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Design of Synthetic Central Pattern Generators

Producing Desired Quadruped Gaits
Matteo Lodi, Andrey Shilnikov, Marco Storace, Senior Member, IEEE

Abstract—This paper is concerned with a method for design
and analysis of specific neuronal networks, called central pattern
generators (CPGs), which produce primary rhythmic patterns in
animals. In particular, the paper is focused on synthetic CPGs
made up of few basic elements and governing quadrupeds’ gaits
and gait transitions, under the control of an external drive.
The method combines principles of bifurcation theory, geometric
properties of symmetry, and numerical analysis based on the
recently proposed toolbox CEPAGE. The method is applied to
two CPGs, one bio-inspired and one purely synthetic. In both
cases, the method provides a way to obtain a desired sequence of
gaits by continuously changing a bifurcation parameter related
to the external drive.

Index Terms—Central pattern generators, dynamical systems,
bifurcation analysis.

I. INTRODUCTION

The motor circuits in the spinal cord that control locomo-

tion are commonly referred to as central pattern generators

(CPGs). A CPG is a neuronal network that is capable of

generating an organized pattern of motor activity indepen-

dently of sensory inputs, thus producing primary rhythmic

behaviors such as respiration, mastication, sucking, crawling,

flying, swimming and walking [1]. In vertebrates, the planning

of muscle activity involves many supra-spinal networks, which

activate the CPGs that determine the gaits [2]–[7]. The CPG

functions include selecting which muscles are to be activated,

how intensely and for how long, thus allowing patterns of

movements of widely varying strengths and speeds, whereas

the supra-spinal networks drive the outputs from the CPG

(allowing gait changes and adaptation to obstacles and un-

certainties during ambulatory excursions [8]) on the basis of

both sensory feedback pathways and vestibular pathways [9]–

[11]. This combination of closed-loop and open-loop control

systems allows obtaining a robust control of locomotion, char-

acterized by rhythmicity (the specific periodic pattern provided

by the CPG), stability against perturbations and noise (the

pattern corresponds to self-sustained oscillation due to a stable

limit cycle), adaptability (owing to the feedback pathways),

and variety (by changing the gaits) [12]–[16].

One of the fundamental challenges in motor systems neuro-

science is discovering the intrinsic functional mechanisms of
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CPG networks and the way in which they integrate descending

inputs from the brain-stem, which are in turn under the control

of basal ganglia and cortex [3], [17]. This challenge is faced

both by biology and related disciplines – whose main aim is

fully understanding the CPG physiological structure and func-

tionality – and by nonlinear dynamics, whose main aims are

understanding the functionality of the underlying mechanisms

and modeling with the simplest dynamical networks either a

real structure (bio-inspired CPG) or just specific functionalities

(synthetic CPG), either by resorting to group theory [18] or

to multi-parameter bifurcation theory [19]–[21]. Moreover,

the main aim of engineering is designing and implementing

CPGs on embedded circuits for specific applications [12], [22],

mainly in the fields of bio-robotics [23], [24] and rehabilitation

[25], [26].

Then, the acronym CPG is used to denote both the real

neuronal network (which in vertebrates can be composed

of hundreds/thousands of neurons) and its model. Since in

the real network there are groups of neurons that behave

coherently and whose concerted activity can be modeled

as a unique functional module (called in many ways, e.g.,

cell, unit, oscillator, neuron), the CPG intended as model is

always composed of few cells. The complete CPG function

is the result of neural circuits containing these modules as

elementary blocks. Henceforth, unless otherwise stated, CPG

will denote a model of a real neuronal network.

In this paper we propose a method for designing and

analyzing CPGs, based on multi-parameter bifurcation theory.

Of course, the method is independent of the tools used to

implement it, but here we will use a recently proposed software

tool (called CEPAGE) [27].

The proposed strategy is illustrated through two case stud-

ies, related to locomotion and gait transitions in quadrupeds,

which are in turn novelty elements of this paper. The first

case study is an 8-cell bio-inspired CPG controlling gaits

in quadrupeds [28]. Despite the complexity of both the real

CPG and its 40-cell model described in [28], the proposed

8-cell CPG model is able to capture the main functional

behaviors of the real CPG. This has a twofold advantage:

firstly, the simplification points out the role played by the main

components of the network; secondly, the reduced network has

a lower computational complexity and then it can be exploited

to improve simulation speed or to implement an embedded

system able to mimic the network behavior in a real-time

environment.

The second case study is a 4-cell purely synthetic CPG,

which is designed to obtain the same gait transitions as before.

In both cases, by following some prescribed steps, we obtain
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the desired gait transitions by acting on a bifurcation parameter

modeling the supra-spinal networks driving.

This paper is structured as follows. Section II briefly

describes the working framework, i.e., how a CPG can be

modeled and the main features of CEPAGE. The proposed

design and analysis strategy is described in Sec. III, whereas

the two case studies are analyzed in Secs. IV and V. Finally,

some conclusions are drawn in Sec. VI.

II. CPGS AND CEPAGE

In this section we briefly describe the building elements

of a CPG model, the phase-difference representation used in

CEPAGE to analyze them, and the main toolbox features.

A. CPG models

A CPG model is basically defined by two elements:

• the cell, which can be a neuron model (e.g., Hodgkin-

Huxley, FitzHugh-Nagumo, Morris-Lecar, Hindmarsh-

Rose, integrate-and-fire models) or another oscillator

(e.g., Kuramoto, Hopf, Van der Pol);

• the connections (synapses) between cells, which define

the CPG topology and can be electrical, chemical in-

hibitory or chemical excitatory.

A third possible element (CPG input, when it does not work

autonomously) is the brain-stem drive, which brings an input

to the CPG from supra-spinal networks, allowing gait changes

and adaptation.

CEPAGE models a CPG composed of N cells, each de-

scribed by the following dynamical system (i = 1, . . . , N ):

żi =

[

V̇i

ẋi

]

=

[

fi(zi, α, I
(i)
syn(α))

pi(zi)

]

(1)

Assuming that the cell is a neuron model, Vi is the membrane

voltage, xi is a vector containing the other state variables

(whose dynamics are described by the vector field pi), α

is a parameter related to the brain-stem drive, and I
(i)
syn(α)

is the incoming synaptic current, containing the following

contributions:

I(i)syn =

N−1
∑

j=0

gin
ij (α)hin(Vi, Vj , s

in
ij )+

N−1
∑

j=0

gex
ij (α)hex(Vi, Vj , s

ex
ij ) +

N−1
∑

j=0

gel
ij(α)(Vj − Vi)

(2)

where hin and hex describe generic chemical inhibitory

and chemical excitatory synapses actions, respectively, and

in general depend on the pre-synaptic and post-synaptic cell

membrane potentials (Vj and Vi, respectively) and on the

state sxx
ij of the synapse of type xx between cells i and j,

which evolves according to a nonlinear dynamical system

ṡ
xx
ij = f̂(sxx

ij , Vj). The functions gin
ij (α), gex

ij (α) and gel
ij(α)

represent chemical inhibitory, chemical excitatory and elec-

trical synapses strengths, respectively, between cells i and j

and in general depend on the brain-stem drive through the

parameter α. If a synaptic strength does not depend on α, it

reduces to a constant coefficient; gxx
ij = 0 means that cells

i and j are not connected by synapses of type xx. In this

paper, the synaptic actions have no dynamics and are modeled

according to the fast threshold modulation paradigm [29], as

follows:

hin(Vi, Vj) =
Ein − Vi

1 + eν(Vj−θ)
,

hex(Vi, Vj) =
Eex − Vi

1 + eν(Vj−θ)
,

(3)

where Ein and Eex are the inhibitory and excitatory synapses

reverse potentials, respectively, whereas ν and θ act on the

chemical synapses activation function shape.

B. Analysis strategy

In this paper the CPG are analyzed following the so-called

phase-lag or phase-difference representation of oscillatory or

bursting cells coupled in a network [13], [14], [16], [30],

[31], which allows checking the existence and stability of

rhythmic patterns generated by the network by using standard

tools of nonlinear dynamics. A first assumption underlying this

method is that all cells remain oscillatory with relatively close

temporal characteristics. This means that each i-th cell stays

on a structurally stable periodic orbit ẑi(t) of period Ti and

that this orbit can be mapped (through the modulo function)

to a phase variable φi ∈ [0, 1) so that φi is reset to 0 when

Vi grows over a threshold Vth.

The phase difference representation of the network em-

ploys N − 1 state variables describing phase differences

between the reference cell 1 and the other network cells:

∆φ1i(t) = (φi(t) − φ1(t)) mod 1 (i = 2, . . . , N ). The time

evolution of these state variables is unknown a priori and is

usually determined numerically by integrating multiple initial

conditions of (1) to reveal possible multi-stability.

From a numerical standpoint, the phase differences can be

computed as follows. Let ti(k) be the k-th time at which the

membrane voltage Vi of the i-th cell overcomes the threshold

Vth. The phase lag ∆φ1i(k) between the i-th cell and the

reference cell 1 can be numerically computed as follows:

∆φ1i(k) =
ti(k) − t1(k)

T1
mod 1, (4)

where T1 is the period of the first cell. As the time progresses

these phase lags can converge and stabilize at some stable

phase-locked states, possibly more than one (multi-stability of

the network).

This representation is adopted also in Motiftoolbox [32].

C. Toolbox features

CEPAGE is an object-oriented toolbox for simulation and

analysis of CPGs [27]. It has a two-layer organisation: the

outer layer is a MATLAB interface that makes it easy to spec-

ify the CPG configuration and offers tools for data analysis and

visualization; the inner layer is used for numerical integrations
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Fig. 1. Relationships between CEPAGE objects.

and is based on Boost C++ libraries and on MEX files.1 The

MATLAB layer provides flexibility to CEPAGE, since it makes

it easy to add new neuron and synapse models to be simulated

and new functionalities to the package by extending the base

classes. Moreover, MATLAB allows the user to write very

concise and clear scripts, which nonetheless retain the full

power and speed of the underlying C/C++ code.

Figure 1 shows the functional relationships between classes

(gray boxes), main methods (solid ellipses) and corresponding

output data (white boxes). The dashed ellipses denote external

analysis tools that can be applied to the obtained data. Parallel

computation, MEX files and the Boost C++ libraries are used

to reduce the simulation times. The classes neuron, synapse

and CPG describe a single cell, a synapse and a CPG,

respectively.

The main toolbox functionalities are:

-) simulation of CPGs: by using method sim of class CPG,

the user can easily obtain the time evolution of the state

variables describing the network; it is also possible to start

parallel simulations from different initial conditions. If only

one initial condition is considered, it is possible to use the

simplot method, which also plots the state evolution;

-) limit cycle continuation; this functionality is useful when

one wants to detect limit cycle bifurcations; through the

method writeContinuationInterface, it is possible to generate

AUTO [33] or MATCONT [34] files for the limit cycle

continuation;

-) CPG phase difference simulation: the method get-

PhaseRepresentation of class CPG allows obtaining the evo-

lution of the phase differences for the CPG cells; also in this

case, parallel computations can be exploited to integrate the

system starting from different initial conditions. The simula-

tion results can then be plotted through the plotPhaseSpace

method. This functionality can be used to obtain a brute-force

bifurcation diagram of the phase differences, but turns out to

1A MEX file is a type of computer file that provides an interface between
MATLAB and functions written in C, C++ or Fortran. It stands for “MATLAB
executable”. When compiled, MEX files are dynamically loaded and allow
external functions to be invoked from within MATLAB as if they were built-
in functions.

TABLE I
GAIT CHARACTERISTICS IN TERMS OF DUTY-CYCLE (dc) AND PHASE

DIFFERENCES BETWEEN LEGS (L=LEFT, R=RIGHT, F=FORE, H=HIND).

Gait dc ∆φRF−LF ∆φRF−LH ∆φRF−RH

Walk 0.25 0.5 0.75 0.25
Trot 0.5 0.5 0 0.5

Bound 0.65 0 0.5 0.5
Transverse gallop 0.6 0.1(0.9) 0.7(0.5) 0.6

Rotary gallop 0.6 0.1(0.9) 0.4(0.7) 0.6

be very time consuming for relatively large networks;

-) CPG approximate phase difference simulation: the

method computeApproxVectorField of class CPG is useful to

carry out brute-force (i.e., based on numerical integrations

and Poincaré sections [35]) analysis of the phase differences

between cells reducing the simulation times. The approximate

solution works accurately only for weakly-coupled networks

and is computed starting from the so-called Phase Resetting

Curve (PRC) [36], which can be computed through the method

computePRC of class neuron model;

-) phase difference continuation: the approximate formula-

tion allows also knowing the vector field that describes the

phase difference evolution, making it possible a continuation

analysis of the patterns generated by the network. CEPAGE

can automatically generate files through the method writeAp-

proxVectorField, which can be used to carry out continuation

analysis with AUTO or MATCONT.

III. SYNTHETIC CPG DESIGN METHOD

CEPAGE can be used as a tool to design a synthetic CPG

able to generate some specific gaits typical of quadrupeds

(i.e., trot, walk, bound, rotary gallop, transverse gallop) either

by varying a bifurcation parameter in an assigned (e.g., bio-

inspired) CPG with fixed structure or by designing (including

the structure) a purely synthetic CPG. In both cases, our goal

is finding – for the cells or synapses directly depending on the

brain-stem drive through the parameter α – proper functions of

α that allow obtaining the desired gaits and gait transitions. To

this end, according to the framework described in Sec. II-A,

we introduce an explicit dependence on α of some parameters

and we choose piecewise-linear (PWL) functions, connecting

points detected through bifurcation analysis.

Table I shows the main characteristics of each gait we want

to achieve. The duty cycle properties of each gait are common

for many quadrupeds, whereas gait amplitude and frequency

depend on each specific animal. In this work (case study 1),

we focus on the amplitude and frequency values typical for a

mouse [28]. A representation of the different gaits is provided

as supplemental material.

We assume that each limb is driven by a cell, then we will

consider CPGs containing at least four cells. The proposed

strategy can be used for any gait with left-right symmetry. It

can be applied also to asymmetric gaits (possibly with few

changes, as shown in Sec. V-E).

The proposed design steps to obtain a specific symmetric

gait are as follows:

• Step 1: we analyze a simple structure (which appears

more than once in an assigned CPG or is used as building
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block in a purely synthetic CPG), typically an half-center

oscillator (HCO). By carrying out a bifurcation analysis,

we can analyze the possible stable behaviors of this

structure with respect to the chosen bifurcation parameter.

The desired behaviors correspond to a specific range of

values of this parameter. Finally, we relate this range to

the external drive α through a PWL function.

• Step 2: we analyze the CPG sub-structure (either the

simple structure of Step 1 or a more complex subset of

CPG elements) which governs left-right (LR) coordina-

tion; this sub-structure usually contains both inhibitory

and excitatory synapses. By choosing the strength of

the excitatory synapses as a proper PWL function of α,

we can vary the phase difference between the patterns

generated by each cell of the sub-structure. CEPAGE is

used to obtain bifurcation diagrams that serve as design

maps.

• Step 3: we analyze the behavior of the complete CPG

(or of a part of it, in the presence of symmetries)

by analyzing the influence of α on the fore-hind (FH)

coordination. Even when changing α, we must ensure the

structural stability of both LR and FH coordinations. By

choosing proper parameter settings (selected through a

bifurcation analysis carried out with CEPAGE), the CPG

can generate robust patterns. By making some parameters

become proper PWL functions of α connecting the robust

patterns, we can also obtain a desired sequence of gait

transitions.

• Step 4: a posteriori analysis of the complete CPG, if not

already carried out in Step 3.

In the next sections, two examples of application of this

strategy will be proposed: the first case study is concerned

with the analysis of a bio-inspired 8-cell CPG with assigned

structure and with the design of a synthetic CPG with the

same (fixed) structure; the second case study is the design of

a purely synthetic 4-cell CPG. In both cases, the main aim is

to generate the cited gaits typical of quadrupeds.

IV. CASE STUDY 1: BIO-INSPIRED CPG

In this section we will show how CEPAGE can be used

to analyze a 8-cell CPG and to set its parameters in order to

generate all the gaits listed in Table I.

In particular, in [28] a quadrupedal 40-cell CPG is described

and analyzed, which is able to generate trot, walk and bound.

The brain-stem drive acts directly on some CPG cells through

the parameter α, ranging in the interval [0, 1].
With respect to the 40-cell CPG, the proposed 8-cell CPG

(shown in Fig. 2) maintains only the neuron populations

directly driving flexor (central cells, from 1 to 4, where L=left,

R=right, F=fore, H=hind) and extensor (cells from 5 to 8)

muscles in each leg. The other populations are replaced by

fast chemical synapses, inhibitory (ending with a filled circle)

or excitatory (ending with a filled square), depending on the

nature of the replaced population, thus obtaining the 8-cell

CPG. Indeed, the removed populations basically behave as

amplifiers, without introducing significant delays in the action

potential transmission to flexors and extensors [37], [38].

���
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Fig. 2. (Color online) Structure of the 8-cell CPG. The central cells
(1–4) drive flexor muscles in each leg (L=left, R=right, F=fore, H=hind),
whereas upper and lower cells (5–8) drive the corresponding extensor muscles.
(Chemical) synapses, either inhibitory (ending with filled circles) or excita-
tory (ending with filled squares), are represented by gray connections. The
excitatory connections depending on the brain-stem drive are shown in black.

Since in the 40-cell CPG the brain-stem drive acts on

excitatory neuron populations here replaced by excitatory

synapses, we model this effect by introducing a nonlinear and

monotonically increasing dependence of the corresponding

synaptic efficacies gex
ij on the parameter α, according to

Eq. (2). This accounts for another key feature of CPGs, i.e., the

differential recruitment of cells during various motor behav-

iors. In particular, some cells are active during different types

of movement, whereas other cells are selectively recruited for

each task [1], [39]–[42].

The functions gex
ij (α) have been identified through a polyno-

mial fitting, such that the 8-cell network behaves as the 40-cell

CPG with respect to ∆φ12. The fitting provided 10-th order

polynomials (see Appendix A).

The other synaptic efficacies are assumed to be constant

(the non-zero values are listed in Tab. II in Appendix A).

Their values have been determined by optimization, in order

to reproduce the behavior of the original 40-cell CPG.

Each cell is modeled in CEPAGE through the same neuron

model used in [28] (see Appendix A), for the sake of com-

parison, where the parameters have the same values as in [28]

and are reported in Appendix A.

About the synapses, here (unlike in [28]) we use the more

biophysically plausible model (2).

A. Analysis

We analyzed the CPG behavior by varying the bifurcation

parameter α, as in [28].

Each flexor cell eventually produces the same periodic

spiking pattern, but with different phase. Figure 3 shows the

spiking frequency f (upper panel) and duty cycle dc vs. α for
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Fig. 3. Spiking frequency f (upper panel) and duty cycle dc of each flexor
cell vs. α.

0

0.5

1

0

0.5

1

0 0.2 0.4 0.6 0.8
0

0.5

1

Fig. 4. (Color online) Upper panels: 1D bifurcation diagrams ∆φ1i(α), with
i = 2 (top panel), i = 3 (middle panel), i = 4 (bottom panel), obtained by
increasing (black lines) or decreasing (gray lines) the bifurcation parameter
α. The bifurcation diagrams point out the regions where walk (W), trot (T)
and bound (B) are the only stable gait. Bottom panels: membrane voltages
Vi(t) (ranging in the interval [−60,−10]mV) for the flexor cells in the three
regions W (left panel), T (central panel) and B (right panel), over a window
of 600ms (the color code is the same as for the cells in Fig. 2).

each flexor cell. It is evident that both f and dc increase with

α and this is perfectly coherent with the results reported in

[28].

The stable phase differences ∆φ1j (j = 2, 3, 4) vs. α are

shown in the three upper panels of Fig. 4. By varying α,

the CPG is able to produce walk (region W), trot (region T)

and bound (region B). These brute-force bifurcation diagrams

have been obtained by using CEPAGE to simulate the CPG by

increasing (black lines) and decreasing (gray lines) α values.

The comparison points out the presence of a bistability interval

between regions T and B. The corresponding membrane

voltages Vi(t) for the flexor cells over a window of 600ms

are shown in the bottom panels, where the color code is the

same as for the cells in Fig. 2.

Figure 5 shows how the bifurcation diagram for ∆φ12

changes by removing some synaptic connections. These results

are coherent with biophysical experiments where some CPG

cells are genetically ablated [43] and are completely similar

to those obtained in [28] for the 40-cell CPG.

Because in our reduced model the cells removed in the

original 40-cell CPG are no longer included, we modified the

synaptic efficacies as follows (the reader not familiar with

0

0.5

1

0 0.2 0.4 0.6 0.8

0

0.5

1

0 0.2 0.4 0.6 0.8

0

0.5

1

0 0.2 0.4 0.6 0.8

W TG B

W BT

Fig. 5. Stable phase differences/lags ∆φ12 and ∆φ13 in the 8-cell CPG.
Upper panels: ablation of cell V 0V in the original 40-cell CPG. Bottom-left
panel: ablation of cells V 0D and V 0V . Bottom-right panel: ablation of cell
V 3. For the bottom panels, ∆φ12 remains constant at 0 (left) and 0.5 (right).

physiological details is referred to [28] for deeper insights

about the removed cells/connections):

• V 0V : we decreased the synaptic efficacies of the in-

hibitory connections between the flexor cells 1-2 and 3-

4, since the cell V 0V in the 40-cell CPG is involved

in one of the two possible inhibitory connections (the

other connection involves the cell V 0D) between the

considered flexor cells.

• V 0D and V 0V : we removed the inhibitory connections

between the flexor cells 1-2 and 3-4, for the reasons

explained above.

• V 3: we removed the excitatory connections between the

flexor cells 1-2 and 3-4, for similar reasons.

In the upper panels, due to the lower strength of the

inhibitory connections between left and right flexor cells,

region T disappears, whereas region B is larger than in Fig.

4. Moreover, region TG appears, meaning that the quadruped

can generate a transverse gallop gait. Black and gray lines

have the same meaning as in Fig. 4 and reveal the presence

of bistability in two transition regions.

In the last two cases the interpretation is quite direct: due

to the absence of inhibitory (excitatory) connections between

left side and right side, the CPG is able to generate only in-

phase (anti-phase) patterns. This prevents the quadruped from

producing bound (bottom-left panel) or walk and trot (bottom-

right panel).

Summarizing, our analysis shows that the 8-cell CPG has

the same behaviors as the 40-cell CPG and can produce up to

four gaits (only three if we keep unchanged the CPG structure),

among those listed in Tab. I. Now, we want to see if it is

possible obtaining all the five gaits listed in the table, by taking

the CPG structure fixed and acting only on the way gex
ij and Di

depend on the brain-stem parameter α. So, after an analysis

problem, now we face a design problem, following the steps

described in Sec. III.
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Fig. 6. Step 1 (see the gray dashed rectangle in Fig. 2): asymptotic duty
cycle dc of the fore flexor cell vs. D1.
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Fig. 7. Step 1: the chosen PWL function D1(α).

B. Step 1

We analyze a fore flexor-extensor pair (see the gray dashed

rectangle in Fig. 2). Figure 6 shows the asymptotic flexor cell

duty cycle vs. parameter D1 (see Appendix A, last equation

of system (5)) of the same cell.

The minimum and maximum dc values we want to generate

are 0.25 (walk) and 0.65 (bound). Then D1 can range between

0.0043 and 0.09 and we define it as a non-decreasing PWL

function D1(α) . This choice allows obtaining the same duty

cycle for different values of α and, consequently, we can obtain

different gaits sharing the same duty cycle. Figure 7 shows the

chosen function D1(α) in the considered example.

C. Step 2

We analyze the sub-structure within the gray solid box

in Fig. 2, where the fore flexor-extensor pairs are identical.

Through CEPAGE, we carry out a two-dimensional bifurcation

analysis of the stable phase difference ∆φ12 with respect to

α and gex (= gex
12 = gex

21 ). Figure 8 shows the obtained brute-

force bifurcation diagram.

In the blue region, the (unique) stable equilibrium point has

a phase coordinate ∆φ12 = 0 (in-phase). In the yellow region,

the (unique) stable equilibrium point has a locked phase

∆φ12 = 0.5 (anti-phase). In the third intermediate region,

instead, two stable equilibria coexist; the diagram shows the

one with phase 0 < ∆φ12 < 0.5. The second equilibrium (not

shown) has phase 1 − ∆φ12. This is the reason because of the

diagram colorbar ranging from 0 through 0.5. On the whole,

we can obtain any phase difference between 0 and 1. The

red curves mark supercritical pitchfork bifurcations, obtained

again through CEPAGE (brute-force approach).

We remark that, despite the fact that the presence of

bistability makes the produced patterns less robust, for the

asymmetric gaits we can obtain mono-stability by breaking

the symmetry, as we will see below. For the symmetric gaits,

the bistability just means that the limbs move in the reverse

order, but the gait remains the same.

At this point, we can define a function gex(α) so as to have

a continuous sequence of gaits. The chosen function is shown
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Fig. 8. (Color online) Step 2 (see the gray solid box in Fig. 2): brute-force
bifurcation diagram in the parameter plane (α,gex). Red curves: supercritical
pitchfork bifurcations. Black dots: chosen parameter pairs corresponding to
five different gaits. Black line: chosen path to obtain the sequence of gaits.
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Fig. 9. (Color online) Step 3 (see the black dashed box in Fig. 2): brute-
force bifurcation diagram in the parameter plane (α,∆D). Black dots: chosen
parameter pairs corresponding to five different gaits. The white pixels denote
parameter pairs corresponding to a quiescent behavior of the cell (no spiking
occurs at regime). Chosen PWL functions ∆D3(α) (solid black line) and
∆D4(α) (dashed red line).

in Fig. 8 (black PWL curve).

D. Step 3

Step 3 is related to the analysis of the CPG sub-network

within the black dashed box in Fig. 2. Cell 1 depends on

α through D1(α), whereas cell 4 initially depends on two

parameters through D4(α,∆D) = D1(α) + ∆D.

CEPAGE provided the 2D bifurcation diagram shown in

Fig. 9 for the equilibrium values of ∆φ14 with respect to α

and ∆D. By properly choosing ∆D as a PWL function of α

connecting the values selected at the end of Step 1 (marked

by black dots), we can obtain a function ∆D4(α) ensuring

the desired phase lags ∆φ14 between fore and hind legs.
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Fig. 10. (Color online) Upper panels: 1D bifurcation diagrams obtained by
applying to the whole CPG the chosen functions of α, providing the sequence
of gaits walk (region W), trot (T), transverse gallop (TG), rotary gallop (RG),
bound (B). Bottom panels: membrane voltages Vi(t) for the flexor cells in
the five regions, over a window of 600ms (color code as for the cells in Fig.
2).

If we want to obtain symmetric gaits only, we can design the

right part of the CPG as identical to the analyzed subnetwork.

On the contrary, if we want to obtain also asymmetric gaits, we

have to design differently the two sides. In particular, in this

case study, we can define two functions ∆D3(α) and ∆D4(α)
(one for each side, right/left) so as to have a continuous

sequence of gaits. The chosen functions are shown in Fig.

9: the dashed red line is related to the left legs and the black

solid line to the right legs.

E. Step 4

Finally, we check the designed CPG by carrying out the

same bifurcation analysis as in Fig. 4, by setting gex
12 =

gex
21 = gex

34 = gex
43 = gex(α), D2(α) = D1(α), D3(α) =

D1(α) + ∆D3(α) and D4(α) = D1(α) + ∆D4(α), by using

the PWL functions of α obtained through the previous steps.

The result is shown in Fig. 10. The upper panels show

the bifurcation diagrams obtained by applying the chosen

functions and point out the correct sequence of gaits. The

bottom panels show the corresponding evolution of the steady-

state membrane voltages Vi(t) for the flexor cells in the five

regions, over a window of 600ms and with voltages ranging

in the interval [−60,−10]mV (the color code is the same as

for the cells in Fig. 2). As pointed out in Sec. III, each voltage

has its own duty cycle, amplitude, frequency, and phase, which

determine on the whole the corresponding gait.

V. CASE STUDY 2: A SYNTHETIC CPG

In this section we show how to design a 4-cell purely

synthetic CPG in order to generate the same gaits as before.

The chosen neuron model is the modified FitzHugh-

Nagumo model described in [21] and reported in Appendix

��������

���� 	���

Fig. 11. (Color online) 4-unit synthetic CPG. Gray dashed box: half-center
oscillator (see step 1) with standard inhibitory synaptic connections (filled
circles) and additional excitatory synaptic connections (filled squares). The
CPG is completed by the mid-gray (see step 2) and dark-gray (see step 3)
inhibitory connections.

B for ease of reference. In this model, all variables are

normalized and dimensionless.

We use the synapse model (2), with ν = 0.3, θ = 0, Ein =
−1.5 and Eex = 1.

In this case, we consider only the phase relationships

between limbs for each gait, i.e., we focus on the times of

“maximum contact” between limb and ground. For the sake

of simplicity, in this example we neglect the duty cycle, which

accounts for the duration of the contact. In other words, this

network is only a rhythm generator, that would require either

a more complex cell model or further cells (e.g., a pattern

formation network and motor neurons, as proposed in [44]) to

become a realistic CPG, able to modulate also duty cycles,

amplitudes and frequencies of the cells driving flexor and

extensor muscles. With this caveat in mind, henceforth the

network will be called anyway CPG.

Our goal in this second case study is to design a synthetic

CPG that, for a given parameter setting, produces only one

stable motif, in order to ensure robustness for the generated

pattern.

Some synapses are fixed whereas others depend on the

bifurcation parameter α ∈ [0, 1], in order to make the CPG

able to switch between the desired gaits.

The complete CPG reference structure is shown in Fig.

11. Actually, the design strategy starts from a simpler block,

i.e., the HCO within the gray dashed box. With respect to

a standard HCO (containing only inhibitory synapses, light-

gray connections ending with filled circles), here we add

also excitatory synapses (ending with filled squares), whose

strengths gex
ij depend on α.

The second step in the design involves two HCOs (made up

of cells 1-2 and 3-4), that are connected through the vertical

gray inhibitory synapses.

Step 3 involves also the dark-gray inhibitory (or excitatory)

synapses, whose strengths gin
ij depend on α. Each step requires

some analysis (carried out with CEPAGE), which is described

in detail in the following.
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Fig. 12. Maximum convergence time of the phase difference ∆φ12 to the
equilibrium point in the HCO for gex
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= 0.
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Fig. 13. (Color online) Step 1: two-dimensional bifurcation diagram for the
excitatory synaptic efficacies of the HCO (gray dashed box in Fig. 11).

A. Step 1

First of all, we set the strength of the inhibitory synapses,

which will be taken as a reference for the whole design

process. Since the HCO has always a stable equilibrium point

for the phase difference, we can set the synaptic efficacy gin

(the same for both connections 1 → 2 and 2 → 1) according

to the desired convergence time scale. Figure 12 shows the

maximum convergence time of the phase difference ∆φ12

to the equilibrium point for gex
12 = gex

21 = 0. We choose

gin = 4 in order to have convergence times in the scale of

some normalized units of time.

Now, we have to set the strengths of the excitatory synapses.

To this end, we obtain a two-dimensional bifurcation diagram

showing the equilibrium phase difference ∆φ12 with respect

to gex
12 and gex

21 (see Fig. 13). White pixels mark the presence

of multiple stable equilibria. The white region is due to the

presence of a subcritical pitchfork bifurcation along the main

diagonal, which degenerates in a fold bifurcation outside the

diagonal (due to symmetry breaking).

Points W/T, TG, B in the figure mark the pairs chosen to

reproduce different gaits with the complete CPG, on the basis

of the corresponding left-right phase difference (see Table I):

walk and trot (W/T, anti-phase LR alternation), bound (B, in-

phase LR alternation), transverse gallop (TG, almost in-phase

LR alternation). Figure 14 shows the chosen functions gex
12 (α)

(black solid line) and gex
21 (α) (gray dashed line).

0 0.2 0.4 0.6 0.8 1
0

5

10

Fig. 14. Step 1: chosen PWL functions gex

12
(α) (black solid line) and gex

21
(α)

(gray dashed line).

g
0 1 2 3 4

"?14

0

0,5

1

Fig. 15. Step 2: asymptotic values of the phase difference ∆φ14 with respect
to g.

B. Step 2

The bottom HCO is identical to the top one, with gex
12 and

gex
21 set to point A, in order to have left-right alternation with

∆φ12 = 0.5. Here, we analyze the CPG behavior changes with

respect to the strength g of the 4 mid-gray inhibitory synapses

shown in Fig. 11.

The 1D bifurcation diagram in Fig. 15 shows the equilib-

rium value of the phase difference ∆φ14 with respect to g.

The bifurcation diagram contains three regions, whose edges

are marked by dashed vertical lines. In the left region there

is no phase locking (i.e., the CPG works out of an Arnold

tongue), due to the too low value of g. In the right region, the

g strength approaches gin = 4 and further stable equilibria

appear, thus producing undesired multi-stability.

Then we set g to a value within the central region. In order

to ensure structural stability, we choose g = 2.

C. Step 3

Now we want to set the strength gc of the two dark-gray

inhibitory synapses shown in Fig. 11 in order to generate all

the desired front-hind alternations, corresponding to different

rhythms.

To this end, Fig. 16 provides one-dimensional bifurcation

diagrams showing the stable equilibrium phase differences

∆φ12 and ∆φ14 with respect to gc, for the HCO configured

in the points W,T (black lines), TG (gray lines), B (light-gray

lines) in Fig. 13.

We want to ensure that gc is set to a value that (i) does

not alter the existing LR phase difference and (ii) provides the

desired FH phase difference. The upper bifurcation diagram in

Fig. 16 shows the actual stable equilibrium phase differences

∆φ12 versus gc (solid lines) and those set during step 1 (cross

markers). It is evident that for the parameter settings W,T and

TG the desired equilibrium value of ∆φ12 is kept for any

gc, whereas for the parameter setting B only gc values lower
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Fig. 16. Step 3: one-dimensional bifurcation diagram showing the stable
equilibria with respect to gc in the case of inhibitory synapses.
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Fig. 17. Step 3: one-dimensional bifurcation diagram showing the stable
equilibria with respect to gc in the case of excitatory synapses.

than about 0.2 allow keeping the desired equilibrium value of

∆φ12.

About condition (ii), from the lower bifurcation diagram

we deduce that for the parameter setting W,T (black line)

we can only have a delay between fore and hind limbs

(∆φ14 > 0.5) and acting on gc we can control this delay over

a reasonable interval (with ∆φ14 ranging from 0.5 to about

0.8). On the contrary, for the other two settings we can only

have an advance of the fore limb with respect to the hind limb

(∆φ14 < 0.5) and acting on gc we can control this delay over

a small interval (with ∆φ14 ranging from about 0.4 to 0.5).

If the nature of the synaptic connections is changed to

excitatory, we obtain the bifurcation diagrams shown in Fig.

17. A direct comparison of Figs. 16 and 17 makes it evident

that the two kinds of connections have a complementary effect.

This suggests that in the case W,T inhibitory connections can

be favorably used to obtain a prescribed delay between fore

and hind limbs, whereas excitatory connections are better to

obtain a prescribed advance. Similarly, in the cases TG and

B inhibitory (excitatory) connections can be used to obtain a

prescribed advance (delay).

Among the allowed gc values, we choose the one corre-

sponding to the equilibrium value of ∆φ14 closest to the

desired rhythm (see Table I), thus obtaining the functions

gin
13(α) = gin

24(α) (black solid curve) and gex
13 (α) = gex

24 (α)
(gray dashed curve) shown in Fig. 18.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Fig. 18. Step 3: chosen PWL functions gc(α) in the case of inhibitory (black
solid line) or excitatory (gray dashed line) synapses.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Fig. 19. (Color online) Step 3 (see text). Upper panel: 1D bifurcation
diagrams obtained by applying to the whole CPG the chosen functions of
α, providing the sequence of rhythms walk (region W), trot (T), transverse
gallop (TG), bound (B). Bottom panels: normalized membrane voltages Vi(t)
for the CPG cells in the four regions, ranging in the interval [−1, 1] over a
window of 50 units of time (color code as for the cells in Fig. 11).

D. Step 4

Figure 19 shows the stable equilibrium values of the phase

differences (upper panel) and the time evolution of the nor-

malized membrane voltages (lower panels) by changing α

to obtain the desired rhythms: walk (region W), trot (T),

transverse gallop (TG) and bound (B).

The width of the time axes in the lower panels is 50 units of

time (notice that the model used in this case study, described in

Appendix B, is normalized and uses dimensionless variables).

E. Asymmetric rhythms

If we want to add to the rhythm sequence also asymmetric

rhythms, the procedure described for step 3 in the case of

symmetric rhythms must change. In the complete CPG, cells

1 and 2 are initially assumed to be not connected, in order

to avoid LR synchronization, whereas cells 3 and 4 remain

connected through the synapses with PWL functions gex
34 (α) =

gex
12 (α) and gex

43 (α) = gex
21 (α) (see Fig. 14).

Now we obtain again a bifurcation diagram with respect to

gc (as in Figs. 17 and 18), to choose proper values of gc and

a proper PWL function gc(α).
Finally, we choose proper values of gex

12 and gex
21 (as in Fig.

13) and related PWL functions gex
12 (α) and gex

21 (α) (as in Fig.

14), by keeping unchanged gex
34 (α) and gex

43 (α).
Figure 20 shows the stable equilibrium values of the phase

differences (upper panel) and the time evolution of the neuron

voltages (lower panels) by changing α to obtain the desired
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Fig. 20. (Color online) Step 3 for asymmetric rhythms (see text). Upper
panel: 1D bifurcation diagrams obtained by applying to the whole CPG the
chosen functions of α, providing the sequence of rhythms walk (region W),
trot (T), transverse gallop (TG), rotary gallop (RG), bound (B). Bottom panels:
normalized membrane voltages Vi(t) for the CPG cells in the four regions,
ranging in the interval [−1, 1] over a window of 50 units of time (color code
as for the cells in Fig. 11).

rhythms: walk (region W), trot (T), transverse gallop (TG),

rotary gallop (RG), and bound (B).

We remark once more that in this case (contrary to the first

case study), we focused on the phase differences only, since

amplitudes, frequencies and duty cycles of the cell voltages

can be properly modulated only by using a more complete

CPG model. Inasmuch as this paper is focused on the design

method, the cell model was used as is and the method was

applied in order to make the CPG generate the correct phase

differences. This is the reason why in this case the voltages

Vi(t) differ in the phase only.

VI. CONCLUDING REMARKS

While papers devoted to the analysis of CPGs are quite

common in the scientific literature, there is a lack of papers

mainly focused on their design. This paper aimed to bridge this

gap, focusing on the case of locomotion control of quadrupeds.

The main features of the proposed design strategy can be

summarized as follows:

• parallel development of analysis and design, based on

multi-parameter bifurcation theory;

• combination of local analysis (and related design of some

local properties/parameters of the CPG) and global anal-

ysis, to ensure structural stability of the overall system;

• use of a bifurcation parameter modeling the brain-stem

drive coming from the supra-spinal networks to properly

govern gait transitions through the nonlinear functions

gex
ij (α).

The method has been applied to model with relatively

simple dynamical networks either a real structure (first case

study, reduced-complexity version of a bio-inspired CPG) or

just specific quadrupeds’ functionalities (second case study,

synthetic CPG), by resorting to the toolbox CEPAGE for

efficient numerical analysis. After proper robustness analysis

with respect to cell and synapse models and after properly

relating the parameter α to sensory inputs (in order to intro-

duce also an effective closed-loop control, besides the open-

loop control provided by the CPG), the obtained results can

find applications in the fields of bio-robotics [23], [24] and

rehabilitation [25], [26]. Moreover, we will have to introduce

a direct sensory feedback to properly adjust the gait in the

presence of mechanical perturbations, for instance, if one leg

cannot find a foothold [45], [46].

To conclude, we briefly address the physical implementation

problem related to applications. As pointed out in [12], a CPG-

based locomotion control is usually programmed in software

and running on hardware (microcontroller, DSP, FPGA or

dedicated hardware). Providing an overview on possible hard-

ware implementations, which (except purely digital solutions)

depend on the specific choice of cell and synapse models, is

out of the scope of this paper. About this issue, the reader

is kindly referred to surveys such as [12], [47] or to specific

studies related to the cited applications [48], [49].
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APPENDIX A

CASE STUDY 1

The model employed in the first case study is [28]

C
dVi

dt
= −INa − IL − I

(i)
D (α) + I(i)syn

τ
dh

dt
= h∞ − h

IL = gL · (Vi − EL)

INa = gNa ·m ·h · (Vi − ENa)

m =
(

1 + e
Vi−Vm

km

)

−1

h∞ =

(

1 + e
Vi−Vh

kh

)

−1

τ = τ0 +
τM − τ0

cosh( Vi−Vτ

kτ
)

I
(i)
D (α) = gD ·Di(α) · (Vi − Eex)

(5)

where C = 10pF, gL = 4.5nS, EL = −62.5mV, gNa = 4.5nS,

ENa = 50mV, Vm = −40mV, km = −6mV, Vh = −45mV,

kh = 4mV, τ0 = 80ms, τM = 160ms, Vτ = −35mV, kτ =
15mV and gD = 10nS, D5 = D6 = D7 = D8 = 0.1, D1 =
D2 = 0.1α + 0.0023 and D3 = D4 = 0.104α + 0.0010

The synapses parameters are ν = 0.3mV −1, θ = −30mV ,

Eex = −10mV and Ein = −75mV , whereas the constant

synaptic strengths are listed in Tab. II.

The synaptic strengths of the excitatory synapses depend on
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TABLE II
SYNAPSES EFFICACIES OF THE 8-CELL CPG.

Connections value [nS]

gin

15
, gin

26
, gin

37
, gin

48
0.228

gin

51
, gin

62
, gin

73
, gin

84
2.853

gin

16
, gin

25
, gin

83
, gin

74
0.0221

gin

12
, gin

21
0.298

gin

34
, gin

43
0.448

gin

41
, gin

32
0.1272

gin

41
, gin

32
0.0545

α as follows:

gex
12 (α) = gex

21 (α) = 115.98α10
− 231.71α9 + 25.54α8

+329.37α7
− 407.13α6 + 235.88α5

− 76.053α4

+13.751α3
− 1.1155α2 + 0.11545α + 0.16808

gex
34 (α) = gex

43 (α) = 3058.8α10
− 13011α9 + 23662α8

−23916α7 + 14651α6
− 5568.3α5 + 1292α4

−172.9α3 + 12.005α2
− 0.25126α + 0.1689

(6)

APPENDIX B

CASE STUDY 2

The model used in the second case study is [21]

dVi

dt
= Vi − V 3

i − xi + I + βI(i)syn (7)

dxi

dt
= ǫ

(

1

1 − e−10Vi
− xi

)

where I = 0.5, β = 10−3 and ǫ = 0.3.
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