precise filter – after the first set of E-cells
spike, the remaining population that might have spiked later are shut
down by inhibition.

Figure 4 shows network simulations illustrating frequency match-
ing in a larger E–I network. In the absence of external input, the tar-
get network shows weak PING oscillations, driven by stochastic
activity in the E-cells (spike rastergram in Fig. 4A), at a frequency
of ~36 Hz. When both E-cells and I-cells receive periodic pulses of
drive, the response of the network is strong when the input frequency
is slightly above the natural frequency (Fig. 4B), but much weaker
when the input frequency is below or significantly above the natural
frequency (Fig. 4C and D). The reason for the asymmetry is that an
input pulse that arrives just before the end of the target network per-
iod finds the network in a relatively uninhibited state, whereas a
pulse that arrives just after an intrinsic population spike volley of the
target network finds the network in a heavily inhibited state. The for-
mer is therefore more easily able to elicit a spike volley than the lat-
ter. Note that even an input at a favorable frequency (slightly above
the intrinsic target frequency) may be ineffective if it arrives at the
wrong phase. Figure 4B suggests that such an input may have to
shift the phase of the target over several periods before it can become
effective. In the simulations of Fig. 4, the inhibitory synapses decay
with a time constant of 9 ms. However, much shorter decay time
constants, e.g. 4 ms (Bartos et al., 2002), yield very similar results if
the inhibitory conductances are raised to prevent a significant change
in the intrinsic frequency of the target network.
Another recent study (Serenevy & Kopell, 2013) showed a mech-

anism by which a target network can adjust its natural frequency to
accommodate a wider range of input frequencies, by changing the
number of participating FS cells. In that study, the target network
was a set of all-to-all coupled inhibitory cells, with each cell receiv-
ing sinusoidal excitation at the same frequency but with different
oscillator amplitudes and mean drives; the differences in mean
drives is equivalent to having heterogeneity in the excitability of the

A B

C D

Fig. 4. Frequency selectivity occurs in large, heterogeneous E–I networks.
Spike rastergram for weak PING. Red dots indicate spike times of E-cells,
and blue dots spike times of I-cells. The horizontal axis is time in millisec-
onds. All parameters are as in fig. 1b of Kopell et al. (2010b), with two
exceptions: (i) the network is larger here – 200 E-cells and 50 I-cells; (ii)
synaptic inputs per cell are somewhat stronger – here, using the notation of
Kopell et al. (2010b), ĝIE = ĝEI = ĝII = 1.5 (the values used by Kopell et al.
were ĝIE = 1.5, ĝEI = ĝII = 0.5.) (A) PING rhythm without forcing. (B–D)
Same as (A), but with additional oscillatory input of different frequencies to
both E-cells and I-cells. The form of the additional input is I(t) = 1 + tanh
(10[cos(2pt/T) � 1]), where T is the period, and with a constant of propor-
tionality chosen so that the temporal average of I(t) equals 1 (for E-cells)
and 0.5 (for I-cells).
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cells. The decay time of inhibition is matched to the period of the
driving, as in 40-Hz-driven gamma rhythms. In such a network,
even without periodic forcing, not all cells participate – when inhibi-
tion decays sufficiently, the fast membrane potential dynamics of
the FS cells are very sensitive to differential drive, and determine
which cells can spike before the resulting inhibition suppresses the
rest. If more cells participate at the beginning of a gamma cycle,
they produce more inhibition, and the gamma period that follows is
longer. When the network is moderately heterogeneous, simulations
show that it can entrain to the periodic excitation by allowing just
enough cells to participate for the network frequency to match that
of the external input. There has been no similar study for a target
network showing persistent gamma rhythms, but, as these rhythms
are carried mainly by high-frequency FS cell participation, we con-
jecture that heterogeneity in the I-cell population could create a sim-
ilar response to periodic excitation by allowing differential
recruitment. This is consistent with the work of Atallah & Scanziani
(2009), who showed that gamma cycles that begin with stronger
excitatory postsynaptic potentials (EPSPs) also show stronger IPSPs
and have longer periods.
The model presented in Serenevy & Kopell (2013) underscores

the importance of heterogeneity in the properties of cells and their
connections. This study also investigated the effects of heteroge-
neous delays from the input sources to different elements of the net-
work. It was shown that, at least under some conditions, inputs
whose forcing phases were spread out over a portion of the cycle
could entrain the network that could not be entrained when the forc-
ing phases were identical [see White et al. (2000) for the article
motivating this study].

Gamma rhythms and communication through coherence
(CTC)

The previous results on frequency matching have interesting impli-
cations for CTC, a hypothesis popularized by Fries et al. This

hypothesis suggests that communication between different regions
of the brain can be facilitated by brain rhythms in the two regions,
provided that the spikes from the sender appear at the target at the
appropriate phase, generally when the level of inhibition at the tar-
get is at its lowest. The concept of CTC naturally raises the follow-
ing question – what mechanism produces this optimal phase
relationship between sender and target? It should be emphasized
that, when a forced oscillator (receiver) and its forcer (sender), or a
pair of mutually coupled oscillators, reach a stable phase relation-
ship, that relationship depends on the details of the two oscillators –
there is nothing in the general theory of oscillators that constrains
that phase relationship to what might be optimal in the context of
CTC.
The forced E–I feedback networks of the kind considered earlier

automatically produce such an optimal phase relationship. When a
sufficiently strong excitatory pulse is delivered to the network, it
generally elicits an I-cell volley, either directly or by first triggering
an E-cell volley. If the frequency of the input is approximately
matched to the target frequency, the feedback inhibition from this
volley wears off just when the next signal is due to arrive. Thus, the
next signal arrives at an optimal time – the entrainment between the
two regions automatically sets up an optimal phase difference for
CTC (Fig. 5). This argument holds even in the presence of consis-
tent conduction delays – no matter how long pulses takes to arrive
at the entrained network, its IPSP begins immediately after a pulse
arrives, and the next pulse arrives when inhibition is low.
If two such E–I networks (e.g. in different cortical regions) are

mutually coupled excitation-to-excitation, the above mechanisms can
turn the interaction into one that is effectively directed – the gamma
oscillator with the shorter (but sufficiently close) period will consis-
tently recover from inhibition earlier than the other and spike, trig-
gering the other oscillator to spike immediately afterwards. In this
phase alignment, the faster oscillator’s excitatory input arrives when
the slower oscillator’s inhibition is lowest, whereas the slower oscil-
lator’s input arrives when the faster oscillator’s inhibition is highest.

A B

C D

Fig. 5. Creation of an optimal phase relationship for CTC. (A) EPSCs from an upstream population successfully induce 1 : 1 phase-locking by periodically
driving the E-cell above its inhibition and triggering an excitatory volley, which is immediately followed by an inhibitory volley. When the circuit is phase-
locked, input pulses arrive when inhibition is low, an optimal condition for CTC. (B–D) EPSCs fail to phase-lock the network 1 : 1, owing to frequency mis-
match. (B) The forcing period is too short to phase-lock the PING circuit 1 : 1, but it can phase-lock the PING circuit 2 : 1 – the second pulse arrives when
the E-cell is under too much inhibition to spike, but the third one evokes an excitatory volley. (C) The forcing period is too short to phase-lock the circuit. As
in B, the second pulse arrives too early to evoke an excitatory spike; unlike in B, the third pulse is too late, and arrives under heavy inhibition. (D) The forcing
period is too long to phase-lock the circuit. The E-cell recovers from inhibition, spikes, and triggers an inhibitory spike before the second pulse arrives. The sec-
ond pulse arrives under too much inhibition to evoke another excitatory spike.
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This relationship is optimal for CTC from the faster oscillator to the
slower, but prevents the slow oscillator’s excitation from having any
effect on the faster circuit. The physiology creates not only an opti-
mal phase alignment for CTC, but an enforced hierarchy of oscilla-
tors in which the faster one (which, all other parameters being
equal, must be the more driven oscillator) can send to but not
receive from the slower one. Thus, although it is not always correct
that a faster oscillator precedes a slower one when they are mutually
coupled (Kopell & Ermentrout, 2002), it is true for E–I networks in
which the coupling occurs via mutual excitation.
This mechanism for directed inter-areal interaction is consistent

with recent data of Roberts et al. (2013), which showed that, when
stimulus contrast is increased during a visual task (increasing coher-
ence between gamma rhythms in V1 and V2, and the frequency of
peak coherence between them), Granger causality becomes more
strongly directed from V1 to V2. Such a strengthening of directed
causality would be the natural outcome of strong phase-locking by
the mechanism suggested above – increased gamma frequency
in V1 would cause it to more reliably phase-lead V2, such that
V2-to-V1 signals arrive under high V1 inhibition. It is also
noteworthy that fluctuations in gamma frequency were highly
correlated between V1 and V2 over a range of 10–15 Hz, which is
approximately the degree of frequency matching that was achieved
in the simulation of Fig. 4.
Another approach to coordination of sender and target was taken

by Akam & Kullmann (2012). The main model in this study relies
on a third oscillator that sends a rhythmic ‘external control input’ to
synchronize the sender and the target. Their model is very effective
at routing signals with the right frequency and phase, and filtering
out the rest, but they offer no biophysical analog for their control
signal, which must itself be somehow routed to a sender for it to
gain an advantage over others. They also describe a bottom-up
method of frequency selectivity that relies on a network of interneu-
rons near asynchrony with intrinsic firing rate resonance to act as a
bandpass filter. By contrast, the Cannon–Kopell model assumes that
interneurons are firing in nearly synchronous volleys, and take
advantage of frequency-selective phase-locking rather than fre-
quency-selective firing rate resonance to filter out distracting inputs.
The data suggest that, during gamma rhythms, FS interneurons do
fire in discrete volleys (Fisahn et al., 1998), offering support for fre-
quency selection by phase-locking rather than by resonance.
Coordination between sender and target can also be achieved by

two mechanisms that create zero-phase-lag synchronization between
gamma-rhythmic sending and receiving circuits. The first, described
in Traub et al. (1996) and Ermentrout & Kopell (1998), involves
mutual coupling between the two PING circuits, and deals with the
effects of small coupling delays by creating two pulses of inhibition
on each cycle (‘doublets’) in each circuit, one serving as locally
generated feedback inhibition, and one as feedforward inhibition
from the other circuit. The second, described in Tort et al. (2007),
requires that multiple gamma-rhythmic circuits be periodically reset
by shared pulses of inhibition. In the hippocampus, these pulses are
presumably created by oriens lacunosum moleculare interneurons
firing together at a theta frequency (4–10 Hz), producing the well-
documented phenomenon of gamma oscillations nested in a theta
rhythm. These zero-phase-lag mechanisms are useful if both circuits
have to send signals to a third circuit and be heard at the same time.

Multiple gamma rhythms and bottom-up processing

The framework provided by network filtering and CTC (above)
shows how rhythms can relate and gate inputs among brain regions.

On a spatially smaller scale, rhythms can also gate inputs among
layers within a single brain region. One example is the rodent A1,
in vitro. It was shown in Ainsworth et al. (2011) that the input layer
(L4) and more superficial layers (L2/3) can each produce a different
version of gamma rhythm in vitro; the L4 version is mechanistically
closest to strong PING (although it requires recurrent excitation
mediated by NMDA receptors), whereas the L2/3 version is the per-
sistent variety described above. For changing levels of kainate-
induced excitation to the cortex, the frequencies of the two gammas
rhythms behave differently – the L2/3 frequency is almost impervi-
ous to increasing excitation, whereas the L4 rhythm is highly sensi-
tive. At different levels of excitatory drive, the two gamma rhythms
interact in different ways. At a low level of excitation, there is little
firing in L4, whose field potential follows that of L2/3, owing to
descending inhibition to excitatory cells. At middle levels of excita-
tion, there is synchrony between the gamma rhythms generated in
both layers. At higher levels, the two frequencies break apart spec-
trally – the L4 gamma rhythms is significantly faster than that of
L2/3. L5 follows the output of the layer with the higher expressed
frequency, which is L2/3 for low levels of excitation and L4 for the
higher levels.
We hypothesize that, in vivo, if there is a large (glutamatergic)

input from the thalamus to L4 (e.g. a strong, salient environmental
stimulus), this creates a high-frequency gamma rhythm in L4 that is
not coherent with activity in the superficial layers; thus, the spiking
of L4 excitatory cells is not well aligned to that in L2/3, and some
of the activity is shunted by the feedback inhibition within L2/3.
However, the L4 activity is coherent with L5 (the output layer), and
can therefore effectively produce spiking in that layer. In contrast,
medium sensory inputs to L4 evoke gamma synchrony with L2/3,
which may have a direct impact on the output of L5 (Lee et al.,
2012). This is consistent with the idea that layers 2 and 3 are
needed for higher cognitive functions, perhaps related to contextual
processing (Petersen & Crochet, 2013), and may be less important
for processing a very salient stimulus, in which gamma rhythms are
not coordinated between L2/3 and L4.
The above modeling shows how the different gamma rhythms can

gate and route signals within A1. In connection with other modeling
work (Lee et al., 2009, 2012), it suggests a role for plasticity in sen-
sory processing – Lee et al. showed that excitatory synapses
between gamma-rhythmic networks experience maximal spike-time-
dependent facilitation if the presynaptic rhythm is faster than the
natural frequency of the postsynaptic rhythm. This plasticity is
expected to affect L4-to-L2/3 synapses when L4 receives strong
drive, causing it to generate fast gamma rhythms while L2/3 contin-
ues to generate gamma rhythms at a lower frequency. In particular,
such facilitation occurs if the ratio between the two frequencies is
1.6, the ratio between the frequencies of the two gamma rhythms
generated in Ainsworth et al. (2011) at the highest dose of kainate.
When this facilitation occurs during a salient input, it allows later
inputs to L4 to more effectively entrain and transmit information to
L2/3 (Fig. 6).
It is notable that the ratio of the two gamma frequencies is

approximately the ‘golden mean’ (Roopun et al., 2008a,b). This
number is the ‘most irrational number’, or the one that is least well
approximated by a rational number [see Pletzer et al. (2010) on
EEG and the golden mean for implications of EEG rhythms]. This
fact is equivalent to saying that, for a ratio near this number, there
are a large number of cycles of input from one to the other in which
the input arrives when the feedback inhibition of the target is large
enough to shunt out the input, as described above Thus, the natural
frequencies are such that they interfere as little as possible with one
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another. The ratio between the beta 2 rhythm (described in detail
below – 25 Hz) and the persistent gamma rhythm is also ~1.6 (Roo-
pun et al., 2008a,b), which also helps to provide independence
between the deep-layer beta 2 rhythm and the persistent gamma
rhythm.
The above results show how the physiological properties of

gamma rhythms – and in particular, fast feedback inhibition – endow
them with important computational properties. These include the
capacity for filtering inputs by coherence and by frequency, and for
creating appropriate phase relationships for directed CTC. We also
discussed how the differential physiology of the cortex across layers
can support multiple gamma rhythms that can interact to dynamically
regulate the flow of information within cortical columns.
This section of the article has addressed cognitively relevant com-

putations performed by the gamma rhythm. In the next section, we
build upon this framework to discuss interactions of gamma rhythms
with other frequency bands, emphasizing the implications for
higher-order cognitive function.

Interaction of gamma and beta rhythms

Top-down beta rhythms provide gain control

In slices of rodent sensory and parietal cortices, gamma rhythms are
found in superficial layers, whereas beta 2 rhythms are found in
deep layers (Roopun et al., 2006, 2010). In these in vitro prepara-
tions, gamma and beta rhythms interact minimally (Roopun et al.,
2008a). However, in the presence of temporally patterned input, the
two can interact in ways that have important functional significance.
One example of temporally patterned input is top-down signaling in
the beta frequency band, especially in the context of specific atten-
tion (Fries et al., 2001, 2008; Saalmann et al., 2007; Bosman et al.,
2012).
We can obtain clues about specific attention from the in vitro

work; although the experiments have been performed in a different
species (rodent vs. monkey) and different structures (S2 and A1 vs.
prefrontal cortex and V4), the experiments and modeling help to
specify what features the physiology must have to behave in a simi-
lar way. The example described below shows how beta frequency
input from a higher structure to the deep layers of a target cortex
can lead to more activity and more gamma power in the superficial

layers; as the superficial layers project to other parts of the cortex,
and gamma rhythms are associated with the creation and protection
of cell assemblies, it becomes clearer how top-down signals may
help to increase the signal-to-noise ratio in primary sensory areas
and provide the ‘contextual’ activity required for the complex sen-
sory tasks described above.
The relevance of the beta frequency in the top-down signal

becomes more apparent when we look more closely at the physiol-
ogy of the rhythms in the target structure. In the case of Roopun
et al. (2010), the latter is A1. In A1, in the presence of cholinergic
drive, the superficial layers produce a gamma rhythm, as described
above, whereas the deep layers produce a beta 2 (25-Hz) rhythm.
The cells most involved in the beta 2 rhythm are intrinsically burst-
ing (IB) excitatory cells and the LTS inhibitory cells, which mediate
inhibition that is longer than that of FS interneurons (Otsuka &
Kawaguchi, 2009). The latter cells are active when there is choliner-
gic (nicotinic) drive. The natural beta frequency resonance of this
subnetwork allows top-down signals in the beta frequency to
increase power and synchrony in the deep layers, the target of beta
frequency input from S2 (Roopun et al., 2010). The activity in the
deep layers is conveyed to the superficial ones by ascending fibers
that produce slowly decaying inhibition in L4 and activation of LTS
cells in L2/3. It is important to note that the enhancement of activity
in the deep layers is dependent on beta frequency interactions, but
the effect of this enhanced activity on the other layers is essentially
tonic inhibition, and is not inherently tied to the beta frequency.
Modeling work (Lee et al., 2013) has shown that such connec-

tions can mediate gain control in the superficial layers in the pres-
ence of a stimulus by changing the inhibition in those layers – as
discussed above under the physiology of gamma rhythms, if the FS
population starts in a very active mode, inhibition to those cells
from the deep-layer LTS cells can increase the gamma power in L4,
and hence increase the gamma input to L2/3 from L4. The activa-
tion of the LTS cells within L2/3 provides a similar function in that
layer, preventing local RS cells from firing between gamma cycles.
Thus, when the top-down signals resonate with deep-layer networks,
there is more firing and more gamma power in the superficial layers.
Figure 7 shows those connections within and between layers that
are relevant to this discussion.
These ideas are applicable to the work of Fries et al. (2001), in

which monkeys were trained to respond to stimuli that were or were

A B C

Fig. 6. Different inputs to the sensory laminar neocortex may activate different modes of laminar engagement. The laminar schematic shown here illustrates
L2/3, L4, and L5/6. Sinusoids depict gamma rhythms in each layer. The light gray sinusoid in L2/3 depicts oscillatory input from L4. Signal flow is depicted
by green arrows. The size of the arrow denotes the relative strength of connection. (A) A strong sensory stimulus arrives from the thalamus to L4, producing a
gamma rhythm (black trace). The rhythm in L4 is directly coherent with the L5 output layer. We propose that sensory information carried in the gamma fre-
quency goes directly from L4 to L5/6. In contrast, the rhythm in L2/3 is at a lower gamma frequency than that in L4 and L5/6. Although immediate sensory
information may not be processed directly by L2/3, the interaction of different gamma rhythms is predicted to create plasticity between L2/3 and L4. (B) In a
more difficult task, such as a search task that requires context matching, moderate sensory input engages gamma rhythms in L4 that lock in frequency to L2/3.
Sensory information is transmitted from L4 to L2/3. In contrast to A, L2/3 has a direct effect on L5/6 output. (C) Plasticity between E-cell populations in L4
and L2/3 (denoted by the larger green arrow) is predicted to recruit activity in L2/3 that can increase the output of L5/6.
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not attended to. In the model of Lee et al., there are two columns,
one representing the input from an attended stimulus, and one repre-
senting the input from the unattended stimulus. Both receive the
same bottom-up input, and the column associated with the attended
stimulus receives top-down beta input as described above. The deep
layers of each column send ascending excitatory fibers to inhibitory
cells of the other column. In the attention-related column, the model
produces more gamma rhythms and more activity in L2/3 than in
the ‘unattended’ column. The modeling simulations reproduce the
observation in Fries et al. (2001) that gamma power and synchroni-
zation increase with selective visual attention, and explain why the
beta frequency signals do not just accompany selective attention, but
can help to produce its cognitive effects.
It is well known that there is a connection between cholinergic

modulation and attention (Gill et al., 2000; Sarter et al., 2005;
Demeter & Sarter, 2013). The key role of the deep layer slow inhib-
itory (LTS) cells in mediating the gain control suggests one mecha-
nism for this relationship. As mentioned above, these cells are
activated via nicotinic receptors, suggesting that the gain control
could disappear without this modulation (an effect observed in the
models). Indeed, in pathologies that degrade nicotinic regulation,
there are also deficits of attention (Martin & Freedman, 2007; Ohm-
ura et al., 2012). Muscarinic modulation also adds to modulation of
the LTS cells – muscarinic modulation of deep-layer FS cells
depresses their firing (Xiang et al., 2002), further releasing the slow
inhibitory LTS cells from inhibition and thus further enhancing gain
control. The gross effects of cholinergic modulation on gain control
are evident in vitro – beta activity in S2 produces a beta rhythm or
beta coherence in the downstream area A1 only in the presence of
cholinergic input (Roopun et al., 2006, 2010).
The focus on physiology also helps to explain how cholinergic

modulation, which works via diffuse projections, can appear to act
in a selective way – the change in nicotinic and muscarinic tone in
the deep layers changes the response of the superficial layers to
input from the thalamus in ways that enhance the activity of those
columns in response to specific top-down signals.

Beta 1 rhythms and manipulation of cell assemblies

As with gamma rhythms (see above), rhythms within the classic
beta band can have different mechanisms and modal peak frequen-
cies. A particular form of beta rhythm is of special interest – in the
rat parietal cortex (S2), but not in sensory cortices, a 15-Hz rhythm
(beta 1) can be seen during decreased excitatory drive following
periods of intense excitation. Intense excitation (experimentally

induced by kainate) produces a gamma rhythm in the superficial lay-
ers via pyramidal–FS cell interaction and a beta 2 (25-Hz) rhythm
in the deep layers via IB cells with slow inhibitory feedback from
LTS cells. [Note that the mechanism for beta 2 rhythms in S2 is not
the same as that discussed for A1 above (Roopun et al., 2006)].
When this excitation is reduced, both deep and superficial layers
switch frequency to 15 Hz in a mechanism that has been shown to
involve ‘concatenation’ of rhythms – each beta 1 cycle consists of
one superficial gamma cycle (an FS volley, the decay of FS inhibi-
tion, and a volley of spikes from superficial pyramidal cells) fol-
lowed by one deep-layer beta 2 cycle (an LTS volley, the decay of
LTS inhibition, and a burst of IB spikes) (Kramer et al., 2008; Roo-
pun et al., 2008a,b) (Fig. 8). This beta 1 rhythm has the useful
property that it can continue without further input (unlike all the
forms of gamma and beta 2 rhythms described above). It can do so
because each of the two parts of the rhythm is triggered by rebound
from inhibition that arises from the previous part. This rhythm
requires some baseline of drive, and stops when the voltage
decreases enough; it also stops when there is enough new drive to

Fig. 7. Most relevant cell types and connections for the model of a single
cortical column in Lee et al. (2013). E, a population of regular-spiking pyra-
midal neurons; FS, a population of FS interneurons; LTS, a population of
LTS interneurons; IB, a population of IB pyramidal cells. All interneurons
are inhibitory; all pyramidal cells are excitatory.

A

B

Fig. 8. Beta 1 rhythm emerges from concatenation of gamma cycles and
beta 2 cycles. Left – circuit diagrams portraying relevant connectivity
between superficial FS interneurons, LTS interneurons, regular-spiking pyra-
midal neurons (E), and deep-layer IB neurons. Right – dynamics of each
population over time, vertically aligned and color-coded by cell type. Popula-
tion spikes are portrayed as vertical lines. The time courses of synaptic and
intrinsic currents are color-coded by current type. (A) Under heavy kainate
drive, a column of the cortex generates coexisting gamma and beta 2 rhythms
in the superficial layers and deep layers, respectively. Gamma rhythms are
paced by the rhythmic production of FS IPSPs, and beta 2 rhythms are paced
by the rise and decay of the M-current in IB neurons. (B) Under less drive and
after plasticity, a column of the cortex generates a beta 1 rhythm that is coher-
ent between superficial and deep layers. Owing to low drive, the H-current
builds up in the E and IB populations during IPSPs. When each IPSP wears
off, the excitation provided by the H-current triggers E or IB spikes, which, in
turn, trigger LTS or FS spikes, respectively. FS and LTS create IPSPs in
alternation, and beta 1 rhythms are paced by the concatenation of the gamma
and beta 2 cycles.
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transform the rhythms to superficial gamma and deep beta 2
rhythms.
Beta 1 rhythms are known to be associated with situations involv-

ing coordination of inputs from multiple modalities (von Stein et al.,
1999; Senkowski et al., 2008; Dean et al., 2012; Engel et al.,
2012). The physiological properties of this parietal beta rhythm can
facilitate such coordination – in the absence of another rhythm, cell
assemblies that are created in the standard gamma rhythms described
above do not allow for integration of inputs over space unless the
inputs are well coordinated in both time and strength; otherwise, the
shared recurrent inhibition created by excited pyramidal cells can
shunt out the excitation cell receiving input via another modality.
Thus, the same properties that allow these gamma rhythms to pro-
tect assemblies against distractors make it difficult to manipulate
them, by adding or subtracting components. By contrast, this beta 1
rhythm can ‘host’ cell assemblies producing a gamma rhythm within
the beta rhythm, to which cells can be added (Kopell et al., 2011).
The essential mechanistic difference is that, in the simple versions
of gamma rhythms described above, the most excitable cells inhibit
others via fast feedback inhibition within the superficial layers. In
contrast, in the beta 1 rhythm, the FS interneurons and inhibitory
cells with slower inhibition are controlled at least partly from the
deeper layers (Fig. 7), reducing or eliminating the local competition
within the superficial layers. Thus, modulation from the deep layers
can change not only the firing rate, but also the degree of competi-
tion among cell assemblies, allowing the latter to be modified by
incoming activity.
Beta 1 rhythms have also been implicated in the build-up of evi-

dence for making a decision (Tallon-Baudry et al., 2004; Donner
et al., 2009; Siegel et al., 2011; Spitzer & Blankenburg, 2011), in
which the parietal cortex is believed to be involved (Huk & Shad-
len, 2005; Kiani & Shadlen, 2009). It is possible that the physiology
of this beta 1 rhythm can facilitate such a build-up, as follows. As
described above, the beta 1 rhythm occurs following an input (mod-
eled in vitro by kainate excitation), creating a superficial gamma
oscillation and deep-layer beta 2 oscillation. This switch in frequen-
cies requires plasticity, modeled in Kramer et al. (2008) as progres-
sively enhanced connectivity among deep-layer IB cells. Now,
suppose there is ongoing input to some part of the cortex, as in the
random dots paradigm (Mazurek et al., 2003). As relevant cell
assemblies in the deep layers become repeatedly activated, it is
likely that there will be increased plasticity among such cells, and
increased coherence, allowing an increase in the beta 1 power pro-
duced in the relevant columns. Indeed, the model in Kramer et al.
(2008) shows increased beta 1 power every time there is a burst of
gamma rhythms, so it can be considered to be an ‘integral’ of the
ongoing gamma power, an analog to an integration of input (Huk &
Shadlen, 2005), as in ‘drift-diffusion’ models of decision-making
(Deco et al., 2013). It is not clear how this build-up in beta 1 power
can be translated into ramping up of rates in single neurons (Wang,
2012). However, recent work of Canolty et al. (2012) has shown
that there is a task-dependent connection between beta power and
firing rate in the motor cortex; this beta rhythm is not likely to have
the same mechanism, (Yamawaki et al., 2008), but can coordinate
with, or even be driven by, parietal beta rhythms. See also Pesaran
et al. (2008) for beta rhythms and decisions.

The mystery of multiple beta rhythms

We have shown above that some connections have been drawn
between the physiology of the beta rhythm and its roles in cogni-
tion. However, the beta rhythm has been ascribed multiple

functions, many of which have not yet been connected to
mechanisms or physiology. Here, we summarize these functions,
and then focus on systems-level models of beta rhythm in the basal
ganglia and thalamus that may serve as a first step towards drawing
connections between these functions and physiology.
Functions that have been suggested for the beta rhythm include –

coordination among many parts of the neocortex (Siegel et al.,
2012); inhibition of movement (Pogosyan et al., 2009); preservation
of the status quo (Engel & Fries, 2010); the use of cues for move-
ment (Leventhal et al., 2012); motor planning (Leocani et al.,
1997); language processing (Hanslmayr et al., 2009; Weiss & Muel-
ler, 2012); signaling whether there is enough evidence for a decision
(Tallon-Baudry et al., 2004; Donner et al., 2009; Siegel et al.,
2011; Spitzer & Blankenburg, 2011); focusing action-selection net-
work functions (Courtemanche et al., 2003); and rule learning (Bus-
chman et al., 2012). See Engel & Fries (2010) for a review of
hypotheses about beta rhythms. Furthermore, it has been noted that
beta rhythms tend to mediate signals going from higher-order struc-
tures to lower-order structures (Fries et al., 2001, 2008; Buschman
& Miller, 2007). These beta rhythms come in various overlapping
ranges – in addition to the beta 1 and beta 2 rhythms discussed
above (in the 12–20-Hz and 20–30-Hz range, respectively), a fre-
quency band around 20 Hz is associated with motor planning and
control. However, it is unclear why rhythms in those frequency
ranges should be especially useful for such functions, and why so
many functions are associated with them.
We note that the literature already describes many different

mechanisms of beta rhythm generation, including the mechanisms
for beta 2 rhythms in A1 and S2 discussed above, the concatenation
beta 1 rhythm discussed above, ‘beat-skipping beta’ in the hippo-
campus (Traub et al., 1999; Olufsen et al., 2003), and ‘period-
doubling beta’ in the entorhinal cortex (Pervouchine et al., 2006), as
well as the many possibilities suggested below. We focus below on
hypotheses (not mutually exclusive) about the origins of the beta
rhythms most associated with the cortico–basal ganglia–thalamic
(CBT) loop, although the other beta rhythms may also interact with
them. In light of previous sections, we consider beta oscillations in
cortical and subcortical structures in the context of potential func-
tional implications.
Beta rhythms in the basal ganglia and motor cortex are perhaps

most well known in the context of motor control (Brittain & Brown,
2013). Many studies have shown that desynchronization in the beta
frequency band occurs before and during a voluntary movement in
the cortex (Devos et al., 2006), the striatum (Sochurkova & Rektor,
2003), the subthalamic nucleus (STN) (Devos et al., 2006), the
internal segment of the globus pallidus (GPi) (Br€ucke et al., 2008),
and the thalamus (Klostermann et al., 2007). Furthermore, beta
oscillations have been shown to be coherent between the
somatomotor cortex and muscle (van Ede & Maris, 2013). Beta
oscillations are elevated in Parkinson’s disease, and are correlated
with the parkinsonian motor symptoms of bradykinesia and rigidity
(K€uhn et al., 2006). This has led to the theory that the beta rhythm
in the CBT loop is an antikinetic signal (Brown, 2006).
However, recent studies have brought into question the idea of

beta rhythms in the CBT loop as being purely movement-related,
and suggest a more cognitive role for this rhythm under normal cir-
cumstances. This incorporates CBT beta rhythms into a growing
body of evidence for functional roles of subcortical structures such
as the basal ganglia in cognition (Ding & Gold, 2013; Mitchell &
Chakraborty, 2013; Weintraub & Zaghloul, 2013). In particular
Leventhal et al. (2012) have found that the beta rhythm within the
CBT loop in rats is not elevated purely in response to movement or

© 2013 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
European Journal of Neuroscience, 39, 705–719

714 J. Cannon et al.



to sensory input, but rather is consistently elevated in response to
the use of a cue to direct voluntary movement. This suggests that
beta rhythms in the CBT loop are perhaps involved in more cogni-
tive functions – perception, attention, decision-making, and/or work-
ing memory. More examples include the following. Beta rhythms in
the somatomotor cortex, a part of the cortex that is highly intercon-
nected with the basal ganglia and thalamus, have been tied to per-
ceptual decision-making, potentially reflecting the accumulation of
evidence (Donner et al., 2009; Haegens et al., 2011). Suppression
of beta rhythms in the somatomotor cortex has been associated with
enhanced tactile perception (Jones et al., 2010). It has been found
that even anticipation of a somatosensory demand decreases beta
rhythms in the cortex and muscle, and that the decrease in muscular
beta power is independent of both motor preparation and movement
execution (van Ede & Maris, 2013). Beta rhythms in the CBT loop
have also been implicated in working memory – coherence between
beta oscillations in the medial dorsal nucleus of the thalamus and
the prefrontal cortex, both of which are highly interconnected with
basal ganglia, is correlated with working memory (Parnaudeau
et al., 2013). See also Brittain & Brown (2013) for more examples.
To understand the functional implications of the beta rhythms for

all of the observations above, it is important to identify the physio-
logical bases of the various beta rhythms in the CBT loop. Charac-
terization of the cellular and network components underlying
generation of the beta rhythms in the CBT loop should provide
much-needed insights into how this loop transforms inputs into
behaviorally relevant signals, as well as the role of the beta rhythm
in this transformation. Physiological studies and computational mod-
els have suggested multiple sites as potential generators of beta
rhythms in the CBT network, with multiple mechanisms. Even within
the cortex, there are multiple (non-exclusive) candidates. Beta oscil-
lations (at ~27 Hz) can be evoked in the primary motor cortex in
the presence of carbachol and kainate (Yamawaki et al., 2008), indi-
cating that the primary motor cortex has the intrinsic network con-
nectivity that is necessary to support the generation of beta
oscillations. These oscillations were generated in L5/6 of the pri-
mary motor cortex, and were dependent on both GABAA receptor
transmission and gap junctions (and were independent of AMPA).
Deep cortical layers in the rodent A1 and S2 have also been found
to produce beta oscillations (at ~25 Hz) (Roopun et al., 2006,
2010). The former requires both AMPA and GABAA receptors,
whereas the latter depends on gap junctions and is independent of
chemical synapses. Additionally, computational modeling has sug-
gested that beta oscillations may be generated in S1 as a dynamic
response to synchronous ~10 Hz input to deep-layer pyramidal cell
dendrites – feedforward input comes from the lemniscal thalamus to
the dendrites in the deep layers, and feedback input arrives from the
non-lemniscal thalamus (or other cortical areas) to the dendrites in the
superficial layers (Jones et al., 2009). This mechanism suggests that
coordination of larger networks involving subcortical structures is nec-
essary to produce a beta rhythm in S1.
Beta oscillations are prevalent in the STN of Parkinson’s disease

patients (Levy et al., 2002; Steigerwald et al., 2008), raising the
question of whether the STN is involved in the generation of basal
ganglia beta rhythms. The reciprocal connections between the STN
and the external segment of the globus pallidus (GPe) have been
investigated as a potential source of beta rhythms in the basal gan-
glia. The STN and GPe are able to generate slow oscillatory activity
(~1 Hz) in organotypic cultures, demonstrating the intrinsic oscilla-
tory capacity of these two interconnected nuclei (Plenz & Kital,
1999). Additionally, computational modeling suggests that, in the
presence of parkinsonian perturbations, the STN and GPe can oscil-

late rhythmically (Terman et al., 2002) and at beta frequency (Hol-
gado et al., 2010).
More recently, it has been suggested that the striatum has the

intrinsic cellular and network components to make it a generator of
beta rhythms in the CBT network. Robust beta oscillations arise in
vivo in the mouse striatum in response to increased cholinergic tone
(McCarthy et al., 2011). Computational modeling suggests that the
interaction between the synaptic GABAA currents in medium spiny
neurons (MSNs) and the intrinsic membrane M-current within
MSNs is critical for the production of beta rhythms in striatal net-
works (McCarthy et al., 2011). These two currents promote network
interactions between MSNs, owing to post-inhibitory rebound spik-
ing. This mechanism has been investigated extensively both in com-
putational models (McCarthy et al., 2008, 2011) and within a more
mathematical framework (McCarthy & Kopell, 2012; Mitry et al.,
2013). The M-current and/or the GABAA current are modulated by
various intrinsic [e.g. somatostatin (Moore et al., 1988), dynorphin
(Madamba et al., 1999), and neurosteroids (di Michele et al., 2013)]
and extrinsic neuromodulators, such as anesthetics and sedatives
(Brown et al., 2010), making the production of beta rhythms in this
system highly regulated. Additionally, as MSN-to-MSN GABAergic
inhibition increases with the MSN spiking rate, any regulator of
MSN excitability will also modulate the striatal beta oscillation.
MSNs are modulated by both dopamine and acetylcholine (Kreitzer,
2009), suggesting that the beta oscillation can be upregulated or
downregulated, depending on the levels of these two prominent neu-
romodulators within the striatum. As beta rhythms are involved in
cognitive function, it is particularly noteworthy that cognitive func-
tion is altered by many of the neuromodulators that affect, directly
and/or indirectly, the MSNs of the striatum, including – dopamine
(Jaber et al., 1996), acetylcholine (Zugno et al., 2013), opioids
(Iordanova et al., 2006), b-adrenergic agonists (Beversdorf et al.,
2002), and somatostatin (Tuboly & V�ecsei, 2013).
An interesting connection between striatally generated beta

rhythms and attention to salient sensory stimuli may reside in the
projections from the thalamus to the striatum. Shifts in attention in
the presence of salient stimuli are thought to involve the intralami-
nar nuclei of the thalamus (Smith et al., 2009). These intralaminar
nuclei project strongly to the striatum (Smith et al., 2004). Recent
work by Ding et al. (2010) indicates that these thalamostriatal affer-
ents gate corticostriatal input via their action on striatal cholinergic
interneurons – thalamostriatal inputs that mimic a response to salient
sensory stimuli induce a burst spiking and pause response in striatal
cholinergic interneurons. As described above, computational models
suggest that an increased striatal acetylcholine level resulting from
the bursting of cholinergic neurons should create a transient increase
in beta power in the neurons of the indirect pathway (McCarthy
et al. 2011), which are those that primarily respond to acetylcholine
with increases in excitability (Benarroch, 2012). This is consistent
with the finding of Leventhal et al. (2012) that beta rhythms are ele-
vated after a salient cue (i.e. a cue used for voluntary movement).
Thus, the behavioral effect of thalamostriatal input that mimics the
response to salient stimuli, i.e. redirecting attention and suppressing
ongoing motor activity, may be mediated through the production of
beta oscillations in striatal circuits.
Although the combination of physiological and computational

studies has provided several plausible ideas regarding the sources of
the beta rhythm, there is a huge amount of work to be performed to
go from there to a comprehensive mechanistic explanation of how
beta rhythms in the CBT loop mediate cognitive and motor func-
tions. (The results described in the previous section suggest func-
tional implications for neocortical beta rhythms.) The explanation
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may not depend on the origin of the beta rhythm, but rather on its
eventual effects on the primary output structure of the basal ganglia
– the thalamus. Computational modeling has shown that increased
low-frequency (6 or 10 Hz) synchrony of the output to the thalamus
from the GPi decreases the relay reliability of the thalamus (Rubin
& Terman, 2004; Agarwal & Sarma, 2012) – increased rhythmicity
in the GPi creates phasic inhibition of the thalamus that results in
increased bursting of thalamocortical cells and decreased responsive-
ness to sensorimotor input (Rubin & Terman, 2004). Model simula-
tions also show that deep brain stimulation to the subthalamic
nucleus, which sends excitatory projections to the GPi, decreases
thalamic relay when the stimulation frequency is 25 Hz (in the beta
frequency range) by inducing extended periods of strong GPi inhibi-
tion of the thalamus (Rubin & Terman, 2004).
Work by Kane et al. (2009) suggests further complexity – in the

thalamic reticular nucleus, it is high frequency (110–170 Hz) rather
than low frequency (alpha or beta) that dominates the local field
activity in the parkinsonian state. In contrast, when patients are trea-
ted with dopaminergic medications, which decrease the power of
beta oscillations in STN (Levy et al., 2002), the neurons in the tha-
lamic reticular nucleus show increased coherence in the beta fre-
quency range. This raises the questions of how beta oscillations in
the basal ganglia are transformed in the thalamus, and how the alter-
ations in neuromodulation and network-level dynamics in Parkin-
son’s disease alter normal thalamic computation. Although earlier
work has provided us with the important insight that information
transfer through the thalamus may be disrupted in the parkinsonian
state, the mechanism may not be as straightforward as low-
frequency oscillations from the GPi inducing low-frequency
oscillations in the thalamus.
An additional question of importance concerns the coordination

of the many potential beta generators within the CBT loop. In nor-
mal rats, episodes of beta rhythm occur almost simultaneously in
the cortex, striatum, globus pallidus, and STN (Leventhal et al.,
2012). Human cortical and basal ganglia beta oscillations have also
been shown to be coherent (Williams et al., 2002). This is consis-
tent with the idea that beta rhythms coordinate long-range informa-
tion processing (Kopell et al., 2000; Siegel et al., 2012). A
combination of physiological studies and computational modeling
will probably suggest mechanisms for coordination of beta rhythms
at these multiple sites, and also elucidate the biophysical and net-
work mechanisms that make this coordination functionally important
for signaling and information processing.

Summary

Although brain rhythms are associated with all forms of cognitive
activity (including sensory and motor processing), and appear in a
wide range of neocortical and subcortical structures, their role in
facilitating cognitive activity is far from understood. In this article,
we support the idea that the physiology underlying brain rhythms
contributes to the ways in which the rhythms facilitate function; that
is, it is not just the frequencies of the rhythms that matter, but also
the mechanisms that produce them. We demonstrated this by dis-
cussing how gamma oscillations filter their inputs, and how the
associated physiological mechanisms lead to a mechanism for com-
munication through coherence. A more complex interaction of
gamma rhythms was discussed in connection with multiple gamma
rhythms in A1 that act to route incoming signals, and perhaps prime
the network for plasticity that is useful for later processing. These
examples illustrate the point that the local dynamic behavior arising

from the mechanisms underlying gamma rhythms can be seen as
vital for communication in the brain.
We also focused on the interaction between beta and gamma

rhythms, adding another layer of complexity. In the first example,
we focused on top-down beta rhythms, and how an incoming signal
resonates with circuits in the deep layers that provide ascending
inhibition and excitation. The ascending signals, filtered through the
slow inhibition provided by LTS cells, change the balance of excita-
tion and inhibition, leading to more gamma and more activity in the
superficial layers. This example illustrates some of the subtleties of
interacting rhythms – an oscillation-mediated interaction (in this
case, deep-layer cells resonating with beta frequency input) may
have highly significant downstream effects that are not inherently
tied to the oscillation (in this case, the creation of tonic inhibition in
superficial layers). Furthermore, the effect of the top-down beta sig-
nal on the deep layers depends on nicotinic activation of those LTS
cells, so there would be different outcomes in the absence of cholin-
ergic modulation (as in an unattended state). More generally, this
story illustrates that the effect of an incoming signal on a target (in
this case, the deep layers of the cortex) depends hugely on the
dynamic state of that target.
The second example imparts a different lesson – the beta 1

rhythm that appears after intense excitation is reduced shows that
rhythms can be history-dependent. The resulting beta 1 rhythm has
special physiological properties (activation of deep and superficial
layers sequentially by rebound inhibition) that are useful for coordi-
nating inputs over different sensory modalities and over time. There
is much more to understand about how the dynamics of this rhythm
can be modulated to gate, coordinate or combine cell assemblies,
and this story can be construed as the beginning of a wide-open
study of plasticity and rhythms in cognitive function (Stokes et al.,
2013).
Finally, we demonstrate both the difficulty of and the need for

further study of rhythms and cognitive function. We have focused
on beta oscillations in multiple parts of the brain, especially the cor-
tico–basal ganglia–thalamic loop. We describe multiple functions
associated with this frequency band, and the multiple potential phys-
iological mechanisms by which that band can be created. The very
large question raised by this is the connection between physiology
and function; why are there so many beta rhythms, and are they
facilitating different but related computations? For this question,
there are only the beginning of answers. For example, we do not
have a body of work that has investigated the effects of temporally
patterned inputs on the various beta oscillations, parallel to the work
described on gamma (which is itself still evolving). The mechanisms
of rhythms in the basal ganglia have been investigated far less than
those in the cortex or thalamus. The ways in which the beta rhythms
are coordinated by still slower rhythms (Dejean et al., 2011) are not
well understood [but see Carracedo et al. (2013)]. And, of course,
one might ask similar questions regarding all other frequency bands.
Although rhythms are by no means the only mechanisms used by

the brain to encode and coordinate signaling (Ainsworth et al.,
2012), we believe that they provide important mechanisms. The
recent work discussed here is starting to untangle the mystery of
why these dynamics are so tightly associated with cognitive activity.
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