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BLUE-SKY CATASTROPHE IN SINGULARLY PERTURBED
SYSTEMS

ANDREY SHILNIKOV, LEONID SHILNIKOV, AND DMITRY TURAEV

Dedicated to Yu. S. Ilyashenko on the occasion of his 60th birthday

Abstract. We show that the blue-sky catastrophe, which creates a
stable periodic orbit of unboundedly increasing length, is a typical phe-
nomenon for singularly perturbed (multi-scale) systems with at least
two fast variables. Three distinct mechanisms of this bifurcation are de-
scribed. We argue that it is behind the transition from periodic spiking
to periodic bursting oscillations.
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1. Stability boundaries for periodic orbits

Stable periodic orbits play a very special role in nonlinear dynamics. One of
the basic questions here concerns the structure of the boundaries of their stability
regions in the parameter space. Namely, suppose that a time-continuous dynamical
system exhibits sustainable self-oscillations, i. e., has a stable periodic orbit. The
question is: How do the periodic orbits evolve as the parameters of the system
vary? In other words, consider a one-parameter family Xµ of dynamical systems
with an exponentially stable periodic orbit at some µ. This periodic orbit will
persist and remain stable within some interval of parameter values. What is the
boundary of this interval? Which type of bifurcation does correspond to it in a
typical one-parameter family?

These questions gave an initial impulse to the development of bifurcation theory
in the pioneering works by Andronov and Leontovich [1] (see also [2]), who dis-
covered the following four codimension-1 boundaries of stability of limit cycles for
systems of ODEs in the plane. The first one corresponds to a stable limit cycle
bifurcating from/into a stable equilibrium state; on the second boundary, a stable
limit cycle coalesces with an unstable one and disappears; on the third boundary, a
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periodic orbit transforms into a homoclinic loop of a simple saddle-node equilibrium
state; the last, fourth, boundary corresponds to a stable periodic orbit becoming a
homoclinic orbit to a saddle equilibrium state with negative saddle value.

In the multi-dimensional case, seven stability boundaries for generic one-param-
eter families are known at present. They are divided into two types depending on
whether or not the periodic orbit under consideration exists at the critical moment.
In the former case, the intersection of the periodic orbit with a local cross-section is
the fixed point of the Poincaré map, so the problem reduces to the analysis of how
the multipliers of the fixed point exit the unit circle. The first possibility is simi-
lar to the two-dimensional case: a single multiplier of the periodic orbit becomes
equal to +1; this is the saddle-node bifurcation (see Fig. 1). The two remaining
codimension-1 bifurcations are the flip or period-doubling bifurcation and the birth
of a torus. At a flip bifurcation point, there is a single multiplier equal to −1. The
periodic orbit itself does not disappear after this bifurcation (unlike in the saddle-
node case) but only loses stability. In the case where a pair of complex-conjugate
multipliers crosses the unit circle outward, the periodic orbit survives too, but it
loses its skin: a stable two-dimensional invariant torus is born.

(a) (c)(b)

Figure 1. Saddle-node bifurcation: (a) µ < 0, there are two pe-
riodic orbits: stable and saddle; (b) µ = 0, the periodic orbits
merge into a saddle-node orbit. Its strong stable manifold W ss

divides the neighborhood into the node region (below W ss in the
figure) and the saddle region (above W ss). The unstable manifold
is the part of the center manifold which lies in the saddle region;
(c) µ > 0, the saddle-node disappears; the drifting time through
its neighborhood is estimated as ∼ 1/

√
µ.

There are three stability boundaries of the second kind, as in the planar case.
They correspond to the birth of a periodic orbit off a stable equilibrium state (the
Andronov–Hopf bifurcation) and to its flowing into a homoclinic loop of either a
simple saddle-node equilibrium state or a hyperbolic equilibrium state with one-
dimensional unstable manifold and with negative saddle value [8].



BLUE-SKY CATASTROPHE IN SINGULARLY PERTURBED SYSTEMS 271

It can be shown that the above list gives all the main stability boundaries for
the case where the length of the periodic orbit remains bounded at the bifurcation
moment (although the period may tend to infinity if the orbit adheres to a homo-
clinic loop). One more (and, conjecturally, the last one) main boundary of stability
that has no two-dimensional analogues and corresponds to the unbounded growth
of the length of the periodic orbit was discovered in [13]. This is a codimension-1
bifurcation of smooth flows in at least three-dimensional phase space such that, for
any one-parameter family Xµ of flows which crosses the corresponding bifurcation
surface at, say, µ = 0 and for all small µ > 0 (with an appropriate choice of the
direction of increasing the parameter µ), the flow has a stable periodic orbit Lµ

which remains in a bounded region of the phase space and is away from any equi-
librium states; besides, it undergoes no bifurcations as µ → +0, whereas both its
period and length increase without bound, and Lµ disappears at µ = 0.

The existence of such type of bifurcations (called the blue-sky catastrophe) was a
long-standing problem. In the construction suggested in [13] (see also [11], [12], [9]),
the blue-sky stability boundary is an open subset of a codimension-1 bifurcation
surface corresponding to the existence of a saddle-node periodic orbit. This open
set is distinguished by some qualitative conditions that determine the geometry of
the unstable manifold of the saddle-node (see Fig. 2) and by a few quantitative
restrictions (the Poincaré map introduced below must be a contraction). If all the
required conditions hold, then the stable periodic orbit Lµ whose period and length
both tend to infinity when approaching the moment of bifurcation is born when
the saddle-node orbit disappears.

Figure 2. The global structure of the set Wu for the blue-sky
catastrophe. The intersection of Wu with the local cross-section S
in the node region is a countable set of circles accumulating to
S ∩ L.

The global structure of the unstable set of the saddle-node for the blue-sky
catastrophe appears to be rather complex, and hence it may be unclear how this
construction can be achieved in dynamical systems of a natural origin; nevertheless,
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the answer was promptly. The first explicit example of a three-dimensional system
of ODEs where the blue-sky catastrophe occurs was constructed in [5] considering
a global homoclinic Guckenheimer–Gavrilov bifurcation with an extra degeneracy.
Another setup for the blue-sky bifurcation was proposed in [9], where it was shown
that this particular configuration of the unstable set of the saddle-node is, in fact,
quite typical for slow-fast (i. e., singularly perturbed) systems with at least two
fast variables. In this paper, we present and analyze specific scenarios which cause
indeed the blue-sky catastrophe in singularly perturbed systems.

2. Slow-Fast Systems

A slow-fast system is a system of the form

ẋ = g(x, y, ε),

εẏ = h(x, y, ε),
(1)

where ε > 0 is a small parameter. This system can be regularized by rescaling the
time t = ετ . With the new time τ , system (1) becomes

x′ = εg(x, y, ε),

y′ = h(x, y, ε),
(2)

where the prime denotes differentiating with respect to τ . Taking the limit as
ε→ 0, we obtain

x′ = 0,

y′ = h(x, y, 0).
(3)

The second equation here is called the fast system. For simplicity, we assume that
x ∈ R1. The variable x can be considered as a parameter which governs the motion
of the fast y-variables; we assume that y ∈ Rn, where n ≥ 2.

A trajectory of system (3) starting off any initial point (x, y) goes typically to an
attractor of the fast system for the given value of x. The attractor may be a stable
equilibrium, or a stable periodic orbit, or have a less trivial structure; we would like
to leave out a discussions of the last possibility for now. When the equilibrium state
or the periodic orbit of a fast system is exponentially stable, it depends smoothly
on x. Thus, we obtain a smooth attracting invariant manifold of system (3): the
equilibria of the fast system form curves Meq in the (x, y)-space, while the limit
cycles form two-dimensional cylinders Mpo; see Fig. 3.

Locally, near any exponentially stable equilibrium point or a periodic orbit of
the fast subsystem, such a manifold is a center manifold for system (3). Since the
center manifold persists for any close system, it follows that the smooth attractive
invariant manifolds Meq(ε) and Mpo(ε) exist for all small ε in the whole system (2)
(see [3], [4] for details).

Thus, any trajectory of system (2) for small ε > 0 behaves in the following way:
in a finite time, it enters a small neighborhood of one of the invariant manifolds
Meq and Mpo so that its x-component remains nearly constant. Then, it begins
drifting slowly along the chosen invariant manifold with the rate of change of x of
order ε.
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x=const

poMeqM

Figure 3. An orbit of a fast subsystem can tend to a stable equi-
librium or to a stable limit cycle.

In the original system (1) in contrast with the above development, an almost
instant jump in the y-components towards the invariant manifold followed by a
finite speed motion in the x-variable occurs. In addition, if this is the manifold Mpo,
then a fast circular motion in the y-components, as shown in Fig. 4, is observed.

The equilibrium states of the fast system are found from the condition h(x, y, 0)=
0, which yields the algebraic equation for Meq. If y = yeq(x) is a stable branch of
Meq, then the equation of motion of the x-component along it is given, up to the
first order in ε, by

ẋ = g(x, yeq(x), 0). (4)

This is a one-dimensional system which may possess attracting and repelling equi-
librium states corresponding to stable and saddle equilibrium states in the entire
system (1) or (2). Either the evolution along Meq is limited to one of the stable
points or the trajectory hovers about Meq onwards until it reaches a small neighbor-
hood of a critical value of x. Recall that x is treated as a governing parameter for
the fast system, and hence its critical values correspond to bifurcations in the fast
system. For instance, at such a critical value x∗, two, stable and unstable, equilib-
rium states of the fast subsystem may collide, thereby forming a saddle-node. This
corresponds to a maximum (or a minimum) of x on Meq. The x-component of the
trajectory can no longer increase (respectively, decrease) along the stable branch of
Meq. Instead, the orbit jumps towards another attractor, which is the ω-limit set
of the outgoing separatrix of the saddle-node equilibrium state in the fast system
at x = x∗; see Fig. 5.

In order to determine the dynamics of the trajectory near the cylinder Mpo(ε),
we must first find the equation y = ypo(τ ; x) of the corresponding fast limit cycle
for the given x; here ypo is a periodic function in τ of period T (x). Then, we
substitute y = ypo(tε; x) into the right-hand side of the first equation in (1) and
average it over the period T (x). The resulting averaged system

ẋ = φ(x) ≡ 1
T (x)

∫ T (x)

0

g(x, ypo(τ ; x), 0)dτ (5)
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l po

(ε)poM

Figure 4. The fast circular motion on the cylinder Mpo(ε) defines
the Poincaré map of the intersection curve lpo(ε).

x=x

Meq Mpo

*

*x>x

Figure 5. The fast jump of a trajectory from the fold towards
the attracting cylindrical surface.

gives a first-order approximation (see [6]) for the evolution of the x-component of
the orbit near Mpo.

Cutting the cylinder surface by a cross-section transverse to the fast motion (see
Fig. 4), we find a Poincaré map defined on the intersection line lpo(ε):

x̄ = x+ εψ(x, ε) = x+ εφ(x)T (x) + o(ε). (6)

This one-dimensional map may have stable and unstable fixed points (at the zeros
of ψ(x)). These points correspond to stable and saddle periodic orbits of system
(1). The iterates of any point on lpo either converge to one of the stable fixed points
of the map or continue to grow monotonically up to the critical value of x.

A critical value of x corresponds to a bifurcation in the fast system. We shall
consider three types of such bifurcations. The first one (see Fig. 6) corresponds to
the case where the stable periodic orbit of the fast system collides with a saddle
periodic orbit, forming thereby a saddle-node one, which then fades. After passing
such a critical value, the orbits of the singularly-perturbed system (1) must follow
orbits of the fast subsystem, i. e., they jump toward the ω-limit set of the unstable
manifold of the saddle-node.

The second situation illustrated in Fig. 7 corresponds to the case where the
stable periodic orbit of the fast system shrinks to a focus. After passing through
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(ε)(ε) Mpo
L

*

0

x=x*
1

1Meq

2

*

2

0

lpo

x=x

eqM

x=x

W
u

L0

0L

u
W

Figure 6. The fold on Mpo (due to the saddle-node bifurcation in
the fast system at x = x∗0) triggers the fast jump towards the at-
tracting slow-motion surface M1

eq corresponding to equilibria of the
fast subsystem. The unstable manifold of the saddle-node periodic
orbit L0 shrinks to a narrow tube after the jump.

the critical value, the phase point drifts along the corresponding branch of stable
equilibria of the fast system.

(ε)(ε) Mpo
L

*
2

x=x*
1

2

eqM1

0

0

lpo

x=x

*x=x

eqM
0

W
u

L0

W
u

L

Figure 7. The surface Mpo shrinks into M1
eq through the super-

critical Andronov–Hopf bifurcation in the fast subsystem at x=x∗0.

The third situation (see Fig. 8) corresponds to the case where the stable periodic
orbit of the fast system becomes a homoclinic loop of a saddle equilibrium with one-
dimensional unstable manifold. Thus, at this value of x, the stable branch of Mpo

terminates by touching a saddle branch of Meq.
At ε = 0, this branch of Meq comprises saddle equilibria of the fast system. The

union (over an interval of values of x) of their one-dimensional unstable manifolds
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gives a two-dimensional invariant manifold Wu(Meq), and the union of their sta-
ble manifolds forms an n-dimensional invariant manifold W s(Meq). The manifold
Wu(Meq) is exponentially attracting, and the manifold W s(Meq) is exponentially
repelling. Both are normally-hyperbolic invariant manifolds and, hence, persist
for all sufficiently small ε [3]. The saddle branch Meq(ε) is the intersection of
Wu(Meq) and W s(Meq). The manifold Wu(Meq) attracts orbits, so for every ini-
tial point close to Meq, the orbit (may be after some drift along Meq) leaves a small
neighborhood of Meq close to Wu(Meq), i. e., it leaves Meq at some x and follows
one of the separatrices of the corresponding saddle of the fast subsystem.

*
0x=x

1

x=x

0

eqM

*
00

eq

(ε)

x=x*

M

M

1

0L
po

0L

u
W

W0L

u

Figure 8. The surface Mpo ends at x = x∗00, which corresponds
to a homoclinic loop in the fast subsystem. The saddle branch M0

eq

terminates at the fold at x = x∗0. All the orbits starting near M0
eq

arrive eventually to the next stable branch M1
eq.

3. Blue-Sky Catastrophe

Now, let us suppose that there exists numbers x∗0, . . . , x
∗
k such that the following

holds. Our singularly perturbed system has branches M1
eq, . . . , M

k
eq composed of

exponentially stable equilibria of the fast system at ε = 0. Each branch M j
eq is

given by the equation y = yj
eq(x) at ε = 0, where the function yj

eq(x) is defined on
a certain interval of values of x, including the interval between x∗j−1 and x∗j . The
drift along the M j

eq is directed from x∗j−1 towards x∗j , i. e.,

g(x, yj
eq(x), 0) 6= 0 and sign g(x, yj

eq(x), 0) = sign(x∗j − x∗j−1)

for all x ∈ [x∗j−1, x
∗
j ] (see (4)). At x = x∗j , the branch M j

eq ends up (namely,
it collides with a saddle one); so the fast system has a saddle-node equilibrium
at x = x∗j . The unstable manifold of this saddle-node tends to the exponentially
stable equilibrium of the fast system on the branch M j+1

eq at j < k. When j = k,
the unstable manifold of the saddle-node tends to an exponentially stable periodic
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orbit of the fast system. The corresponding stable branch Mpo extends in x until
one of the three following events occurs.

(I) At x = x∗0, the stable branch Mpo meets that of saddle periodic orbits, i. e.,
the fast system has a saddle-node periodic orbit. The unstable manifold of this
orbit in the fast system tends, as a whole, to the exponentially stable equilibrium
on the branch M1

eq (Fig. 6).
(II) At x = x∗0, the stable periodic orbit of the fast system shrinks to the equi-

librium state lying in the branch M1
eq (Fig. 7).

(III) At some x = x∗00 between x∗k and x∗0, the stable periodic orbit of the fast
system adheres to a homoclinic loop of the saddle equilibrium of the fast system.
The corresponding saddle branchM0

eq extends in x until x = x∗0, where it terminates
at the fold representing a saddle-node equilibrium in the fast system; the direction
of the shift in x on M0

eq is from x∗00 towards x∗0. For every x between x∗00 and x∗0,
both the one-dimensional separatrices of the saddle of the fast system tend to the
stable equilibrium on the branch M1

eq (at x = x∗00, when one of the separatrices
forms a homoclinic loop, the other tends to the equilibrium on M1

eq). At x = x∗0, the
whole unstable set of the saddle-node of the fast system tends to the exponentially
stable equilibrium on M1

eq (Fig. 8).
In the last case, we need one more assumption. Let λj(x) stand for maximum

of the real part of the characteristic exponents (i. e., for the largest Lyapunov ex-
ponent) of the equilibrium state of the fast system for the fixed value of x on the
branch M j

eq at ε = 0. By construction, all λ1(x), . . . , λk(x) are negative (because
the equilibria on the branches M1

eq, . . . , M
k
eq are exponentially stable). Since the

single branch M0
eq corresponds to a saddle equilibrium, it follows that λ0(x) > 0.

We assume that

k∑
j=2

∫ x∗j

x∗j−1

λj(x)
dx

g(x, yj
eq(x), 0)

+ max
x

(∫ x∗1

x

λ1(x)
dx

g(x, y1
eq(x), 0)

+
∫ x

x∗00

λ0(x)
dx

g(x, y0
eq(x), 0)

)
< 0, (7)

where the maximum is taken over all x ∈ [x∗00, x
∗
0].

About the motion near the manifold Mpo, in all the three cases, we assume also
that the function φ(x) that defines, to the first order, the direction of the drift
along Mpo (see (6)) has constant sign (the same as the sign of x∗0 − x∗k) everywhere
except at one point x = x∗∗, where φ vanishes. So, φ(x∗∗) = 0, φ′(x∗∗) = 0, and
we may assume that φ′′(x∗∗) 6= 0 (the functions g and h in (1) are required to be
at least C2-smooth). Let us include our slow-fast system in a one-parameter family
of systems (i. e., assume that the functions g and h depend on some parameter µ

varying near µ = 0) such that φ(x∗∗) = 0 at µ = 0 and
∂φ

∂µ
(x∗∗) > 0.

It follows that there exists a smooth curve µ = µ∗(ε), µ∗(0) = 0, such that the
function ψ from (6) has exactly two zeros at µ < µ∗(ε), which collide at µ = µ∗(ε),
and is non-zero for all x between x∗k and x∗0 (between x∗k and x∗00 in case III) at
µ > µ∗(ε). The zeros of ψ are the fixed points of the Poincaré map on the attracting
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invariant manifold Mpo(ε). Thus, if µ < µ∗(ε), then system (2) (or (1)) has two
periodic orbits on Mpo(ε), a stable orbit L+ and a saddle orbit L− (see Fig. 9).

)

µ

ε

µ

µ=µ (ε)*

(

L
L+

Ws-L -L

Figure 9. At µ < µ∗(ε), the system has two periodic orbits: a
stable orbit L+ and a saddle orbit L−. The orbits which do not
lie in the stable manifold of L− tend to L+ as time increases. At
µ > µ∗(ε) the system has a single and attracting limit cycle Lµ,
whose length tends to infinity as µ→ µ∗(ε) + 0.

Let U be a small fixed neighborhood enveloping the branches Mpo and M j
eq, as

well as the orbits of the fast system which connect them. By construction, every
orbit (except those in the stable manifold of L−) within U tends to L+ as time
increases. Indeed, any orbit which begins near Mpo and reaches the threshold
x = x∗0 or x = x∗00, will eventually jump to the next branch M1

eq; then, it will drift
along it before making the next leap to the similar branch M2

eq, and so forth, until
it will come finally back to the initial branch Mpo, landing in the attraction basin
of the periodic orbit L+.

At µ = µ∗(ε), the orbits L+ and L− unite into a saddle-node periodic orbit L0.
The manifold Mpo(ε) is a center manifold for this orbit; the part of Mpo(ε) where
the orbits run away from L0 with increasing time is the unstable manifold of L0.
After approaching the critical value of x, where the stable branch Mpo ends, all the
orbits on the unstable manifold land closely next to the branch M1

eq, so that the
manifold Wu

L concentrates in a very narrow tube following around and bouncing
amongst the slow motion branches M j

eq, prior its final return to L0 twirling around
Mpo. This gives exactly the configuration of the unstable manifold which was
projected in Fig. 2. Therefore, we should anticipate the blue-sky catastrophe here;
it occurs indeed according to the following theorem.

Theorem. In any of cases I, II, and III, for all sufficiently small ε > 0 and
µ > µ∗(ε), in the neighborhood U , there exists a unique stable periodic orbit Lµ

which attracts all orbits from U . Both the period and the length of Lµ tend to
infinity as µ→ µ∗(ε) + 0.

Proof. By assumption, at ε = 0 and µ = 0, the fast system has a periodic orbit L0

at x = x∗∗. Since L0 is an exponentially stable periodic orbit of the fast subsystem,
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the absolute value of each of its multipliers is less than 1. In the augmented slow-fast
system (2), this orbit has an additional multiplier equal to +1 and corresponding
to the x variable. Formally, L0 is a non-hyperbolic periodic orbit of (2) with center
variable x. It is well known that such an orbit has an invariant center manifold
and an invariant strong-stable foliation which is transverse to the center manifold.
Moreover, both persist for all close values of parameters. The center manifold
coincides with the surface Mpo; so it can be parameterized by the x variable and
by the angular variable ϕ ∈ S1 (which is indeed the phase on the periodic orbit in
the fast system). The flow is uniformly exponentially contracting in the directions
transverse to Mpo. Let us denote the coordinates in these contracting dimensions
by z ∈ Rn−1; we can always introduce the z coordinates in such a way that the
center manifold becomes locally straightened, i. e., near L0, Mpo has the equation
z = 0 for all small ε and µ.

The existence of the strong-stable invariant foliation implies that the variables
(x, ϕ, z) in a small neighborhood of L0 can be introduced in such a way that the
evolution of the (x, ϕ) variables will become independent of the z variable for all
small ε and µ (see [10] for details and proofs). Thus, the Poincaré map of an
appropriate cross-section, say, ϕ = 0, is written near L0 as

x̄ = x+ εψ(x, ε, µ), z̄ = A(x, z, ε, µ)z, (8)

where ψ is the function from (6) and A is an (n − 1) × (n − 1) matrix such that
‖A‖ < 1.

By assumption, when µ > µ∗(ε), the function ψ vanishes nowhere; for def-
initeness, we may assume that ψ > 0 (in other words, x∗0 > x∗k). Hence, for
fixed x+ > x∗∗, any trajectory beginning in a small neighborhood of x = x∗∗ will
eventually hit the cross-section at a point (x, z) within the strip Σ+ definied by
x+ ≤ x < x+ + εψ(x+, ε, µ). As time increases, the orbit moves in the direc-
tion of increasing x, then it leaps onto a branch Meq, etc.; finally, as explained
above, it returns into a small neighborhood of x = x∗∗ on Mpo from the side of
x < x∗∗. Hence, for any fixed x− < x∗∗ near x∗∗, the orbit will pierce the strip
Σ− : x− ≤ x < x− + εψ(x−, ε, µ) on the cross-section at some uniquely deter-
mined point. Thus, the flow outside a small neighborhood of L0 determines a map
Σ+ → Σ−, which we denote by T1.

Similarly, the flow near Mpo in the region x− ≤ x < x+ + εψ(x+, ε, µ) defines
a map T0 : Σ− → Σ+ for µ > µ∗(ε). The composition T1 ◦ T0 is a Poincaré map of
Σ−. We will show below that this map is a contraction and hence has a single and
stable fixed point attracting all other orbits. This fixed point corresponds to the
sought periodic orbit Lµ of the slow-fast system. The number of iterations of the
map (8) required to take an orbit from Σ− to Σ+ tends to infinity as µ→ µ∗(ε)+0;
each iterate of the map corresponds to one complete revolution of the trajectory of
the flow around Mpo, i. e., to a non-zero length interval on Lµ. Consequently, the
total length of Lµ increases without bound as µ → µ∗(ε) + 0. Thus, to prove the
theorem, it is sufficient to evince the contraction of the map T1 ◦ T0.

First, let us show that the first derivative of the map T0 is uniformly bounded
from above. As mentioned, the map is contracting in z, so we have only to check the
boundedness of the derivative of the map in the x-variable (which is independent
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of z). Take any x0 ∈ [x−, x− + εψ(x−, ε, µ)) and let {x1, . . . , xm} be its orbit,
i. e., xj+1 = xj + ε + ψ(xj , ε, µ), and xm ∈ [x+, x+ + εψ(x−, ε, µ)). We need to

prove the uniform boundedness of
dxm

dx0
for arbitrarily large m.

Note that
dxj+1

dx0
= (1 + εψ′(xj))

dxj

dx0
(we do not indicate the dependence of ψ

on ε and µ). Following [12], we introduce ξj = ln
1

ψ(xj)
dxj

dx0
. It is easy to see that

ξj+1 = ξj + ln
(1 + εψ′(xj))ψ(xj)
ψ(xj + εψ(xj))

≤ ξj + ln
1 + εψ′(xj)

1 + ε min
x∈[xj ,xj+1]

ψ′(x)
.

It follows that

ξj+1 − ξj ≤ Kε(xj+1 − xj),

where K is some constant. Hence

ξm − ξ0 ≤ Kε(xm − x0) ∼ Kε(x+ − x−).

Thus, ξm − ξ0 is uniformly bounded, which means that
ψ(x0)
ψ(xm)

dxm

dx0
is uniformly

bounded too. Since x0 is bounded away from x∗∗, the value of ψ(x0) is also bounded

away from zero, which implies the required uniform boundedness of
dxm

dx0
.

Next, we shall prove that the map T1 is contracting with contraction factor
tending to zero as ε → +0 for all µ. Choose a point M ∈ Σ+ and put M̄ =
T1M ∈ Σ−. The phase velocity vectors (ẋ, ẏ) at both endpoints M and M̄ are
bounded away from zero and the angle between these vectors and the cross-section
is bounded away from zero as well for all small ε; therefore, to prove the strong
contraction property for the map T1, it is sufficient to show that the flow from M
to M̄ contracts strongly two-dimensional areas for any initial point M ∈ Σ+. To
do this, we split the flight from Σ+ to Σ− into a few stages, namely, a slow drift
along Mpo, jumps towards and between the branches Meq, slow passages along
these branches, and the final leap back to Mpo together with the drift along it until
reaching Σ−. Let us pick a sufficiently small δ > 0. The interval of time (τ) needed
for a trajectory of system (2) to fly from the δ-neighborhood of one branch to the
δ-neighborhood of the other branch is finite. Therefore, every such jump brings
only a finite contribution into the contraction or expansion of areas. The number
of such interbranch leaps is finite too, so altogether the jumps can contribute only
a finite factor to the overall expansion/contraction of areas.

The first two Lyapunov exponents of the trajectory of the unperturbed system
(2) at a point x on M j

eq are 0 and λj(x) when ε = 0 (the zero exponent corresponds
to the x variable, whereas λj is determined by the fast system). Therefore, when ε
is nonzero and small, the time-∆τ shift (∆τ is small enough) set by the flow in the
δ-neighborhood of the point x multiplies the areas by a factor bounded above by
e(λ

j(x)+O(δ)+O(ε))∆τ . It follows that the total coefficient of expansion or contraction
of areas gained during the transport in the δ-neighborhood of the branch M j

eq from
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a point x1 to a point x2 is bounded above by

C1 exp
(

1
ε

∫ x2

x1

(λj(x) + C2δ)
dx

g(x, yj
eq(x), 0)

)
,

where C1,2 are some constants independent of x, δ, and ε. Recall that λj < 0 for
j = 1, . . . , k. Thus, if δ > 0 is sufficiently small, in any of cases I, II, and III
(in case III, inequality (7) is crucial), during the phase of motion between Σ+ and
Σ− which corresponds to the drift in the δ-neighborhood of the branches M j

eq and
the interbranch jumps, the flow contracts areas with a factor at least e−α/ε, where
α > 0 is a constant independent of δ and ε.

Now, note that the flow in the δ-neighborhood of Mpo but outside a small neigh-
borhood of x = x∗∗ and the δ-neighborhood of the branches Meq cannot produce
a strong expansion of areas. Indeed, the first two Lyapunov exponents for system
(2) at ε = 0 are both zero on Mpo (as above, the first one corresponds to the x
variable and the other to the circular motion on the stable periodic orbit of the
fast system). In fact, every complete revolution in the δ-neighborhood of Mpo but
outside the δ-neighborhood of the branches Meq results in an area expansion at rate
estimated as eO(δ). When ε 6= 0 is sufficiently small, this estimate becomes only
slightly worse, namely, the factor becomes eO(δ)+O(ε). The number of the turns
that the orbit makes around Mpo while travelling along the path from Σ− towards
Σ+ (i. e., outside a small neighborhood of x∗∗) is evaluated as O(ε−1) (because the
function ψ is bounded away from zero in this region; see (6)). Hence the factor of
possible expansion of areas accumulating during the phase of transport from Σ+ to
Σ− which corresponds to the drift near Mpo does not exceed some eC(1+ δ

ε ).
Thus, when ε is small enough, the areas are indeed strongly contracted during

the flight from Σ+ to Σ−. Hence, the map T1 is a strong contraction, and so is the
map T1 ◦ T0 : Σ− → Σ−. This completes the proof of the theorem. �

4. Summary

To conclude, we emphasize that the suggested mechanisms of the blue-sky catas-
trophe in slow-fast systems have indeed been observed in models of neuronal activ-
ity, describing the dynamics of the leech heart neurons; see [7]. In both cases, the
smooth transition (illustrated in Fig. 9) from one type of self-sustained oscillations
(the round stable periodic orbit L+) to the regime where the attractor is the “long”
stable orbit Lµ can be interpreted as a transition from periodic tonic-spikes to pe-
riodic bursting oscillations. Here, each burst is constituted by the slow helix-like
motion along Mpo generating a large number of spikes followed by the inter-burst
“calm” phase due to the sluggish drive along Meq.

Note also that, even before the transition to the bursting oscillations, the spiking
mode is in excitable state: a perturbation which drives the initial point outside the
saddle limit cycle L− results in a long calm phase before the sustained spiking
restores.
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