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Toward robust phase-locking in Melibe swim central pattern generator
models

Sajiya Jalil, Dane Allen, Joseph Youker, and Andrey Shilnikov
Neuroscience Institute and Department of Mathematics and Statistics, Georgia State University, Atlanta,
Georgia 30303, USA
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Small groups of interneurons, abbreviated by CPG for central pattern generators, are arranged into
neural networks to generate a variety of core bursting rhythms with specific phase-locked states, on
distinct time scales, which govern vital motor behaviors in invertebrates such as chewing and
swimming. These movements in lower level animals mimic motions of organs in higher animals
due to evolutionarily conserved mechanisms. Hence, various neurological diseases can be linked to
abnormal movement of body parts that are regulated by a malfunctioning CPG. In this paper, we,
being inspired by recent experimental studies of neuronal activity patterns recorded from a
swimming motion CPG of the sea slug Melibe leonina, examine a mathematical model of a 4-cell
network that can plausibly and stably underlie the observed bursting rhythm. We develop a
dynamical systems framework for explaining the existence and robustness of phase-locked states in
activity patterns produced by the modeled CPGs. The proposed tools can be used for identifying
core components for other CPG networks with reliable bursting outcomes and specific phase
relationships between the interneurons. Our findings can be employed for identifying or
implementing the conditions for normal and pathological functioning of basic CPGs of animals and
artificially intelligent prosthetics that can regulate various movements. VC 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4825389]

Many abnormal neurological phenomena are perturba-
tions of normal functions of the underlying mechanisms
governing the animal behaviors, specifically movements.
Repetitive behaviors are often associated hypothetically
with the phenomenon of rhythmogenesis in small
networks that are able autonomously to generate or con-
tinue, after induction a variety of activity patterns with-
out further external input, abrupt or not. The goal of this
modeling study is to identify decisive components of a
biologically based central pattern generator (CPG) that
has been linked to a specific motion in a lower order ani-
mal, sea slug M. leonina, which produces a specific burst-
ing pattern, as well as to identify components that ensure
the pattern’s robustness. Due to the recurrent nature of
such bursting patterns of self-sustained activity, we
employ Poincare return maps defined on phases and
phase-lags between burst initiations in the interneurons
to study quantitative and qualitative properties of CPG
rhythms and corresponding attractors. The proposed
approach is specifically tailored for various studies of
neural networks in neuroscience, computational, and
experimental. Development of such tools and our under-
standing of such CPGs can be applied to gain insight into
governing principles of neurological phenomena in
higher order animals and can aid in treating anomalies
associated with neurological disorders.

I. INTRODUCTION

A CPG is a neural network of a small group of synapti-
cally coupled interneurons, which is able to generate single

or multiple rhythmic outcomes without external [sensory]
feedback.1–3 CPGs establish and govern various motor
behaviors of animals such as swimming, crawling, and walk-
ing.4,5 In addition, the mechanisms of such motions are evo-
lutionarily conserved and can be related to rhythmic motions
of various body parts, such as heart, lungs, and legs, of
higher order animals. Such rhythmic outcomes, often viewed
as bursting patterns, can be differentiated by several timing
properties, including specific and robust phase-locked states
between well orchestrated interneurons within the specific
CPG of a particular animal. As such, the behavior controlled
by the CPG can be disrupted, or halted, after a component
neuron of the network is blocked or temporarily inhibited.
This would indicate that the rhythmic outcome results from
synergetic interactions of all contributing interneurons,
which may not be necessarily endogenous bursters, when
isolated from the network. The robustness of a rhythmic out-
come is an essential property allowing the CPG to withstand
or recover from perturbations, a lack of which could be the
expression of various neurological diseases and disorders.

Identification and modeling of a CPG underlying an ani-
mal behavior is a real challenge due to a number of factors.
The realization of a behavior may require components, other
than interneurons, such as synapses, which can be fast and
slow, inhibitory, excitatory, or electrical. Furthermore, inter-
neurons, which are networked within the CPG for one behav-
ior, may contribute to another behavior as well, i.e., be
multifunctional.6,7 A whole CPG can be also multifunctional
if it governs more than one behavior, in contrast to a dedi-
cated CPG which is arranged for the purpose of a single loco-
motion. Modeling studies, mathematical and computational,
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have proven to be useful for gaining insights into operational
principles of CPGs,8–13 in particular, multifunctional
ones.14–16 This study has been inspired by recent experimen-
tal studies of neuronal activity patterns recorded from the
identified interneurons of a [dedicated] CPG governing the
swim pattern of a sea slug M. leonina17–19 and possible
consequences of understanding neurological phenomena, in
general.

The occurrence of phase-locked bursting patterns is nat-
urally observed in the voltage traces simultaneously recorded
from a few interneurons, which are argued to belong to the
same CPG. In such recordings, specific delays between
initiations of the active (spiking) phases of the bursting inter-
neurons are well maintained. It is unclear so far whether the
delays or phase-lags between bursting interneurons are
essential for the CPG. An argument supporting the latter hy-
pothesis is that the same phase-lags between burst initiations
have been recorded in both juvenile and adult animals,18

while the frequency and hence delays between burst initia-
tions in voltage traces can vary substantially during animals’
life spans. Bursting neurons display multiple action poten-
tials during their active phases of bursting and remain hyper-
polarized during their inactive phases. The bursts of action
potentials or spikes correlate with neurotransmitters’ release
that allows the neurons to interact. Hence, the specific delays
between the bursting patterns can be meaningful to and
explanatory for CPG formation mechanisms.20–26

The question of whether a neuron belongs to a CPG is
not easy. Potentially, it can be resolved by linking the
sequence of bursting delays with some timescale of move-
ments during the behavior. An alternative is a perturbation
approach when a targeted neuron is temporarily injected
with a polarized current to trace down a metamorphic effect
or a qualitative change on the network. A modeling study of
the CPG, however, remains a practical approach for singling
out particular features among networks that are vital for its
own proper functioning.35,36 In this paper, we will start with
the consideration of rather idealized, symmetric configura-
tions of CPG networks whose repetitive bursting patterns or
rhythmic outcomes are known a priori. By doing so, we will
probe tools developed for uncharacteristic dynamics, includ-
ing a possible co-existence of several patterns in other CPG
configurations. Next, we introduce, gradually, variations in
the parameters to match our findings with the recorded elec-
trophysiology of the animal. The strategy should allow us to
find a minimal wiring for synaptic connections that gives
rise to (robust) neuronal dynamics observed in experimental
studies.

We begin by introducing the dynamical toolkit in the
Methods section that is used throughout this study. It is fol-
lowed by a section on a CPG example made of uncoupled
half-center oscillators (HCOs). A HCO is composed of two
bilaterally symmetric cells reciprocally inhibiting each other
to produce alternating (anti-phase) bursting patterns. Such
a pair can burst in-phase too,33,34 when, for example, it is
exogenously driven by a pre-synaptic interneuron of the net-
work.12 We will consider two cases of uncoupled cs, homo-
geneous and heterogeneous. By comparing their dynamics,
we identify the conditions giving rise to robust and unique

phase-locked pattern formations, such as ones recorded in
the experiments. As a next step, we introduce additional
synaptic connections, which are arguably known to exist in
the circuitry model of the swim CPG and study their roles in
regulating the mathematical models of CPG. Then, we can
evaluate the parameter range for the network heterogeneity,
which sustains the plausible phase-locked patterns, and show
how the latter depend on the network configurations. Finally,
we construct return maps for the phase-lags between both
HCOs, not interneurons. This will further reduce the original
problem (coupled 12 ordinary differential equations) to low-
order maps to study synchrony, stability, coexistence, and
bifurcations of the bursting patterns. In the Discussion sec-
tion, we will also address the challenges and future direc-
tions and application for the proposed dynamical framework.

II. METHODS

In this study of 4-cell CPG networks, we employ a
generic Hodgkin-Huxley-like model of an endogenously
bursting interneuron as an elementary block; the building
blocks will be the HCO that can intrinsically burst either
in-phase, in general, or anti-phase, in particular. This
reduced model, describing the dynamics of a leech heart
interneuron, has been extensively studied and biophysically
calibrated to demonstrate a variety of activity patterns typi-
cal for various invertebrates.28,29 Depending on external
drive, the interneuron model can produce tonic spiking activ-
ity, be an endogenous burster, or settle down to hyper- and
depolarized quiescence states. The model has turned out to
be very reach dynamically as can demonstrate a number of
global bifurcations at the activity transitions, like the blue
sky catastrophe, bi-stability, and chaos due to homoclinic
saddle orbits.30 In this study, individually each post-synaptic
interneuron is an endogenous burster that can become tem-
porarily shut at the hyper-polarized state by an inhibitory
current originating from pre-synaptic interneuron(s).12,15

This level of accuracy is important for understanding
CPG mechanisms as models must be compared with real ani-
mal behaviors for testing our hypotheses, however, eventu-
ally model parameters would be modified to fit neurological
phenomena in mammals, in particular humans, for investi-
gating disorders with neurological origins.

Below, we will consider several types of CPGs made of
the interneuron models weakly coupled by synapses, chemi-
cal: inhibitory and excitatory, and electrical, referred to as a
gap junction. The equations of the coupled model are given
in Appendix. Chemical synapses, inhibitory and excitatory,
are described within the framework of the fast threshold
modulation (FTM) paradigm,32 which has been proven to
meet some basic conditions for coupled bursters.33,34 The
strength of coupling is controlled by the maximal conduct-
ance, gsyn, for the synaptic current. Besides gsyn ! 1, as its
magnitude should be sufficient to guarantee a slow rate of
progression of bursting patterns, transitioning toward a
phase-locked state, if any. We ensure that the convergence
is not due to a symmetry of network interactions; some devi-
ations, dij, from the nominal values are introduced in the in-
hibitory synapses: ginh

ij ¼ gsynð1þ dijÞ. Unless otherwise
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mentioned, d12¼ 8&10'3, d12¼'6&10'3, d34¼ 9&10'3,
d43¼'1&10'2, d32¼ 2&10'3, and d41¼'2&10'3.

We must point out that a transient trajectory can con-
verge to a network attractor rather quickly even in a weakly
coupled case (gsyn ! 1). Such a quick convergence can
occur when the endogenously bursting interneuron is initially
close to a transition to a quiescent steady state through a
slow-time scale bifurcation like saddle-node or homoclinic.
In this case, the trajectory can come close by or cross back
and forth the corresponding (bifurcation) boundary when an
interneuron receives (or is released from) a flux of inhibition
from another pre-synaptic interneuron on the network.
Physiologically speaking, such neuromodulation can be
viewed as an analogue to the mathematical phenomena of
bifurcations through perturbations. Natural substances such
as serotonin released by the animal can alter intrinsic proper-
ties of the individual neurons affecting the efficiency of a
CPG and vary its temporal characteristics without breaking
the bursting pattern per se.31

In the CPG mathematical model, we set all the parame-
ters so that the individual and networked interneurons remain
endogenous bursters. The duty cycle of bursting of the inter-
neurons, which is a fraction of the period during which the
interneuron is active, persistently stays around 50%, i.e., the
burst (active) durations and hyper-polarized (inactive) peri-
ods are almost equal. Figure 1 shows a typical bursting
pattern that resembles the experimental recordings from four
interneurons of the Melibe swim CPG.

The specific delays between the burst initiations
between the interneurons are the key characteristics of
each given CPG. The core idea underlying our computa-
tional tools is inspired by “wet lab” experimental observa-
tions and therefore tailored for neuroscience.15 In essence,
it requires only the voltage recordings from the mathemat-
ical interneurons, and therefore does not explicitly rely
on the gating variables from a Hodgkin-Huxley type
model. We intentionally choose the phases based on the
membrane voltages, as these are basically the only varia-
bles that can be experimentally assessed and measured.
Moreover, as in wet experiments, we have control over,
and hence can maintain the initial delays, or phase distri-
bution by releasing the interneurons from inhibition at

various times after or prior of the release of the reference
neuron.

The phase relationships between the coupled interneur-
ons are defined through specific events, ftðnÞ1 ; tðnÞ2 ; tðnÞ3 ; tðnÞ4 g,
which occur when their voltages reach an auxiliary thresh-
old, Hth ¼ '0:045 V, set above the hyperpolarized voltage
and below the spike oscillations. Such events indicate the
initiation of the nth sequential bursts in the interneurons, see
Fig. 1.

We define a sequence of phase-lags through the delays
in burst initiations relative to that of the reference neuron 1,
normalized over the current network period, or, specifically,
the burst recurrent times for the reference interneuron, as
follows:

D/ðnÞ1j ¼
tðnþ1Þ
j ' tðnÞ1

tðnþ1Þ
1 ' tðnÞ1

mod 1; where j ¼ 2; 3; 4: (1)

An ordered triple, Mn ¼ ðD/ðnÞ12 ;D/ðnÞ13 ;D/ðnÞ14 Þ, defines a for-
ward iterate, or a phase point (see Fig. 2(b)), of the Poincar!e
return map for the phase-lags: Mn !Mnþ1. A sequence,

fðD/ðnÞ12 ;D/ðnÞ13 D/ðnÞ14 Þg
N
n¼0, yields a forward phase-lag trajec-

tory, fMngN
n¼0, of the Poincar!e return map on a 3D torus

½0; 1Þ & ½0; 1Þ & ½0; 1Þ with phases defined on modulo 1, see
Fig. 4(a).

Based on the experimental recordings of interneurons
of the Melibe swim CPG, the authors18 suggest a possible
architecture for its network. Its wiring schematics shown in
Fig. 2(a) includes two core half-center oscillators as the net-
work building blocks: HCO1 (top, shown in blue) and HCO2
(bottom, shown in pink). The interneurons of each HCO burst
robustly in anti-phase while the animal swims. The interneur-
ons within a HCO are known to inhibit contralaterally each
other: 1 •—• 2 and 3 •—• 4. In addition interneurons 3 and 4
of HCO2 inhibit uni-directionally and contralaterally inter-
neurons 2 and 1 of HCO1, resp., i.e., 3 •—• 2 and 4 •—• 1,
while interneurons 1 and 2 excite—3 3 and 4 ipsilaterally,
resp. In addition there is an electrical coupling through a gap
junction between the top interneurons, 1 and 2.

Traces of the bursting membrane potentials of the inter-
neurons of the CPG are used to derive the phase-lags according

FIG. 1. (a) Typical bursting pattern
intracellularly recorded from identi-
fied interneurons of the Melibe swim
CPG with characteristic 3

4-phase shift.
Recording provided courtesy of A.
Sakurai. (b) Shifted phase-lag voltage
traces generated by the CPG model.
Three phase-lags, D/ðnÞ1j , are defined
by the time delays between burst ini-
tiations (indicated by dots) of the ref-
erence interneuron 1 and the following
three interneurons, 2, 3, and 4, scaled
over the period TðnÞ1 or recurrence time
of the network. Black bars indicate the
voltage zero level and the time scale
in traces.
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to the method illustrated in Fig. 1. By varying the delays
between burst initiation in the reference interneurons and
release times of three other ones from inhibition, we obtain a
dense array of initial phase distributions. Then, the tuples of
three phase-lags are recorded at every cycle of the network
bursting as the time progresses. Figure 2(c) illustrates a typical
evolution of the resulting sequences, fD/ðnÞ12 g, fD/ðnÞ13 g, and
fD/ðnÞ14 g, plotted against the burst cycle number, n, converging
to a phase-locked state around ð1=2; 3=4; 1=4Þ; (unless other-
wise mentioned, green, black, and blue are the color-codes for
the phase-lags, respectively.)

We represent the sequence fMngN
n¼0 as a forward trajec-

tory on a 3D-torus as the burst cycle number, n, is increased.
Geometrically, the 3D is viewed as a solid unit cube shown
in Fig. 2(b). The opposite sides must be identified due to the
cyclic nature of the phase; this implies that trajectory leaving
the cube through one of its six sides will be wrapped around
to re-enter through its opposite side and so forth.

Alternatively, we can consider progressions of the phase
lags individually, in terms of 1D Poincar!e return maps:
D/ðnÞ1j ! D/ðnþ1Þ

1j (Fig. 2(d)). Due to weak coupling, sequen-
tial iterates fD/ðnÞ1j g of the maps do not jump far apart from
each other. This allows for having them connected into
“continuous” trajectories, in order to follow their evolution
in forward time. The green sphere, in Fig. 2(b), representing
the initial phase-lags tuple, corresponds to the beginning of a

trajectory. Such initial phase-lags are uniformly distributed
on a lattice within a unit cube, see Fig. 2(b).

The tuple, Mn, of the phase-lags represents the state of
the network at the n-th burst cycle, because it captures the
temporal bursting activity of all four neurons of the CPG. In
what follows, we will explore visually how the network state
progresses by following the evolutions of various initial
phase-lags, which can converge to a single or multiple attrac-
tors. Such an attractor of the map corresponds to stable burst-
ing pattern configurations of the CPGs in question.

The initial distribution of network states or phase-lag
tuples, sampled uniformly to form the cubic lattice within
the cube, will shift toward attractors as the burst number
increased. In the case when such an attractor is a fixed point,
its coordinate corresponds to stable phase-locked state of the
bursting pattern with specific time delays between the inter-
neurons of the CPG. It is equivalent that a single stable fixed
point of the return map describes a single robust pattern
of the dedicated CPG, as all initial delays will ultimately
lead to the same bursting pattern. As the parameters of the
CPG are changed, the stable fixed point can bifurcate, for
example, vanish or loose the stability, thus, giving rise to
another attractor such as an invariant circle. In the latter
case, the phase of the bursting pattern is no longer locked,
but vary periodically, or even show some aperiodic, chaotic
dynamics.

FIG. 2. (a) Schematic diagram of the swim CPG with two dedicated HCOs made of couples: Si1/2-L and Si1/2-R, and Si3-L and Si3-R. Dots, !, solid trian-
gles, ", and the resistor represent inhibitory, excitatory and electrical synapses of conductance strengths ginh

ij , gexc
ij , and gelec

ij , respectively. (b) Phase-lag tuple
(D/ðnÞ12 ;D/ðnÞ13 ;D/ðnÞ14 ), is a phase point on the trajectory in the unit cube for 3D torus. Green sphere indicates an initial phase-lags tuple; green, black, and blue
lines indicate n-th D/12, D/13, and D/14 coordinates of the trajectory, where n varies from 0 to 100 along the depicted trajectory. (c) Evolutions of the phase-
lags, D/ðnÞ12 (green), D/ðnÞ13 (black), and D/ðnÞ14 (blue) plotted against the burst cycle, n. (d) 1D Poincar!e maps of degrees: k¼ 1 (dots), k¼ 5 (small dark pluses),
k¼ 10 (large light crosses)) for the (color-coded) phase-lags showing the convergence to fixed points on the 45)-line: D/*12 ¼ 1=2, D/*13 ¼ 3=4, and
D/*14 ¼ 1=4 for specific ginh

12 ¼ ginh
21 ¼ 2:25gmax, gelec ¼ 0:25gmax, and nominal conductances g ¼ gmax ¼ 2:5& 10'3.
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If the corresponding return map shows two (or more)
attractors, then depending on initial phases the multifunc-
tional CPG can, respectively, produce several patterns.
Perturbations, such as noise or external polarized currents,
can cause sudden or unforeseen jumps between the attractors,
resulting in switching between the corresponding patterns, for
example, between in-phase and out-of-phase bursting.

It is worth noticing that in weakly coupled cases, one
should consider constructing 1D Poincar!e maps for every
k-th phase-lags. This procedure gives a map of the degree k,
with a “flatter,” so to speak, graph adjoining the 45)-line at a
stable fixed point. Figure 2(d) displays such maps of degrees
1, 5, and 10, with the corresponding fixed points around 1/2,
3/4, and 1/4 for the individual phase-lags as predicted from
trace progressions depicted in Fig. 2(c). Note that the fixed
points are approached from one side only.

It is our working hypothesis that a stable state of the
CPG is defined by interplays of synaptic strengths, rather
than by specific wiring of the network. While wiring can be
a necessary condition for the network to produce bursting
pattern(s), its configuration does not provide the sufficient
condition for the robustness of the latter. Thus, the problem
of the robustness of the pattern is reduced to the stability
conditions and identification of bifurcations of the corre-
sponding fixed points of the map for the phase-lags. The
current state is such that the maps have to be visualized to
identify and classify all patterns resulting from different ini-
tial phase relations between the four bursting interneurons.

The following concern must be also addressed: how can
changes in phase-lags relate to the periods of the two HCOs
forming the 4-neuron CPG. Namely, whether it is crucial
that the periods of both individual HCOs are not the same,
and how coupling affects the period of the whole network.
Figure 3 addresses this issue: let HCO2 have the period,
T2, slightly longer (shorter) than the period, T1 of HCO1
(i.e., T1=T2 > 1 or T1=T2 < 1), then phase-lags between
them, here D/ðnÞ13 , will increase (decrease) in the CPG, which
begins from the same initial conditions. This relation
between the phase-lags and the periods is discussed in
Appendix.

III. RESULTS

The main question that we aim to address in our model-
ing study is: what synaptic connections are the key ones that
lead to the experimentally observed (i.e., stable) phase-
locked bursting in the CPG.

Let us first consider a network configuration of the CPG
with only contralateral inhibitory connections of the strength
ginh

32 ¼ ginh
41 ¼ 2:5& 10'3, which is a half of that of the strong-

est inhibitory synapses in the CPG (ginh
34 ¼ ginh

43 ¼ 5& 10'3).
Later, we introduce the ipsilateral excitatory synapses (gexc

13

and gexc
24 ), followed by the electrical synapses or gap junction

(gelec) between the interneurons 1 and 2 to examine transfor-
mations of bursting patterns through bifurcations, if any, of
attractors in the corresponding 3D maps on the torus.

We have performed comprehensive simulations and fur-
ther visualization of solutions of return maps for the sequen-
ces of phase-lags for the CPG configurations. For the given
CPG model, the corresponding 3D Poincar!e map is shown in
Fig. 4(a). It displays multiple transients converging to a sta-
ble fixed point corresponding to the phase-locked lags within
the bursting pattern. In this figure, a green dot indicates the
beginning point of a transient of the map in every simulation
run. By releasing trajectories from a dense, homogeneously
distributed grid of initial phases (conditions) spread over the
bursting periodic orbits, one can obtain a complete portrait
of the phase space of the return map on the unit cube. This
3D portrait in Fig. 4(a) shows attractors, separating saddles,
and invariant subspaces. Here, the red circles indicate the
locations of saddles, or turning points, while the cyan and
the blue circles correspond to the steady states of the net-
work, i.e., stable fixed points of the map.

The fixed point represented by the solid cyan circle in
Fig. 4(a) has the following coordinates: D/12 ¼ D/14 ¼ 1=2
and D/13 ¼ 1 + 0. This means that the interneuron 1 and 3
burst in-phase with respect to each other, while they keep
bursting in anti-phase with their counterparts: interneurons 2
and 4. In other words, the CPG is made of the HCOs bursting
in-phase, synchronously, with respect to each other. By
inspecting the stability of the fixed point in restriction to the
side, D/13 ¼ 1 of the cube, one can conclude that there are
two ways which give rise to this bursting rhythm. The inde-
pendent HCO2 can either slow down or catch up to line up
with the inhibitorily driven HCO1. One can conclude here
that, in essence, the phase relations between the interneurons
of this CPG are effectively reduced to that between the
HCOs, provided that both maintain anti-phase bursting
endogenously.

There is another stable fixed point of a smaller basin in
the phase space of the map for this CPG configuration. Its
location is indicated by the solid blue circle, D/13 ¼ D/14

¼ 1=4, of the side, given by D/12 ¼ 0 + 1, of the cube. The
coordinates of this fixed point correspond to a rather con-
strained rhythm: the in-phase bursting interneurons 1 and 2
of HCO1 are driven, causing a 1/4 phase-lag, by the also in-
phase bursting interneurons 3 and 4 of HCO2. Therefore,
near this fixed point the 4-cell CPG acts as a 2-cell network,
which is equivalent to one interneuron inhibiting the other
with a double drive.

FIG. 3. (Left) Evolutions of the phase-lags between the HCOs depending on
the ratio of their periods, plotted against each k-th cycle. Checkered rectan-
gles, black/gray, and blue/light blue represent time progressions of relative
anti-phase bursting in the HCOs when the period of HCO2 (cyan/blue) is ini-
tially longer (2a), or shorter (2b) than the period of HCO1 (black). (Right)
Sketch for increasing/decreasing change in the value of the phase lag, D/ðnÞ13 ,
depending on the ratio of the periods of HCOs.
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Some projections of the map on the unit cube can be
misleading for evaluations of the locations of the stable fixed
points, as one has to see the orthogonal projections, along
with the phase-lag progressions plotted against the bursting
cycle. Note that interpretations of such progressions (projec-
tions too) could be a challenge in a multi-stable case where
overlapping trajectories tend to converge to several attrac-
tors. To give a comprehensive overview of the dynamics of
the 3D map, we will also utilize such orthogonal 2D projec-
tions and frequency count distributions to understand better
the behavior of its transients. Of particular interest are how
they converge to the attractors, as in some cases the conver-
gence can be achieved only from one side. In terms of
the map for a dedicated CPG, this means strengthening the
stability of the single fixed point from any direction in
the unit cube, which becomes its global attraction basin.
Addition of synapses to the CPG may make it multifunc-
tional, so it is imperative to know how this changes quantita-
tively the number of attractors and qualitatively the stability
conditions for the bursting patterns.

We start the section on CPG dissection in homo- and
heterogeneous HCOs with a discussion on a dissected CPG
with uncoupled HCOs. While this may seem trivial, it should
give us a reference framework necessary for singling out the
underlying organizations of the phase-lag trajectories result-
ing from addition of basic synaptic connections. In the 4-cell
network, the connections, contralateral inhibitory and ipsilat-
eral excitatory, should promote, not conflict, the robustness
of bursting outcomes of the CPG.

A. CPG dissection in homo- and heterogeneous HCOs

A network state will correspond to a behavior pattern if
it evolves on par with the behavior. By introducing varia-
tions in carefully chosen synaptic connections of the net-
work, we make predictions and match outcomes with the
expected behaviors, in order to identify the CPG mechanism.

In this study, we assume that a persistent phase-locked state
underlies the Melibe swimming behavior. While the ideal
mathematical model must reflect all experimentally observed
features of the biological CPG, a reduced model is intended
to describe only some likely mechanisms giving rise to stable
phase-locked bursting patterns such as the one depicted in
Fig. 1.

In order to elucidate how CPG networks operate, in gen-
eral, and in particular, how the Melibe CPG robustly pro-
duces the single pattern with the constant phase-lag, we
apply a bottom-up approach. This approach is used for iden-
tifying and differentiating the features that persist as the net-
work configuration becomes more plausible in comparison
with the biological CPG architecture. For example, one pair
of uncoupled HCOs suffices to produce anti-phase bursting
patterns observed in the voltage traces recorded from four
interneurons. In addition, the capacity of pattern generation
of 3-neuron motifs made of reciprocally inhibitory interneur-
ons is well understood.7,15

It was shown recently that under certain conditions, fast
non-delayed reciprocal inhibition within a stand-alone pair
of similar neurons may lead to synchronous, in-phase burst-
ing.33,34 So, for the sake of generality, we set the parameters
of the individual interneurons and the cross-coupling some
different to guarantee that anti-phase bursting is the only sta-
ble pattern in either HCO.12,15

Figure 5 recaps some findings for the dissected CPG
made of uncoupled (ginh

32 ¼ ginh
41 ¼ 0) and homogeneous

HCOs: all maximal conductances are equal ginh
max ¼ 5& 10'4.

Figure 5(b) shows a few samples of the phase-lags progres-
sion, D/12, D/13, and D/14, plotted against the cycle num-
ber. It shows that the network transients converge to more
than a single attractor. Observe too that convergence rates to
the phase-locked states are predictably equal in this homoge-
neous case. Next to it is the frequency count distribution
(FCD) of 448 initial network states after 100 burst cycles.
The diagram depicts two dominating peaks in green for D/12

FIG. 4. (a) Phase space of the return map for the inhibitory CPG in the heterogeneous case with balanced inhibition. Trajectories leaving one side of the cube
(torus) are wrapped around to re-enter from the opposite side. Red dots indicate the locations of turning points—saddles, the cyan one locates the global attrac-
tor at ðD/12; D/13; D/14Þ ¼ ð1=2; 0; 1=2Þ corresponding to the phase-locked state of the bursting pattern as such shown in (b). The blue dot is an attractor at
(0, 1/4, 1/4) with a narrow basin corresponding to 4-cell CPG with the in-phase HCO driven in anti-phase by HCO bursting in-phase too. Here, the conductan-
ces are ginh

12 ¼ ginh
21 ¼ 2:5& 10'3, ginh

32 ¼ ginh
41 ¼ 2:5& 10'3 and ginh

34 ¼ ginh
43 ¼ 5& 10'3. (b) Synchronous bursting pattern intracellularly recorded from the

identified swim interneurons Si1-2LR of the Melibe CPG19 (with the locked phase-lags corresponding to the coordinates of the fixed point attractor of the 3D
map in (a)). Recording provided courtesy of A. Sakurai.
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(D/34) corresponding, respectively, to in-phase and anti-
phase bursting in HCO1 (HCO2). As the HCOs are
uncoupled, the distributions for D/13 (in black) and D/14 (in
blue) are uniform. Since the HCOs receive no inputs from
each other, they evolve independently resulting in the phase-
lags between the reference neurons in each to be arbitrary.

Figure 5(c) represents the 2D ðD/13; D/14Þ-projection
of the phase-lag transients. In it, green dots unmask a uni-
formly distributed lattice of initial states of the network,
while blue crosses mark the ends of the phase-lag transients.
Note again that when a phase-lag goes over 1, its value is
reset by modulo 1. Black squares in Fig. 5(c) indicate regions
of rather slow evolution of the network transients, where
sum of the phase-lags per cycle shift less than 0.005 over the
last ten cycles.

The 3D phase space of the unit cube for the uncoupled
HCOs is given in Fig. 5(d). It shows two nodal attractors cor-
responding to the anti-phase bursting in each HCO. Because
of the equal coupling weights, each node is “symmetric”
thus indicating even convergence rates in both HCOs. The
lack of interaction between HCO explains the presence of an
invariant curve, given by the constraints D/14 ¼ D/13 þ 1=2
(mod 1) and D/12 ¼ 1=2. This invariant line corresponds to
anti-phase bursting in the uncoupled HCOs. The curve is sta-
ble in directions transverse to it, and neutrally stable along it,
i.e., the phase-lags on it do not shift in the homogeneous
case. In other words, each HCO tends typically, for most ini-
tial conditions, to anti-phase bursting.

Next, let us consider a heterogeneous CPG such that the
reciprocal inhibitions in HCO1 are two times less than

those in HCO2: ginh
HCO1 ¼ 0:5 ginh

HCO2 ¼ gmaxð1þ dijÞ, where

gmax ¼ 5& 10'4. The corresponding return mappings are
shown in Fig. 6. Symmetric ðD/12; D/13Þ and ðD/12; D/14Þ

phase-lag projection shows the persistent nodal attractor
corresponding to the endogenously anti-phase bursting
HCOs. The quantitative changes of the heterogeneous case
compared to the outcomes of homogeneous one is that the
fixed point has the leading (horizontal) and strongly stable
(vertical) directions (Fig. 6(b)) due to, correspondingly,
faster and slow convergence rates to the anti-phase bursting
in HCO2 and HCO1 with stronger and weaker reciprocally
inhibitory synapses. As a result, transients, which have con-
verged to the invariant line, D/14 ¼ D/13 þ 1=2 (mod 1)
(Fig. 6(a)) slide slowly along it. The slow speed rate is pro-
portional to the ratio of the bursting periods of the uncoupled
HCOs, which are no longer equal in the heterogeneous case.

IV. COUPLED INHIBITORY CPGS

Restoring the contralateral inhibitory connections,
ginh

32 ¼ ginh
41 ¼ gmaxð1þ dijÞ, feed-forwarded from the driving

HCO2 to the driven HCO1 enhances the robustness of the
bursting patterns of such CPG. Depending on whether it
comprised homo- or heterogeneous HCOs, the phase-lags
between the HCOs can vary, thus, giving rise to principally
distinct patterns. The unidirectional inhibition gives rise to a
polarity in the network. As a result, burst timing of the
driven HCO1 has to adjust itself to that of the driving HCO2
in order for the network to settle into a steady rhythm, if any,
with all phases locked. Contralaterality of such inhibition is
significant due to the effect it has on timing of interactions
when (balancing) ipsilateral excitation is rewired in the CPG
schematics as in Fig. 2(a).

Figure 7 represents the ðD/13; D/14Þ-projections of the
phase-lag maps for homogeneous (a) and heterogeneous (c)
networks. In the former case, the majority of the transients

FIG. 5. (a) Dissected CPG made of
uncoupled HCOs: ginh

13 ¼ ginh
24 ¼ 0. (b)

Phase-lag progressions (green, black,
and blue curves for D/12, D/13; and
D/14, resp.) indicating multiple phase-
locked states, and the FCD of terminal
phase-lags with two distinctive green
peaks corresponding to in- and anti-
phase states in HCO1 for ginh ¼ 5
&10'4 ð1þ dijÞ, gmax ¼ 5& 10'4. (c)
2D ðD/13; D/14Þ-projection of the
phase space of the map: green dots
unmask the lattice of initial phases;
blue crosses indicate the terminal
points of (40 burst cycle long) trajecto-
ries on the line D/14 ¼ D/13 þ 1=2
(mod 1), corresponding to anti-phase
bursting HCO2, and the (red) bisectrix
corresponds to the in-phase bursting
HCO2. Black squares indicate stagna-
tion areas. (d) 3D return map revealing
an attractor with D/12 ¼ 0:5 corre-
sponding to anti-phase bursting in
HCO1.
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tend to a single fixed point at ðD/12; D/13; D/14Þ
¼ ð1=2; 3=4; 1=4Þ. Still, there is a rudiment of the invariant
curve segment, D/14 ¼ D/13 ' 1=2, due to equal conver-
gence rates in the HCOs. These values of the fixed point
coordinates are supported by inspection of a few delegated
phase-leg progressions plotted against the burst cycle num-
ber. Figure 7(b) yields the FCD of the network states after
100 cycles. The diagram shows a sharp peak at D/12 ¼ 1=2,
along with wider peaks (black and blue) at D/13 ¼ 3=4 and
D/14 ¼ 1=4. The values of the coordinates of the fixed point
mean that unidirectional inhibition shifts anti-phase bursting
in the driven HCO1 a quarter of the period forward relative
to that of the driving HCO2 in the homogeneous network
with the same synaptic conductances.

The heterogeneous CPG demonstrates other phase-lags
between the HCOs. Recall that in this case the reciprocal
inhibitions in HCO1 are halves of those in HCO2: ginh

12 ¼ ginh
21

¼ 0:5gmaxð1þ dijÞ. The corresponding phase-lag map in the
ðD/13; D/14Þ-projection given in Fig. 7(c) shows no indica-
tion of an invariant line but the occurrence of a stand-alone
stable fixed point. The strong stability of the fixed point is
also supported by the fast convergence of transients to the
steady states (Fig. 7(d)) after about 10 burst cycles, in con-
trast to 35 in the homogeneous case. The sharp peaks, at
or near 1/2 for D/12 and D/14, and near 1 for D/13 in the
frequency count distribution of terminal phase-lag is the
secondary backup for this assertion. Stated another way,
the coordinates, ðD/12;D/13;D/14Þ , ð1=2; 0 + 1; 1=2Þ, of

FIG. 6. (a) ðD/13; D/14Þ phase-lag projection for a heterogeneous CPG at ginh
12 ¼ ginh

21 ¼ 0:5gmax. Blue dots indicate the terminal states of transients (gray lines)
originating from initial (green) states. Having converged to the line D/14 ¼ D/13 þ 1=2 (mod 1) (40 burst cycle long) transients slide slowly along it. (b) 2D
ðD/12; D/13Þ and ðD/12; D/14Þ projections showing the stable fixed point at (1/2, 1/2) with the dominant (horizontal) leading and strongly stable (vertical)
directions due to the distinct coupling strengths in the HCOs, i.e., the convergence rate to the anti-phase bursting in HCO2 with gmax is faster than that in
HCO1 with 0:5 gmax.

FIG. 7. (a) and (c) ðD/13; D/14Þ-pro-
jections of the phase-lag maps for the
contralaterally inhibitory CPGs (cir-
cuitry diagram shown in Fig. 8(a))
made of homo- and heterogeneous
HCOs. Transients (grey lines), having
bended around saddles, converge to
the unique stable fixed point (blue
crosses) located, respectively, at (1/2,
3/4, 1/4) and approximately at
(1=2; 1 + 0; 1=2). (b) and (d) Left pan-
els: representative samples of phase-
lag progressions (green, black, and
blue curves for D/12, D/13; and D/14,
resp.) and the FCD (right panels) of
the terminal states of phase-lags to
identify the coordinates of the fixed
points of the return maps.
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this fixed point correspond to the CPG rhythm where both
HCOs burst in-phase with the common period.

Next, we will explore how the uni-directional contralat-
eral inhibition and ipsilateral excitation can balance out the
CPG dynamics when introduced separately. This should let
us identify independent contributions of the synapses of each
type to the behavior of the whole CPG.

V. BASIC HETEROGENEOUS INHIBITORY AND
EXCITATORY NETWORKS

Intracellular recordings from the four identified inter-
neurons of the swimming CPG of the Melibe have indicated
that the phase-lags, (D/12;D/13;D/14), between the burst
initiation in the voltage traces are maintained stably at these
values: (1/2, 3/4, 1/4). While it is evident that the both HCOs
always remain bursting in anti-phase, it is less clear what
mechanisms, involving reciprocal inhibition and/or excita-
tion, polarity of wiring, etc., are used by 4-neuron networks
to preserve the stability of 3/4 phase-lag between the HCOs.
Assuming that the building blocks of such networks remain
HCOs formed by anti-phase bursting interneurons, our next
step in exploration of such networks is the examination of
functions of contralateral inhibition (circuit in Fig. 8(a)) and
ipsilateral excitation (the circuit shown in Fig. 8(c)), and
whether they can break or enforce the robustness of activity
patterns. In what follows, we explore the dependence of the
phase-lag between the HCOs, i.e., D/13, or equivalently,
D/14, on the coupling strengths in heterogeneous networks.
Panels of Fig. 8 shows how D/13 varies as unidirectional

feed-forward inhibition from HCO2 onto HCO1 and unidir-
ectional backward excitation from HCO1 onto HCO2 are
increased. Since both neural configurations are sub-circuits
of the Melibe CPG, let us consider them independently first.

A phase-locked network state turns out to be quantita-
tively a function of unidirectional inhibition and excitation
coupling. When the inhibitory strength, ginh

32 ¼ ginh
41 , of the

contralateral synapses is increased, the phase-locked state,
initially emerging at low small values of D/13, quickly
moves to a high value around 0.9, see Fig. 8(b). This means
that on average, interneuron 3, first following interneuron 1,
becomes delayed by nearly a bursting period as the inhibition
between the HCOs substantially increased.

In the case of ipsilateral excitation, increasing
gexc

13 ¼ gexc
24 works the other way around for synchronization

of the interneurons: 1 with 3, and 2 with 4. The evolution of
the steady states of the phase-lag, D/13 is presented in
Fig. 8(d). It shows that above a threshold gexc ¼ 0:5 gmax, the
phase-lag, D/13, shifts down to a steady state, i.e., the driven
interneuron 3 (4) follows interneuron 1 (2) after a short delay
of 1/10-th of the period of the network, and so does HCO2
after HCO1, as a whole.

Given that phase-lags are defined on modulo 1, one can
say that in-phase synchrony between the HCOs is due to
repulsion in the case of contralateral inhibition and due to
attraction in the excitatory case. A simple calculation (given
in appendix) demonstrates that for the network to achieve a
robust phase-locked state, the driven HCO has to adjust its
period, i.e., either catch up or slow down, in order to match
up with that of the driving HCO in unidirectional cases. The
effect of increasing synaptic strengths saturates in both cases
after some thresholds are reached. Making the coupling
strength five times stronger than the nominal value of the
maximal synaptic conductance has little effect (purple lines
in Figs. 8(b) and 8(d)) on the steady state value of D/13.
Comparison of two types of coupling (network configura-
tions) suggests that the contralateral inhibition produces a
phase-locked state that appears to be the closest to the exper-
imentally observed pattern.

Because there are other, excitatory and electrical, con-
nections between the interneurons in the CPG circuitries, in
the following section, we will address and identify their roles
for predominance and robustness of specific bursting states
in 4-cell CPG networks. It is shown in Ref. 19 that while the
swim CPG of Melibe with strong contralateral inhibitory
synapses produces patterns with high D/13 values, the swim
CPG of a another sea slug Dendronotus, possessing ipsilat-
eral excitatory connections, produces bursting patterns with
low D/13 values, which agrees with our findings.

A. Modulatory effect of electrical coupling

Electrical coupling, or gap junctions, provides bidirec-
tionally a continuous interaction between interneurons thus
affecting synchronization properties of oscillatory neural
networks.27 Its magnitude, proportional to the difference
between the current values of the membrane potentials, pro-
motes in-phase synchronization, in most cases. We introduce
electrical coupling (represented by a resistor in the circuitry

FIG. 8. (a) and (c) Elementary circuitries of Melibe and Dendronotus CPG
networks with feed-forward, contralateral inhibition for and reverse-feed ip-
silateral excitatory synapses. (b0 and (c) Increasing contralateral inhibition
strength, ginh

32 ¼ ginh
41 , makes HCO1 follow HCO2, while increasing ipsilat-

eral excitatory synapses, gexc
13 ¼ gexc

24 , reverses the order, making the driven
HCO2 follow the driving HCO1. (b) Evolutions of the phase-lag, D/13, con-
verging to a high steady state as the contralateral inhibitory coupling is
increased: ginh

32 ¼ ginh
41 ¼ d & gmaxð1þ dijÞ, d¼ 0 (grey dots), 0.25 (grey

dash-dots), 0.375 (grey dashes), 0.425 (solid grey), 0.5 (dark grey), 5
(black), and 10 (purple). (d) Evolutions of the phase-lag, D/13, converging
to a low steady state as the ipsilateral excitatory coupling is increased:
gexc

13 ¼ gexc
24 ¼ p& gmaxð1þ dijÞ, with p¼ 0 (grey dots), 0.125 (grey dash

dots), 0.15625 (grey dashes), 0.25 (grey solid), 1 (dark grey), 5 (black), and
10 (purple).
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in Fig. 2(a)) between interneurons 1 and 2 of HCO1 in the
form gelec ðV1 ' V2Þ and visa versa, in addition to the contra-
lateral inhibition from HCO2 to HCO1 in the heterogeneous
network presented in the section on Coupled inhibitory
CPGs. While we refer, in general, to an HCO (HCO1 here)
as a pair of interneurons bursting in alternation, a proper gap
junction can overcome the inhibition-caused anti-phase
dynamics and synchronize the interneurons to burst as a
whole. Prior to that, for values of gelec below a synchroniza-
tion threshold, the period of HCO1 will gradually vary with
an increase of the electrical coupling strength, leading to
changes in phase-locked states and transformations of burst-
ing patterns of the CPG, as depicted in Fig. 9(a).

Figure 9(b) shows how the phase-lags, D/1j, of the CPG
change with an increase of the electrical synapse through
gelec ¼ 0:5gmax in HCO1. The gap between interneurons 1
and 2 widens to 0.75 (toward synchrony at 1), as they keep
receiving the contralateral inhibition from interneurons 4 and
3, bursting in anti-phase: D/34 ¼ D/14 ' D/13 ¼ 1=2, as
the diagram suggests.

VI. RANGE OF HETEROGENEITY OF THE CPG

We have pointed out earlier that weakening reciprocal
inhibition between interneurons of one HCO can be equiva-
lent to strengthening reciprocal inhibition in the counterpart.
In this section, we examine the range of heterogeneity of the
4-cell network in terms of the misbalance among the synap-
tic coupling strengths. We will vary the reciprocal inhibitory
coupling in HCO1 only, while having those in HCO2 intact
along with the contralateral, ipsilateral (gmax ¼ 2:5& 10'3),
and electrical (gelec ¼ 0:25 gmax) connections. The following
four network configurations, schematically drawn in Fig. 10,
are explored in this section. In addition to unidirectional
cases, we combine them in the mixed CPG (Fig. 10(c)), in
which the gap junction will next bridge the interneurons of
HCO1 (Fig. 10(d)).

A robust phase-locked state of a bursting pattern in a
network must persist for a certain range in the high-
dimensional parameter space of the coupling weights. Given
a large number parameters in a generic 4-cell network with
various connections, we need to come up with reduction
assumptions to single out one effective control parameter,
while other less principle parameters are kept fixed. As such
an effective control parameter, we employ the ratio of the
inhibitory strengths in individual HCOs. We will start with

the case of nearly uncoupled interneurons in HCO1 at small
ginh

12 ¼ ginh
21 , next the reciprocal inhibition is increased to

the nominal value, gmax, and then made 2.5 stronger than
ginh

34 ¼ ginh
43 . The evolution of the representing phase-lag,

D/13, is presented in Fig. 11 for the four network configura-
tions. In the diagram, the purple, black, and cyan curves cor-
respond to a representative trajectory converging to a unique
attractor as we increase inhibition in HCO1. We note that in
all cases in question, both HCOs remain anti-phase bursters,
i.e., D/12 ¼ D/34 ¼ 1=2, in the network, so variations in
coupling can only shift the phase-lag between them.

We can conclude from the examination of the conver-
gence tendencies of D/13 that a phase-locked state exists in all
cases. The widest range of heterogeneity is observed for the
feedback configuration in Fig. 11(d) with the regulatory gap
junction. Furthermore, all but one configuration can produce a
stable network state with the desired phase-lag D/13 ¼ 3=4.

For the contralaterally inhibitory configuration (I),
sketched in Fig. 10(a), to have D/13 ¼ 3=4, the reciprocal

FIG. 9. (a) Transformations of the steady states of D/13 phase-lag in the network in Fig. 8(b) the contralaterally inhibitory coupling is increased:
ginh

32 ¼ ginh
41 ¼ d & gmax ð1þ dijÞ, with d¼ 0 (yellow curve), 1 (orange), 5 (red), and 10 (black); gelec ¼ 0:5 gmax and gmax ¼ 2:5& 10'3. (b) Progression of

phase-lags, D/12 (green), D/13 (black), and D/13 (dashed blue) to the steady state, plotted against the burst cycle number for ginh
32 ¼ ginh

41

¼ 1:25& gmax ð1þ dijÞ.

FIG. 10. Four circuitries of coupled HCO networks being tested for the het-
erogeneity range: (a) contralaterally inhibitory (I) synapses (denoted by
round-headed arrows); (b) ipsilaterally excitatory (E) synapses denoted by
triangle-headed arrows; (c) mixed: with contralaterally inhibitory and
ipsilaterally excitatory synapses (IE); (d) the complete CPG with a gap junc-
tion or electrical synapse (IEG) (denoted by a resistor symbol) between
interneurons 1 and 2.
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inhibitions within HCO1 must be weaker than in HCO2.
Having it equal or stronger leads to the loss of phase-locked
state (transient black and cyan lines in Fig. 11(a)). Fig. 12
presents the outcome of simulations of the network dynamics
for longer traces over 350 burst cycles. In this diagram, the
only D/13 transient (yellow line) for the inhibitory homoge-
neous CPG (equal coupling) shows no stabilization.

For the configuration (E) with ipsilaterally excitatory
synapses between the HCOs (Fig. 10(b)), short-term simula-
tions (45 burst cycles) show no phase-locking even for the
large values of ginh

12 ¼ ginh
21 , however, continuation simula-

tions over 200 bursting cycles indicate a slow convergence
(purple curve in Fig. 12) to the phase-lag D/13 ¼ 3=4.

We can conclude that for the CPG model to maintain
robustly and flexibly the desired phase-locking at
ðD/12; D/13; D14Þ ¼ ð1=2; 3=4; 1=4Þ like that in the Melibe
swim CPG, all connections, contralateral inhibitory, ipsilat-
eral excitatory, and electrical, are necessary. These connec-
tions provide the feedback loop that widens the range of
heterogeneity, within which the CPG network possesses the
phase-locked state corresponding to the swim bursting pat-
tern. Another related observation suggests that HCO1 should
generate reciprocally inhibition stronger than HCO2 to

preserve the locking balance. Finally, addition of relatively
strong electrical coupling modulates the phase-locked state
(black curve in Fig. 11(d)), which allows the heterogeneous
CPG with quite distinct HCOs to maintain the stable phase-
lags at (1/2, 3/4, 1/4).

A. Reduced maps for the phase-lags between HCOs

Oscillatory network states and their transformations can
be effectively identified and studied through the use of
Poincar!e return maps. In this section, we use the maps to
examine a particular bursting pattern of the inhibitory 4-cell
network (in Fig. 10(a)) that corresponds to the in-phase
bursting interneurons of the driving HCO2: D/34 ¼ 0. In the
2D ðD/13;D/14Þ phase-lag projection, this pattern is associ-
ated with the solutions belonging to the main (red) diagonal
in Fig. 7(c). The diagonal is indeed an invariant plane inside
the unit cube on which the return for all three phase-lags is
defined. In restriction to this plane, the 4-cell network is
reduced to the 3-cell one, in which the anti-phase bursting
interneurons of HCO1 receive double inhibition during the
active phase of the in-phase bursting HCO2. For the reduced
network, the return map becomes a two-dimensional map
defined on the phase-lags, D/12 and D/13 + D/14.

The dynamics of such a map can be assessed by follow-
ing forward transients (grey) shown in Fig. 13(a), whose
initial conditions (green dots) are subjected to the synchro-
nization condition D/13 ¼ D/14. The return map reveals a
stable invariant curve wrapping around the unit square (2D
torus). In the absence of fixed points, the torus must contain
a matching unstable invariant curve too. Because it is unsta-
ble and repels forward iterates of the map, we may hypothe-
size that it wiggles around the unstable in-phase state,
D/12 ¼ 0, of HCO1. This state is unstable because of break-
ing perturbations due to periodic forcing originated from
HCO2.

In essence, the in-phase bursting HCO2 periodically
drives or modulates the phase-lag, D/12, causing the onset of
oscillations, or phase jittering, around 1/2 corresponding to
the anti-phase bursting HCO1. This observation lets us

FIG. 11. Four panels ((a)-(c)) showing
45-cycles long transients of the D/13

phase-lags for the four corresponding
CPG circuits: I, E, IE, and IEG, respec-
tively (Figs. 10(a)–10(c)) as the HCO1
inhibitory coupling, ginh

12 ¼ ginh
21

¼ b& gmax, is increased: b¼ 0 (purple
curve); b ¼ 0:25 (grey dash dots); 0.5
(grey solid); 0.75 (dark grey dash), 1
(black); 1.25 (grey dots); 1.5 (light
grey long dash/solid); 1.75 (light grey
dash-dots); 2 (light grey long dash/-
solid); and 2.25 (cyan curve). Here,
gelec

12 ¼ gelec
21 ¼ 0:25gmax and gmax ¼ 2:5

&10'3 ð1þ dijÞ.

FIG. 12. Convergence of the D/13 phase-lags to the steady state at 3/4 after
350 burst cycles for the four corresponding CPG circuits in Fig. 10: yellow
(I), purple (E), cyan (IE), and black (IEG) lines, respectively. Cyan curve
corresponds to the following conductances: ginn

34 ¼ ginh
43 ¼ 2:25gmax and

gelec
12 ¼ gelec

21 ¼ 0:25gmax, with the rest at the nominal value.
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define a further reduced 1D map for the discrete evolution
of the phase-lag between the reference and any other inter-
neurons of the CPG: D/ðnÞ1j ! D/ðnþkÞ

1j , where k is the degree
of the map. The map D/ðnÞ12 ! D/ðnþ10Þ

12 for HCO1 is shown
in Fig. 13(b); k¼ 10 is chosen because of the slow conver-
gence of transients to an attractor in the weakly coupled
case. In this figure, the modulation oscillations of D/12 are
represented by the closed invariant circle (dark green dots).
Such an invariant circle can be made of finite or infinite
number of points depending on whether the ratio of the burst
periods of the HCOs is rational or not. This circle in the 1D
map corresponds to the stable invariant curve wrapping
around the 2D torus in Fig. 13(a). In the case where the inter-
neurons of HCO2 bursts in anti-phase, D/12 phase-lag transi-
ents converge monotonically to the fixed point at the
intersection of the map graph (light green) curve with the
45)-line. The fixed point corresponds to the anti-phase burst-
ing interneurons 1 and 2 of HCO1. An unstable fixed point
of the 1D map at the origin (at 1) corresponds to the repelling
invariant curve in the 2D map in Fig. 13(a).

Due to the periodic nature of the patterns in this study,
we employ return maps to investigate the ways transients
converge to attracting states such as fixed points and

invariant circles. Each phase-lag trajectories form a distinct
discrete path on the 3D torus (unless it is periodic on an
invariant curve). While reducing to 1D return maps is practi-
cal in many instances for detecting stable fixed points for
phase-locked states of the network, interpretation of solu-
tions of reduced maps can be ill-suited for proper description
of high-dimensional dynamics of neural networks. This con-
cerns especially invariant circles and saddle fixed points,
which can appear to be stable in restrictions to some invari-
ant subspaces of the 3D maps. As an example, let us discuss
the 1D maps shown in Fig. 14. The map in Fig. 14(a) depicts
the transitioning behavior of the forward iterates of D/13

(modulo 1) towards a stable fixed point at 3/4 on the 45)-
line. First, the iterates approach from above a phantom at 1/2
on the 45)-line corresponding to the saddle in the 3D phase
space of the full map. Having lingered by, the phase point
runs down to re-emerge at the top left corner and next at the
right corner of the map. Finally, it converges to the stable
fixed point D/*13 ¼ 3=4 from the right. Figure 14(b) depicts
the behavior of the same sequence in the D/14-projection
that tends to the corresponding fixed point at 1/2, shifted by
a half period. In this projection, the coordinate of the saddle
fixed point is 1.

FIG. 13. 2D (D/12; D/13) phase-lag map for the inhibitory 4-cell CPG with the in-phase bursting HCO2 forcing periodically the D/12 phase-lag for HCO1.
(a) Trajectories, subjected to the constrain D/13 ¼ D/14, of the map for g12 ¼ g21 ¼ g32 ¼ g41 ¼ 5& 10'4 and g12 ¼ g21 ¼ 10'3, converging to an invariant
curve wrapping around the unit square (2D torus). Green dots represent initial phase-lags. (b) 1D return map: D/n

12 ! D/nþ10
12 : a stable invariant circle (dark

squares) is sampled from the solutions in (a); light dots represent typical, unconstrained trajectories of the map converging to the fixed point at D/12 ¼ 0:5 on
the 45)-line for g ¼ 10'3.

FIG. 14. 1D maps for the phase lags,
D/13 (a) and D/14 (b), showing the
complex ways of the convergence of
the iterates to the fixed point with the
coordinates 3/4 and 1/4, respectively,
corresponding to the single stable pat-
tern of the inhibitory CPG. On the
route toward the point(s), the transients
slow down near a saddle represented
by an unstable fixed point with the
coordinates 1/2 and 1, respectively, in
the panels.
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VII. DISCUSSION

Many abnormal neurological phenomena are perturba-
tions of normal mechanisms that govern behaviors such as
movement. Repetitive motor behaviors are often hypothe-
sized to correspond to rhythmogenesis in small networks of
neurons that are able autonomously to generate or continue a
variety of activity patterns without further external input. The
detailed correspondence across these scales has not yet been
made clear in any animal. But there is a growing consensus
in the community of neurophysiologists and computational
researchers that some basic structural and functional elements
are likely shared by CPGs of both invertebrate and vertebrate
animals. Before we can study the mechanisms of disorders at
the level of individual neurons and CPG circuits in mammals,
we therefore first seek to develop better tools and techniques
in the context of much simpler animals. However, the ulti-
mate aim of developing our tools and approach to under-
standing CPGs in lower animals is to make them applicable
to studying the governing principles of neurological phenom-
ena in higher animals, and so could potentially assist in treat-
ing neurological disorders associated with CPG arrhythmia.
Our presentation here is intended as a tutorial guide that dem-
onstrates the effectiveness of our analytical approach that
connects exploratory mathematical models to experimental
data in the context of known behavioral patterns.

In this pilot study, we focused on a biological CPG that
has been linked to a specific swim motion in the sea slug,
Melibe. This CPG robustly produces a phase-locked bursting
pattern according to recent simultaneous voltage recordings
from the four identified neurons. The goal of this modeling
study was twofold: first, to identify specific components and
their connections in this CPG; second, to get insight into
how the connection “weights” in this network lead to robust
production of the rhythmic patterns of self-sustained activity.
Given the preliminary state of our knowledge about CPGs
in the context of whole-animal behavior, we only aim to
capture broad rhythmic properties of a small biophysical net-
work without attempting to model each identified Melibe
swim CPG neuron in precise detail. Thus, we avoid fitting
microscopic details in our model such as a precise constitu-
tion of ionic currents, exact shapes and numbers of action
potentials per bursts. Instead, we employ a generic Hodgkin-
Huxley type model of endogenously bursting neurons that
are qualitatively typical for invertebrates. This allows us to
concentrate on explore a wide range of network configura-
tions that might be responsible for the specific bursting pat-
terns observed in the Melibe CPG.

We also intentionally construct and present our
approach in a fashion that is analogous to the dynamic clamp
technique used in neurophysiological experiments. Our tech-
nique involves the dynamic removal, restoration and var-
iance of (chemical) synaptic connections during simulation,
which mimics the experimental techniques of drug-induced
synaptic blockade, wash-out, etc. Restoring the chemical
synapses during a simulation makes the CPG regain a burst-
ing pattern with temporal characteristics, such as phase lags,
duty cycles, which depend on the connectivity strengths
between the interneurons of the network.

Due to the rhythmic nature of the bursting patterns, we
employ Poincar!e return maps defined on phases and phase
lags between burst initiations in the interneurons. These
maps allow us to study quantitative and qualitative properties
of the stable rhythms and their corresponding attractor
basins. We also exploit conventional knowledge about anti-
phase bursting patterns to identify some basic requirements
for plausible network configurations. For instance, reciprocal
inhibition between a pair of neurons has long been known to
produce anti-phase bursts in HCO configurations. We rely on
a common, standing assumption in current neuroscience that
the circuits of motor generation and control are modular in
nature. Thus, the present theoretical challenge is how to
understand the HCOs as building blocks that must be inter-
connected to produce single or multiple bursting patterns
robustly, and what determines the stability and predomi-
nance of these rhythms. Our study is a step towards the dy-
namical foundation of this theory. We find that our model of
the CPG reproduced, quite accurately, the available intracel-
lular recordings from identified interneurons in the Melibe
CPG. Furthermore, we find that the Melibe network can be
interpreted to consist of two interconnected individual HCOs
of two neurons each.

Furthermore, depending on strengths of unidirectional
inhibition and excitation, we find that the individual HCOs
may have different distributions of phase-locked states. This
is a significant observation because, for example, inter-
cellular recordings from the identified interneurons of the
swim CPG of a similar sea slug, Dendronotus, indicate a
phase-locked state that is consistent with our model when it
is configured using dominant, ipsilateral excitatory connec-
tions from one individual HCO to the other. In addition, as
shown in the “Range of heterogeneity” section, the coupling
strengths of the reciprocal inhibition within the HCOs have
to be balanced in a certain ratio for the whole network to
achieve the desired phase-locking.

We dissected the geometric organization of the simula-
tion results into interactions between the building blocks of
uncoupled and coupled HCOs. The relations between the
phase lags helped us to link network architecture (configura-
tion) with geometric organization of the solutions (model
output). For instance, we show that each attractor of the net-
work, whether it is a fixed point or an invariant circle, corre-
sponds to either a phase-locked bursting pattern with distinct
phase lags, or else to a bursting pattern with phase lags that
vary periodically over the whole network period. As it is
unknown, a priori, whether the Melibe swim CPG is multi-
functional for given set of parameters, one needs to sweep
all possible initial phase distribution to reveal the existence
of multiple attractors in the phase space of the corresponding
return map. Through the use of decoupled HCOs, we were
able to explain significant details of the 3D phase portraits
such as convergence rates and the occurrence of designated
convergence routes to attractors of the phase-lag map.

To study the known robustness of our network, we use
an ensemble of computational tools that allow for the reduc-
tion of observable voltage dynamics to low-dimensional
return maps for phase lags between burst initiations in the
interneurons. In particular, we reduce the bursting dynamics
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of the 4-cell network, represented in full by a 12-
dimensional system of ODEs to a 3-dimensional return map
for the phase lags between either the endogenously bursting
interneurons or between bursting HCOs. We use a “top-
down” approach in which we systematically examine the
properties of the phase-lag maps that we abstracted from the
12D system rather than exploring the global dynamics of
that full system directly. With this approach, we identified
that both contralateral feed-forward inhibition and ipsilateral
backward excitation are needed for the network to stabilize
the bursting pattern against small perturbations. A certain
balance of the synaptic strengths is also required to maintain
the phase-locked state within a reasonable range in the
parameter space of the CPG network.

Another strong working assumption in this study is
that a CPG is composed of (nearly) identical elements—
interneurons or bursting HCOs—which are interconnected
through chemical synapses and gap junctions of equal con-
ductivity. Due to alterations in the reciprocal wiring, such a
homogeneous CPG, can be adapted to become dedicated to a
single rhythm or multifunctional. We might presume
that, through iterative processes of learning and evolution, a
real CPG might develop a heterogeneous structure as specific
connections become stronger or weaker, so that it can
become better adapted to performing specific functions in
specific animals. Certainly, we are all aware of examples
where, through learning and exercise, mammalian motor
systems become “multifunctional” and are able to quickly
transition between several dynamic functions on demand: for
instance, the diverse swimming styles that have been culti-
vated by humans, including the in-phase breaststroke and
butterfly, and the anti-phase crawl and backstroke. For now,
we can only hypothesize that there is a multifunctional, and
presumably heterogeneous, CPG network underlying these
specific swimming rhythms that determines the phase rela-
tionships between rhythmic muscle control signals.

In general, our insights allow us to predict both quantita-
tive and qualitative transformations of the observed patterns
whenever the network configurations are altered. The nature
of these transformations provides a set of novel hypotheses
for biophysical mechanisms about the control and modula-
tion of rhythmic activity. A powerful aspect to our analytical
technique is that it does not require knowledge of the equa-
tions that model the system. Thus, we believe that having
further developed a universal approach to studying both
detailed and phenomenological models of bursting networks
is also applicable to a variety of rhythmic biological phe-
nomena beyond motor control.

Even the real Melibe swim CPG is, of course, much more
complex than our specific model that is based on the existing,
preliminary experimental data. There is great room for
improvement in the model by incorporating other biological
features into it. There are many open questions that could be
addressed by more detailed modeling, such as whether the
individual models are natural bursters with distinct duty cycles
or whether they spike tonically and can only become network
bursters episodically when under the influence of external
drive from other pre-synaptic interneurons in the CPG. This
is a challenging question, both phenomenologically and

computationally. In future work based upon the framework of
this study, we plan to address such questions with more realis-
tic models of inhibitory-excitatory CPG configurations,
including ones comprised of three and more HCOs.
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APPENDIX: MATERIAL AND METHODS

1. Leech heart interneuron model

This networked model is based on the dynamics of the
fast sodium current, INa, the slow potassium current, IK2, and
an ohmic leak current, IL is given by7,15

C
dV

dt
¼ 'INaðVÞ ' IK2ðVÞ ' ILðVÞ ' Iapp ' Isyn;

INa ¼ "gNa n3 h ðV ' ENaÞ; n ¼ n1ðVÞ;
IK2 ¼ "gK2 m2ðV ' EKÞ; IL ¼ "gL ðV ' ELÞ;

sNa
dh

dt
¼ h1ðVÞ ' h; sK2

dm

dt
¼ m1ðVÞ ' m:

(A1)

Here, V is the membrane potential, n and h are the gating
variables for sodium channels, which activate (instantane-
ously) and inactivate, respectively, as the membrane poten-
tial depolarizes; m is the gating variable for the potassium
channel that activates slowly as the membrane potential
hyperpolarizes. An applied current, Iapp ¼ 0, through the
paper unless indicated otherwise. The time constants for the
gating variables, maximum conductances and reversal poten-
tials for all the channels and leak current, and the membrane
capacitance are set as follows:

sNa ¼ 0:0405 s; "gNa ¼ 200 nS; ENa ¼ 0:045 V;

sK2 ¼ 0:25 s; "gK2 ¼ 30 nS; EK ¼ '0:070 V;

C ¼ 0:5 nF; "gL ¼ 8 nS; EL ¼ '0:046 V:

The steady state values of the gating variables are given by
the following Boltzmann functions:

n1ðVÞ ¼ ½1þ expð'150ðV þ 0:0305ÞÞ-'1;

h1ðVÞ ¼ ½1þ expð500ðV þ 0:0333ÞÞ-'1;

m1ðVÞ ¼ ½1þ expð'83ðV þ 0:018þ Vshift
K2 ÞÞ-

'1;

with Vshift
K2 ¼ '0:02181V; this bifurcation parameter controls

the number of spikes per burst. The currents through fast,
non-delayed, chemical synapses are modeled using the fast
threshold modulation paradigm as follows:32
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Isyn ¼ gsynðEsyn ' VpostÞCðVpre 'HsynÞ;
CðVpre 'HsynÞ ¼ 1=½1þ expf'1000ðVpre 'HsynÞg-;

(A2)

here Vpost and Vpre are the voltages of the post- and the pre-
synaptic interneurons; the synaptic threshold Hsyn ¼ '0:03V
is chosen so that every spike within a burst in the pre-
synaptic neuron crosses Hsyn. This implies that the synaptic
current, Isyn, is initiated as soon as Vpre exceeds the synaptic
threshold. The type, inhibitory or excitatory, of the FTM syn-
apse is determined by the level of the reversal potential, Esyn,
in the post-synaptic neuron. In the inhibitory case, it is set as
Esyn ¼ '0:0625 V so that VpostðtÞ > Esyn. In the excitatory
case, the level of Esyn is raised to zero to guarantee that
hVpostðtÞi remains, below the reversal potential on average,
over the period of the bursting interneuron. We point out spe-
cifically that our previous studies of network dynamics
revealed that alternative models of fast chemical synapses,
using the alpha function and detailed dynamical representa-
tion, have no contrast effect on interactions between the
coupled interneurons.34

2. Phase-lags and HCO periods

The delays between burst initiations in the reference
interneuron 1 and other three are given by s1j, and the cor-
responding times are given by tj, and recurrent times (net-
work period) by ~Tj (Tj). The superscripts stand for bursting
cycle numbers. Then, the phase-lags are defined as the
following:

D/ðnÞ1j ¼
tðnÞj ' tðnÞ1

tðnÞ1 ' tðn'1Þ
1

¼
sðnÞ1j

~T
ðnÞ
1

; j ¼ 2; 3; 4: (A3)

After the phase-locked state is achieved the difference
between subsequent phase-lags does not change

D/ðnþ1Þ
1j ' D/ðnÞ1j ¼ 0; and

sðnþ1Þ
1j

~T
ðnþ1Þ
1

'
sðnÞ1j

~T
ðnÞ
1

¼ 0: (A4)

The equality, Tðnþ1Þ
1 ¼ TðnÞ1 , means that HCO1 maintains a

constant period T1. Then the above conditions can be
reduced to those on the following ratios of the periods
between both HCOs:

D/ðnþ1Þ
1j ' D/ðnÞ1j ¼

sðnþ1Þ
1j

T1
'

sðnÞ1j

T1

¼
ððtðnþ1Þ

j ' tðnþ1Þ
1 Þ ' ðtðnÞj ' tðnÞ1 ÞÞ

T1

&
ððtðnþ1Þ

j ' tðnÞj Þ ' ðt
ðnþ1Þ
1 ' tðnÞ1 ÞÞ

T1

¼
Tðnþ1Þ

j ' T1

T1
¼

Tðnþ1Þ
j

T1
' 1: (A5)

Whenever the phase-locked state is achieved, HCO2 has the
period of HCO1. On the other hand, if Tðnþ1Þ

1 6¼ TðnÞ1 , then
the delays sðnÞ1j and sðnþ1Þ

1j will change proportionally too

D/ðnþ1Þ
1j ' D/ðnÞ1j ¼

sðnþ1Þ
1j

Tðnþ1Þ
1

'
sðnÞ1j

TðnÞ1

¼ 0; or

TðnÞ1

Tðnþ1Þ
1

¼
sðnÞ1j

sðnþ1Þ
1j

: (A6)

3. Numerical methods

All numerical simulations and phase analysis were per-
formed using the PyDSTool dynamical systems software
environment.37 Each sequence of phase lags fD/ðnÞ1j g plotted
in Fig. 1 begins from an initial lag ðD/ð0Þ13 Þ, which is the dif-
ference in phases measured relative to the recurrence time of
cell 1 every time its voltage increases to a threshold Hth ¼
'40 mV. Hth marks the beginning of the spiking segment of
a burst. As that recurrence time is unknown a priori due to
interactions of the cells, we estimate it, up to first order, as a
fraction of the period Tsynch of the synchronous bursting orbit
(or that in the individual models) by selecting guess values
ðD/?

1jÞ. The synchronous solution corresponds to D/1j ¼ 0.
By identifying t¼ 0 at the moment when V1 ¼ Hth with
/ ¼ 0, we can parameterize this solution by time
(0 . t < Tsynch) or by the phase lag ð0 . D/ < 1Þ. For
weak coupling and small lags, the recurrence time is close
to Tsynch, and ðD/?

1jÞ , ðD/ð0Þ1j Þ. We use the following
algorithm to distribute the true initial lags uniformly on a
40& 40 square grid covering the unit cube (torus), which is
the phase space of the phase-lag network.

We initialize the state of cell 1 at t¼ 0 from the point
ðV0; n0; h0Þ of the synchronous solution, and next create
the distribution of the initial phase-lagged states in the simu-
lation by suppressing the other cells for durations
t ¼ D/0

1jTsynch, respectively. On release, the cells are initial-
ized with the same state ðV0; n0; h0Þ. We begin recording the
sequence of phase lags between the cells 2–4 and the refer-
ence cell 1 on the second cycle after coupling has adjusted
the network period away from Tsynch. In the case of stronger
coupling, where the gap between Tsynch and the first recur-
rence time for cell 1 widens, we retroactively adjust initial
phases using a “shooting” algorithm to make the initial phase
lags sufficiently close to uniformly distributed positions on
the square grid.
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