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Design Principles for Central Pattern Generators
With Preset Rhythms

Matteo Lodi , Andrey L. Shilnikov, and Marco Storace , Senior Member, IEEE

Abstract— This article is concerned with the design of syn-
thetic central pattern generators (CPGs). Biological CPGs are
neural circuits that determine a variety of rhythmic activities,
including locomotion, in animals. A synthetic CPG is a network
of dynamical elements (here called cells) properly coupled by
various synapses to emulate rhythms produced by a biological
CPG. We focus on CPGs for locomotion of quadrupeds and
present our design approach, based on the principles of nonlinear
dynamics, bifurcation theory, and parameter optimization. This
approach lets us design the synthetic CPG with a set of desired
rhythms and switch between them as the parameter representing
the control actions from the brain is varied. The developed four-
cell CPG can produce four distinct gaits: walk, trot, gallop, and
bound, similar to the mouse locomotion. The robustness and
adaptability of the network design principles are verified using
different cell and synapse models.

Index Terms— Bifurcation analysis, central pattern generators,
neuronal models, parameter optimization.

I. INTRODUCTION

CENTRAL pattern generators (CPGs) for locomotion are
[small] neural networks able to produce rhythmic outputs

even in the absence of sensory feedback or higher motor
planning centers inputs [1]–[4]. CPGs are studied at the
crossroad between many diverse disciplines including biology,
neuroscience, robotics, nonlinear dynamics, biomechanics,
to name a few. Each discipline deals with this common topic
using different tools and by pursuing different goals: knowing
their physiological structure, understanding their functional
roles, reproducing their functional mechanisms in developed
mathematical models, or exploiting them in robotics or neuro-
prosthetics applications. Biological CPGs of most vertebrates
are composed of a large number of coupled neurons, which
can be subdivided into smaller clusters or cohorts that behave
coherently. Therefore, the orchestrated activity of each cluster
can be modeled as if it was produced by a single neuron.
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Such a cluster is termed in many ways: a neural population,
a unit, a building block, or a cell—the term that we adopt in
this article. The cells are connected by synapses to create the
CPG.

In this article, we focus on models of CPGs that deter-
mine and control the locomotion of quadrupeds. In particular,
we discuss a set of operating principles that are employed
in our design of synthetic CPGs to reproduce a number of
prescribed gaits specific for the mouse locomotion. Our goal
is to derive design rules for the multi-functional CPGs that can
produce distinct mouse gaits and smooth transitions between
them, depending on some drive or bifurcation parameter. Such
a parameter can represent a control action from the brain
or, more precisely, the brainstem control throughout neurons
acting as key intermediaries between higher motor planning
centers and CPGs [11]–[13]. Our approach to model motor
CPGs is based on the theory of dynamical systems [5], [6],
which is well suited for understanding a multiplicity of nonlin-
ear recurrent oscillations, their stability conditions, and bifur-
cations that can occur in such small rhythm-generating neural
networks [7]–[10]. Previously, we proposed the computational
toolkit CEPAGE [15] to analyze dynamics and bifurcations in
simple CPGs emulating quadruped (mouse) locomotion as the
control parameter is varied [14], [16]. Here, we present an
advanced four-cell CPG model that more phenomenologically
fits biological CPGs governing quadruped locomotion, being
able to generate four different gaits: walk, trot, gallop, and
bound. We also discuss minimal operating principles as well
as generic properties, the adopted models of cells and synapses
should meet to ensure the robustness and structural stability
of the desired CPG functions.

In summary, in this article we: 1) point out the qualitative
properties that the cell and synapse models must be endowed
with to meet the design goals; 2) define a sequence of steps
to design a reduced multifunctional CPG model producing
several rhythms and switch between them smoothly with
variations of the control parameter; and 3) demonstrate that
our design approach is quite robust with respect to the choice
of synapse and cell models.

The rest of this article is organized as follows. Section II
introduces the main features of the developed CPG. Section III
presents in detail the proposed know how to design a synthetic
CPG with preset rhythms. In Section IV, we verify the
robustness of the proposed design with respect to changes
in its components (models). Finally, Section V draws some
conclusions.
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II. BASIC ELEMENTS

In this section, we summarize the pivotal elements of the
proposed CPG design approach.

A. Cell

Our primary goal is better understanding the functional
mechanisms underlying rhythmogenesis in biological CPGs.
Therefore, our description of any cell in this article is not
meant to provide a 1:1 correspondence to a synchronous group
of neurons, but rather a macromodel for several groups of
interneurons functioning together, like half-center oscillators,
for example. In other words, our CPG models have a level of
abstraction higher than usual. In this perspective, the hierar-
chical structures often adopted to represent CPGs [17] or the
functional subnetwork approach proposed in [18] can be
hardly compared to our neural circuits as the CPGs designed
according to the former approaches have a finer granularity,
i.e., they contain a larger number of cells than our reduced
models. The activity of the generic i th cell is revealed through
a variable representing its membrane voltage Vi (t).

B. Phenomenological Design Outline

Rhythmic movements in animals result from the interplay
between the sensory system (sensor), the musculoskeletal
system (actuator), and the neural system (control). The neural
system, in particular, performs three main control actions [3].
The first, open-loop control action is provided at the level
of the spinal cord by the CPG generating the given pace;
these neural networks include half-center oscillators—a pair of
neural populations reciprocally coupled by inhibitory synapses
that autonomously oscillate in alternation [19], [20]. The sec-
ond, closed-loop control actionis provided by a sensory-driven
feedback, which provides information about the mechanical
interaction of the animal body with the environment and
secures adaptation to unexpected obstacles and uncertainties
during ambulatory excursions. The third, also called closed-
loop control action is ensured by supra-spinal networks, which,
based on sensory information (usually, mainly visual and
tactile), timely inform the CPG about the rhythm (and corre-
sponding gait) to be imposed, thus changing muscle activity.
Here, we consider only the first and part of the third control
actions.

The reciprocal interactions of these basic mechanisms
concur to the interlimb coordination and produce flexible
and efficient locomotion. The detailed biophysical mecha-
nisms underlying locomotion are yet to be fully understood.
Therefore, the current research focusing on the phenom-
enologically reduced CPG design (oriented toward robotic
applications) pursues several development lines based on
decentralized control [21], bottom-up approach with the use
of functional blocks [18], nonlinear dynamics, and bifurcation
theory [16], [22].

C. Effective Variables and Parameters

The existence and stability of rhythmic patterns gener-
ated by CPGs are analyzed using the so-called phase lags

TABLE I

GAITS CHARACTERISTICS: FREQUENCY ( f ), DC, PHASE-LAGS BETWEEN
LEGS AND CORRESPONDING α-VALUES

introduced for oscillatory or bursting cells [7], [24], [25].
All isolated/coupled cells are assumed to have and maintain
relatively close temporal characteristics. In the dynamical
systems terminology, this means that each i th cell resides on
a structurally stable periodic orbit of period Ti in the state
space of the corresponding model. Its current position on the
periodic orbit can be determined using a new phase variable
φi (t) ∈ [0, 1), defined modulo 1, such that φi is reset to 0
when the voltage Vi increases above some synaptic threshold
Vth at times t(k)

i . The phase-lag representation of an N-cell
network employs N − 1 state variables describing the phase
lags �1i(t) = φi (t)−φ1(t) between the spike/burst initiations
in the reference cell 1 and the other ones coupled within the
network. The time evolutions of these state variables, being
quite complex due to nonlinear interactions, can be determined
through numerical simulations. For that purpose, we compute
the phase lags between coupled cells in a discrete set of time
instants as

�
(k)
1i =

t(k)
i − t(k)

1

t(k)
1 − t(k−1)

1

, mod 1. (1)

As time progresses, the phase lags �
(k)
1i can converge to a

single or several steady or phase-locked states. The presence
of multistability can be evidenced by integrating the system
of equations governing the network densely sweeping initial
conditions for phases.

The locomotion in quadrupeds is produced by the coordina-
tion of limbs movements with specific speed (frequency) and
ratio between the stance and swing phase [duty cycle (DC)]
and with the given phases in the repetitive patterns that
drive the limbs. The coordination, i.e., the specific phase lags
between the limbs, determines the animal gait, which usually
changes with the speed. This modeling paper is focused on
the locomotion of mice, which can exhibit four different gaits:
walk (W), trot (T), gallop (G), and bound (B), with frequency
f and DC ranging in the intervals [2, 12] Hz and [0.25, 0.6],
respectively [27], [28]. Table I summarizes the characteristics
of mouse gaits, extracted from [27] and [28]. Assuming that
the CPG contains one cell per leg with L = left, R = right, F =
fore, and H = hind, we take as reference leg LF and compute
the phase lags LF-RF (�12), LF-LH (�14), and LF-RH (�13).

At low speed ( f < 4 Hz), mice walk: in this gait, the swing
phase is shorter than the stance phase and the limbs swing one
at a time. Trot occurs at medium speed (4 < f < 9 Hz):
in this gait, the stance and swing phases have the same
duration, left–right, and fore–hind limbs move in alternation.
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Fig. 1. Postinhibitory rebound mechanism in B-model with the parameters
listed in Appendix A, except gD = 0. Top: postinhibitory trajectory (black
line) in the phase space superimposed with the fast V - and slow x-nullclines
(orange and blue, respectively) crossing at the equilibrium state (green dot).
Application of negative pulse (middle) causes first hyperpolarization followed
by the postinhibitory rebound in the cell voltage (bottom).

Gallop is exhibited at medium–high speeds (9 < f < 10 Hz):
in this gait, the swing phase is slightly longer than the stance
phase, left and right limbs move almost together, whereas fore
and hind limbs move in alternation. At high speed ( f > 10 Hz)
mice bound: in this gait, the swing phase is again slightly
longer than the stance phase, fore and hind limbs move in
alternation, whereas left and right limbs move together.

Sequential switching from one gait to another is controlled
by the bifurcation parameter α ∈ [0, 1], which represents the
control action provided by supra-spinal networks: the mouse
speed increases with increasing α values. The transitions
between these gaits occur sequentially as the parameter is
increased/descreased; we chose to assign one-quarter of the
parameter range to each gait.

III. PROPOSED METHOD

In this section, we propose a sequence of operating princi-
ples and steps to design a reduced CPG circuit producing a
desired set of gaits.

A. Choice of the Cell Model: The PIR Mechanism

In the design of a synthetic CPG, a proper understanding
of its biological functions helps one to optimize the tradeoff
between the unavoidable complexity of biological phenom-
ena and the necessary simplicity of mathematical modeling.
Therefore, the models employed in this article have to pos-
sess the mechanism reproducing the so-called postinhibitory
rebound (PIR) of the cell membrane voltage, which occurs
as soon as the postsynaptic quiescent cell is abruptly released
from hyperpolarizing inhibition (e.g., due to an external cur-
rent pulse) or from another presynaptic cell of the network.
The PIR mechanism allows two reciprocally inhibiting cells
to generate self-sustained oscillations [19], [29]. In particular,
in a half-center oscillator made of two cells coupled recip-
rocally with fast inhibitory synapses, this mechanism lets the
half-center oscillator generate self-sustained spiking/bursting
in alternation. This effect is qualitatively illustrated in Fig. 1
for an isolated cell described by model B in Appendix A. The
model has two dynamic variables, V and x , representing the
fast voltage and slow gating variables, respectively. The top of

Fig. 1 shows the (x, V )-phase portrait with the fast Z -shaped
nullcline (orange line) on which V̇ = 0 and the slow nullcline
(blue line) on which ẋ = 0. Their only intersection point to
the right of the knee on the low branch of the V -nullcline
is a stable equilibrium state (marked as the green dot) of the
model, corresponding to the quiescent hyperpolarizing state
of the cell. Due to the slow–fast nature of the model, its
solutions converge to this state following the shape of the
fast nullcline. The negative pulse of external current Isyn,
leaving the x-nullcline intact, makes the V -nullcline shift to
the left so that the stable equilibrium state of the unperturbed
system (marked by the purple dot in the top-central panel)
moves below and to the left (green dot) in the V -nullcline
of the perturbed system. Correspondingly, V (t) drops down
(bottom). We note that the PIR-mechanism requires three
necessary conditions be met: the hyperpolarizing perturbation,
due to either an external pulse or the inhibitory current, must
be: 1) strong; 2) long enough; and 3) must have a rapid
termination phase. This means that the ascending front of the
pulse must be nearly vertical as one shown in the middle in
Fig. 1, and the synapse must be fast, not slow. After Isyn is
abruptly turned off, the state (x, V ) starts from the position of
the disappeared equilibrium point (purple dot in the top right),
follows the upper and lower branches of the V -nullcline and
converges back to the original equilibrium point (green dot),
and tracing down a transient excursion (black thick trajectory
in the top right) corresponding to the outburst in the voltage
trace (bottom).

In our CPG model, a cell is described by the following state
equation:

żi =
[

V̇i

ẋi

]
=

[
fi
(
z, I (i)

syn(α), gD Di (α)(Vi − E)
)

pi (zi )

]
(2)

where Vi is treated as the membrane potential of the i th cell,
while xi represents its gating variables and I (i)

syn is its incoming
synaptic current. The term gD Di (α)(Vi − Eex) describes an
overall influence (modulated through the α-parameter) of the
supraspinal networks on the given postsynaptic cell.

To examine and tune up the CPG outcomes, in this article,
we adopt three models of its cells that all exhibit the PIR.
These are the conductance-based model used in [30] (code-
named model A), a generalized FitzHugh–Nagumo model [8]
(model B), and the adaptive exponential integrate-and-fire
model [31] (model C) that can also generate bursting activity.
They are described in Appendix A.

B. Choice of the Synapse Model

The synapses in our CPG models are required to demon-
strate a rapid time course [20]. Here, we consider three models
of such fast synapses: the first two ones are represented by the
fast threshold modulation (FTM) synapses [32], with different
activation functions, namely, given by the sigmoidal (model β)
and stepwise (model γ ) functions; the third model is the
dynamical α-synapse (model δ) [19], [33], which, in general,
is not necessarily fast.

In a CPG composed of N cells, we introduce the action
of inhibitory, excitatory, and delayed inhibitory chemical
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synapses on the i th cell as follows:

I (i)
syn(α) =

N∑
j=1

{
gin

i j A(Vj (t), sin(t))(Ein − Vi (t))

+ gdi
i j A(Vj (t − τ ), sdi(t))(Ein − Vi (t))

+ gex
i j (α)A(Vj (t), sex(t))(Eex − Vi (t))

}
(3)

where I (i)
syn is the current injected into the i th cell, Vi and

Vj are the membrane potentials in the post and presynaptic
cells, respectively, sxx is the synapse state (only for dynamical
synapses), gxx

i j is the maximal synapse strength, A(Vj , sxx) is
the synapse activation function (A depends on the state only
for dynamical synapses), Exx is the synapse reverse potential,
and τ is the synapse delay; here, in, di , and ex stand for
inhibitory, delayed inhibitory, and excitatory, respectively.

We note that, as described in Section III-C, the weights
of the excitatory synapses vary with changes in α values
to reproduce the effect of the brainstem on the excitatory
interneuron populations in a real CPG.

C. Network Assembly Line: Operating Principles

Our network governing the mice locomotion results from
a reduction of the 40-cell CPG proposed in [30] to regulate
both speed and gaits of the mouse. The 40-cell CPG is made
of four blocks of rhythm-generators (RGs), each driving a
limb, that are all cross-linked through inhibitory and excitatory
interneuron populations. Each RG contains two populations,
flexor and extensor, which inhibit each other and control the
swing and stance phases of the limbs. In particular, when the
flexor (extensor) population is active, the corresponding limb
is in the swing (stance) phase. The gait generated by the CPG
can be controlled through variations of α.

To simplify the 40-cell CPG, we employ the strategies
proposed in [14] and [16], which can be summarized in
three steps: 1) substitute the interneuron populations with fast
chemical synapses, inhibitory or excitatory, depending on the
nature of the replaced population; 2) remove the extensor
populations; swing phase is still regulated by the flexor units,
whereas the stance phase is activated when the flexor units are
silent; and 3) add inhibitory delayed synapses between left and
right cells to reproduce the action of extensor populations.

We remark that step A can be achieved using several
inhibitory pathways, as shown in Fig. 2. In particular, the sim-
plified two-cell circuit shown in Fig. 2(c) can model both
the inhibitory pathways shown in Fig. 2(a) and (b), which
are commonly found in biological neural circuits [34], [35].
The resulting simplified CPG circuit is shown in Fig. 3(a).
It contains four numbered cells only, each one driving a par-
ticular limb, labeled as follows: L = left, R = right, H = hind,
and F = fore. They are cross connected with fast inhibitory
(gray), excitatory (black), and delayed inhibitory (orange)
synapses. An equivalent yet compact notation for the circuit
is presented in Fig. 3(b). The circuit in Fig. 3 has a general
structure that might represent not only a simplified biologically
inspired CPG but also some generic synthetic CPG (with
only homolateral and commissural connections) with four

Fig. 2. Reduced circuit (a) representing two typical inhibitory 3-cell pathways
where either cell 1 first excites the middle cell 2 that next inhibits cell 3
(b), or excitatory cell 1 facilitates the inhibition projected from cell 2 onto
the postsynaptic cell 3 (c). Inhibitory and excitatory synapses are marked by
circle •- and triangle �-shaped terminals, respectively.

Fig. 3. Proposed 4-cell CPG to govern the mouse locomotion, with (a)
complete and (b) compact circuitry. The four numbered cells are cross-
connected with synapses: fast inhibitory [marked by gray/black dots • in (a)
and (b)], delayed inhibitoty [orange dots in (a) and marked with D i (b)], and
excitatory (black triangles �).

cells to regulate limb flexors in quadrupeds. Similar spatio-
symmetric circuits have been identified in various biological
CPGs, including swim CPGs in the mollusks Melibe leonina
and Dendronotus iris [36]–[38]. In other words, the CPG
topology can be either bioinspired or assigned/decided by the
designer.

D. Parameter Selection Strategy

We describe our parameter selection strategy by employing
the same cell and synapse models as in [14]. This allows us
to both illustrate our design method and validate the obtained
results by comparison with this benchmark.

Once the CPG topology is defined (either by simplifying a
bioinspired model or by making direct reference to a structure
relying on symmetry properties), we first have to choose
which CPG parts depend on the α parameter. In the case
of bioinspired architectures, this information can be simply
inferred from the original CPG. For synthetic CPGs, we can
follow two guidelines: 1) all cells have to depend on α,
in order to make frequency and DC α-dependent and 2) about
synapses, we assume as α-dependent those that allow us to
break symmetries, thus enabling gait transitions. Of course,
more refined strategies could be used: for instance, one can
decide that a priori all synapses depend on α and then check
a posteriori which connections show an effective dependence
on the brainstem control. The price to be paid would be
an increase in the computational costs. This is an open
problem, and the solution proposed here is a tradeoff between
computational complexity in the design phase and the accuracy
of the obtained model.
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Fig. 4. Frequency f (top) and DC (middle) plotted against the driving
function D1(α) of the control parameter α (bottom). Dotted lines: boundaries
for each gait (see Table I). Crosses: landmarks used to define the function
D1(α). White regions: coexisting stable gaits.

Summing up, in our case-study, we assume that all cells
[through the function Di (α)] and all excitatory synapses
[through the strengths gex

i j (α)] depend on α, as pointed out in
(2) and (3), whereas we fix the inhibitory synapses strengths
gin

i j and gdi
i j to the values listed in Appendix B.

For the sake of simplicity, we assume that the functions
Di (α) and gex

i j (α) are piecewise linear (PWL). We calibrate
these functions in order to make our CPG able to produce
all gaits listed in Table I. To this end, we make the following
steps, with the aid of the computational toolbox CEPAGE [15].

Step 1 [Clock Tuning (Acting on the Fore Cells)]: Let us
focus on reference cell 1 isolated from the rest of the CPG.
We first assess frequency f and DC of the state variable V1(t)
for a range of D1-values. For instance, the bifurcation diagram
shown in Fig. 4 is built on a 1-D 100-long array of equidistant
D1-values. We remark that D1 influences the behavior of
cell 1, according to (2) and (4). The D1 range is chosen
so that the cell is not quiescent. The figure illustrates how
the frequency f (top) and the DC (middle) of the generated
membrane voltage V1(t) vary as D1 is increased. These plots
(numerically obtained using the CEPAGE package) are used to
identify the D1 ranges corresponding to different gaits accord-
ing to Table I. For instance, the green region corresponds to
walk, as in the D1 range [0, 0.017], the frequency range is
[2, 4] Hz and DC remains below 0.4. The same holds for the
other colored regions.

Next, we choose the monotonically increasing PWL func-
tion D1(α) passing through a set of selected landmarks. The
PWL function D1(α) is chosen so that, while α increases from
0 to 1, both f and DC increase monotonically between their
minimum and maximum values given in Table I: f ranges
between 2 and 12 Hz, whereas DC varies between 0.25 and
0.65. To this end, we set some landmarks on the plane (D1, α)
(bottom): we chose to set them at the transitions between
the gaits, imposing that these transitions happen at the values
α = 0.25, 0.5, 0.75, according to Table I. The PWL function
α(D1) (black thick curve) is a mere linear interpolation of
these landmarks and its inverse is the desired function D1(α).
Finally, we set D2(α) = D1(α), as cell 2 (when isolated) is
identical to cell 1. Through this step, we exploit brute-force

Fig. 5. Bifurcation diagram in the (α,�D)-parameter plane. It is color-
mapped according to the values of the phase-locked lag �14 (vertical bar
on the right). The CPG is silent in the white regions and generates rhythmic
outcomes in the color regions. Red crosses: landmarks used to define the
function �D(α) (PWL black line).

bifurcation analysis to establish a direct dependence of f and
DC for the fore cells on α, by properly defining the PWL
function D1(α), which influences the cell dynamics, according
to (2).

Step 2 [Fore–Hind Coordination (Acting on the Hind
Cells)]: Now, we consider the neural circuit within the dashed
red rectangle in Fig. 3 and set D4(α) = D1(α)+�D(α). Next,
we perform the bifurcation analysis to find the PWL function
�D(α), which ensures the desired synchronization between
cells 1 and 4, i.e., between the hind and fore limbs. To this end,
we obtain a brute-force 2-D bifurcation diagram by plotting the
asymptotic phase-lag �14 for a grid of values of �D and α.
For instance, the bifurcation diagram in Fig. 5 corresponds to
a 2-D (α, �D)-parameter sweep on a uniform 200× 200-grid
of the parameter values. In the white regions, the CPG does not
oscillate, as cells 1 and/or 4 remain inactive. In the colored
region, �14 varies in the range [0.25, 0.7]. This means that
the left-hand side half-center oscillator made of cells 1 and
4 (which is in charge of the front-hind synchronization) can
exhibit a great capacity of asymptotic phase-locked states,
which, in turn, ensures a large variability in the gaits. Next,
we define the function �D(α) so that it passes through a
set of selected points, on the (α, �D)-sweep diagram. To
select the landmarks (indicated by red crosses in Fig. 5),
we focus again on the transitions between different gaits.
For instance, the walk gait corresponds to �14 = 0.25
(see Table I). Therefore, we place two landmarks with α
coordinates 0 and 0.25 (bounds of the walk gait, see Table I)
and �D coordinates corresponding to dark blue pixels, i.e., to
the phase-locked lag LF-LH �14 = 0.25. Moreover, in order to
ensure that the gait is maintained within the whole α-interval,
we choose the two landmarks such that the connecting segment
lies over dark blue pixels. By following the same line of
reasoning for all gaits, we define �D(α) as the PWL function
connecting the landmarks, as shown (black line) in Fig. 5: the
PWL curve stays within the color regions in the parameter
space and each segment of �D(α) corresponds to a specific
gait (corresponding to a color) occurring within the given
α-window. Finally, we set D3(α) = D4(α) in virtue of the
network symmetry.

Step 3 [Left–Right Coordination (Acting on the Synapses)]:
In this step, we tune up the neural circuit singled out within
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Fig. 6. Bifurcation diagram in the (α, gex)-parameter plane, color-mapped
according to the values of the phase-locked lag �12 (vertical bar on the right).
Landmarks (red crosses) are used to define the PWL function gex(α) (green
curve).

the dashed gray rectangle in Fig. 3 and set gex
21(α) =

gex
12(α) = gex(α) (strength of the black synapses), as there

is experimental evidence [3] that the brainstem control acts
in the same way on the synapses connecting cells 1–2 and
3–4. As for the previous steps, the PWL function gex(α) is
defined by exploiting bifurcation analysis, in order to ensure
the desired synchronization between left and right cells. First,
we find the phase-locked lag �12 for an array of values of
gex and α to get another brute-force 2-D bifurcation diagram.
Fig. 6 shows the results of a 2-D (α, gex)-parameter sweep
on a uniform 200 × 200-grid for our case study. In the top
part of the bifurcation diagram (dark blue region), the cells
synchronize in-phase (�12 = 0), whereas in the bottom part
(yellow region), they synchronize in antiphase (�12 = 0.5),
according to the color-bar for the phase-lag �12 on the right-
hand side. In the central region, marked with two red curves,
the network becomes bistable and can generate two distinct
rhythmic patterns. This bistability is due to two pitchfork
bifurcations, forward and backward, occurring at the parameter
values marked by the red lines, found with a brute-force
numerical analysis through CEPAGE. In this bistability region,
there are two stable equilibrium states: one associated with the
phase-coordinate 0 ≤ �12 ≤ 0.5, and its mirror-image with
phase (1−�12).

Finally, we define the function gex(α) so that it passes
through a set of landmarks in the found bifurcation diagram.
Just to set the ideas (the gait order is unessential, in this step),
we start calibrating the CPG circuit so that it can produce
the bound gait, with the desired phase-locked lags LF-RF (see
Table I). This gait requires �12 = 0, and therefore, the range
of the driving function gex(α) must lie within the dark blue
region in Fig. 6. For simplicity, we pick gex(α) � 0.6 for
0.8 ≤ α ≤ 1. Next, we select gex(α) = 0, for 0 ≤ α ≤
0.5, corresponding to the walk and trot gaits, characterized
by �12 = 0.5. Finally, for the gallop at the mid speed,
we select a set of landmarks (red crosses) yielding �12 �
0.1 in the central region of the bifurcation diagram. On the
whole, the function gex(α) is the PWL green curve shown
in Fig. 6.

Using the same strategy, we can independently cali-
brate the subnetwork controlling the phase lag LH-RH �34
by selecting the corresponding PWL functions gex

34(α) =
gex

43(α). The results are completely similar [even if not equal,

Fig. 7. Top: desired (dashed lines) and simulated (solid lines) phase-locked
lags �1i , with i = 2 (blue lines), i = 3 (red lines) and i = 4 (green lines),
plotted versus α. The colors evidence the existence windows corresponding
to the four gaits: walk, trot, gallop and bound. Bottom: enlargement with
α ∈ [0.475, 0.775] demonstrating bistability for the gallop gait due to the
forward and backward pitchfork bifurcations that give rise to two possible
asymptotic phase-lag �1i (shown as dashed and solid lines), for i = 2 (blue)
and i = 4 (red). For i = 3 (green) there is only one steady-state phase-lag.

as D1(α) �= D3(α)] to those found in Fig. 6 and, hence, are
not discussed here for the sake of conciseness.

Step 4 [Complete CPG (a posteriori Validation)]: Since the
previous steps, acting locally, do not fully guarantee that the
complete CPG dynamics is as desired, in the last step we need
to verify the overall CPG behavior. To do that, we simulate the
CPG performance by employing the PWL function selected
in the previous steps for a grid of values of α and we
compare the obtained asymptotic phase lags with the values
in Table I.

Fig. 7 (top) shows the desired (dashed lines) phase-locked
lags �1i from Table I plotted against the control parameter
α for our case study: �12 (blue lines), �13 (red lines), and
�14 (green lines), between the cells of the CPG. They overlap
almost everywhere with the simulated ones (solid lines) for all
four gaits: walk, trot, gallop, and bound. One can easily verify
that the phase lags meet the requirements (legs’ movements)
described in Section II-C: for instance, in the walk gait,
the four cells activate sequentially in the order 1–4–2–3,
as shown in the top of Fig. 8.

As we pointed out above, at the transitions from trot to
gallop and from gallop to trot, two pitchfork bifurcations
occur. This causes the effect of bistability in the gallop region,
as magnified in the bottom of Fig. 7. Both stable equilibrium
states in the 3-D (�12,�13,�14)-phase space of the network
system correspond to the same gallop gait, though with reverse
order of moving limbs.

To check that the CPG switches smoothly between gaits,
Fig. 8 shows the time evolution of the membrane voltages Vi

and of the phase-lags �1i of the network when α is increased
smoothly across the edge between: walk and trot (top), trot
and gallop (middle), and gallop and bound (bottom) regions.
It is apparent (from both the time and phase-lag plots) that all
gait transitions are smooth.

In summary, the original CPG circuit can be effectively
reduced at the cost of a reasonable complication of the synap-
tic connectivity. The desired gaits are achieved by affecting
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Fig. 8. Time-plots of the “membrane potentials” Vi , and phase-lags �i ,
at gait transitions: from walk to trot (top), from trot to gallop (middle), and
from gallop to bound (bottom). The colors of the Vi (t) curves are matched
with those of the corresponding cells in Fig. 3.

the reference cell and its synaptic connections with other
cells of the network. The synaptic strengths and each cell
model depend on the single control parameter α. The spe-
cific profiles of these dependencies are chosen through a
design strategy based on the methods of nonlinear dynamics
and bifurcation analysis. The network symmetry allows us
to use many simplifications to calibrate the CPG step-by-
step, first at the cellular and further at the network level.
We set the reference cell (here 1) to define the depen-
dence of the frequency f and DC on the single control
parameter α. Then, we find the conditions to maintain the
proper phase-locked lags among all four cells for the given
gait.

We remark that this design strategy cannot ensure a priori
to obtain all the desired gaits, as pointed out in Section IV;
therefore, the behavior of the resulting CPG must be always
checked a posteriori (step 4). Moreover, many parts of the
method can be changed, as there exist multiple ways to realize
this process. For instance, the choice of the interpolation
strategy or of the reference cell.

Finally, we remark that this strategy is suitable for networks
with a limited number of cells. By construction, the principal
limitation of our method is that we have to verify that the CPG
under design keeps the features learned during the previous
steps. For CPGs with large cell numbers, it would become
increasingly difficult to obtain through our local strategy func-
tions of α that well capture the behavior of the network. On the
other hand, the prime focus of our approach is designing
simple CPGs with the basic functional mechanisms underlying
locomotion. Therefore, from this standpoint, the fact that our

method works well for simple CPGs is hardly a limitation but
a gain.

IV. ROBUSTNESS OF THE DESIGN STRATEGY

This section is a showcase of the results obtained for four
further CPGs, with the same wiring diagram in Fig. 3, that are
made of different cell and synapse models, see Appendices A
and B. Although preserving the network topology, we test
different synapse and cell models to verify the robustness of
the proposed design strategy.

Each CPG is symbolically labeled as [x/y] with the
employed cell/synapse models (see Appendices A and B).
In the first two CPGs with the tandems: [B/β] and [C/β],
we consider two alternative cell models, whereas in the other
two CPGs, namely, [A/γ ] and [A/δ], we examine how two
alternative synaptic models can alter the network dynamics.
We remark that the parameters of the dynamical synapse
model δ are chosen in order to ensure fast dynamics, according
to Section III-B. To build these CPGs, we follow the checklist
described in Section III-D.

As pointed out in Section III-D, our method to set the land-
marks and obtain the required PWL functions does not need
a high resolution of the bifurcation diagram. It is sufficient
to get a rough idea of the color regions. This is, of course,
an advantage, from a computational standpoint, and for this
reason, the bifurcation diagrams in this section are quite
rough.

Step 1: The starting point is the calibration of the cell model.
Fig. 9 shows a 1-D bifurcation sweep (on an array of 100
uniformly spaced D1 samples) of the frequency f and DC that
are plotted against D1 in models B and C. As far as model C
is concerned [Fig. 9(b)], variations of D1 properly influence
both the frequency (top) and the DC (middle) of every cell of
the network. However, in model B [Fig. 9(a)], the ranges of the
frequency and DC do not cover all the values necessary for the
CPG-network to produce all four gaits (see Table I). Therefore,
[B/β]-CPG can only produce walk (left light green region)
and trot [central light-blue region in Fig. 9(a)]. For this reason,
we select the PWL function D1(α) only for α ∈ [0, 0.5].
On the contrary, model C can well generate all the required f
and DC values when we choose the PWL function D1(α) as
described in Section III-D. The obtained results are coherent
with the model complexity and biological plausibility levels.
We remark that the parameters of model C are set in order
to have bursting activity, instead of spiking as in the other
cases.

Step 2: Bifurcation diagram in Fig. 10 is the (α,�D)-
parameter sweep of �14 on a grid of 100 × 100 parameter
values. The white spaces correspond to the regions where
cells 1 and/or 3 become quiescent. Therefore, we focus on
the colored regions. All the proposed CPGs are able to
generate for each value of α an asymptotic phase lag �14
in the range [0.25, 0.65], so cells 1 and 4 can regulate
front and hind limbs to move with a plethora of phase
lags, thus producing different gaits. To select the landmarks
and the PWL functions in Fig. 10, we employ the strategy
described in Section III-D. We remark once more that for
CPG[B/β] [see Fig. 10(a)], we compute the diagram only for
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Fig. 9. Step 1. Frequency f (top), DC (middle) plotted against D1 for cell
models (a) B and(b) C. Dotted lines: boundaries for each gait (see Table I).
Crosses: landmarks to define and calibrate the functions D1(α), whose inverse
functions α(D1) are shown in the bottom. Gray regions do not correspond
to any mouse gait, while white regions of f and DC correspond to multiple
stable gaits.

Fig. 10. Step 2. Bifurcation diagrams in the (α,�D)-parameter plane for
cell-synapse models. (a) [B/β], (b) [C/β], (c) [A/γ ], and (d) [A/δ]. White
spaces are composed of parameter pairs corresponding to quiescent cells. Red
crosses: landmarks to define and calibrate the function �D(α) (PWL black
graph). Gray region in (a) denotes a not feasible interval of α-values.

α ∈ [0, 0.5] because this CPG can only produce walk and trot
gaits.

Step 3: The bifurcation diagram depicted in Fig. 11 is
the biparametric sweep on a grid of 50 × 50 (α, gex) pairs.

Fig. 11. Step 3. Bifurcation diagrams in the (α, gex)-parameter plane for
cell-synapse CPG tandems: (a) [B/β], (b) [C/β], (c) [A/γ ], and (d) [A/δ]
(d). Red crosses: landmarks to define the function gex(α) (PWL green graph).
Red lines: pitchfork bifurcations bounding the bistability regions.

One can observe a similarity in all panels, particularly in
the upper part (dark blue region) where the cells synchronize
in phase with �12 = 0, whereas in the lower part (yellow
region), they synchronize in antiphase with �12 = 0.5.
The red lines mark pitchfork bifurcations bounding bistability
regions in the diagram. Overall, we can obtain any phase lag,
�12 ranging from 0 to 1. All CPG circuits, except for the
[A/γ ] tandem, can generate the necessary phase-lags �12.
Specifically, the [A/γ ]-CPG does not yield �12 = 0.5 (as a
unique solution) when α ∈ [0.3, 0.4], and therefore, it does
not produce the trot gait. This limitation is due to the synapse
γ -model, which is not continuous. On the contrary, the more
realistic δ-model provides the results shown in Fig. 11(d), that
are coherent with those shown in Fig. 6. We reiterate that the
methodology to define the PWL functions gex(α) (green lines
in Fig. 11) is the same as in Section III-D.

Step 4: The four panels in Fig. 12 show the desired (dashed
lines) phase-locked lags �1i overlaid with the simulated ones
(solid lines) for the four CPG models. The [C/β]- and
[A/δ]-CPGs can generate all four gaits within the whole range
of α values. As expected, [B/β]-CPG generates only walk
and trot gaits because, as described in Step 1, it is out of
reach of the frequency and the DC associated with gallop and
bound. [A/γ ]-CPG, as described in Step 3, does not generate
trot as a unique gait within α ∈ [0.3, 0.4] [gray region on
the left in Fig. 12(a)]. Moreover, this CPG cannot generate
gallop, probably due to the excessive roughness of the synapse
model.

All CPGs switch smoothly between gaits. In particular, for
[C/β]-CPG, which is the only one containing bursting cells,
Fig. 13 shows the time evolution of the membrane voltages
Vi and of the phase-lags �1i when α is increased smoothly
across the edge between: walk and trot (top), trot and gallop
(middle), and gallop and bound (bottom) regions.

The results obtained on the complete CPGs are indicative
that their dynamics are not strongly dependent on the synapse
or/and cell models employed, provided that they are not too
oversimplified.
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Fig. 12. Step 4. The desired (dashed lines) and simulated (solid lines) phase-locked lags �1i , i = 2 (blue), i = 3 (red) and i = 4 (green) for cell-synapse
model tandems. (a) [B/β], (b) [C/β], (c) [A/γ ], and (d) [A/δ]. The bifurcation diagram is subdivided into four regions corresponding to the desired gaits:
walk, trot, gallop and bound. Gray regions are α-intervals without stable gaits.

Fig. 13. Time-plots of the “membrane potentials” Vi , and phase-lags �i ,
at gait transitions for [C/β]-CPG: from walk to trot (top), from trot to gallop
(middle), and from gallop to bound (bottom). The colors of the Vi (t) curves
are matched with those of the corresponding cells in Fig. 3.

V. CONCLUSION

We proposed a four-step method for the design of synthetic
CPGs able to produce a prescribed set of gaits. Our strategy
requires that both cells and synapses meet some generic
assumptions: each cell has to possess the PIR mechanism and
each synapse must be fast, even if it is delayed. In the absence
of the PIR mechanism, �14 would span smaller ranges, thus
making the dynamics of the CPG less controllable. In turn,
this makes it more difficult to stably realize all the prescribed

gaits. Moreover, obtaining the small phase lags needed to pro-
duce some gaits is more problematic with slow synapses [20].
The “richness” of the cell models plays another key role:
more accurate and adequate models allow one to accomplish
the design priorities more easily. For instance, with model B
(simpler than model A), the occurrence of two out of the four
prescribed gaits happened to be unmanageable.

Our method can be applied either to reduce a biological
CPG or to an assigned CPG topology. Generally, with our
method, one can reduce any biological CPG to its syn-
thetic surrogate with similar rhythm generation. Alternative
reduction strategies can be further developed by resorting
to cluster synchronization methods [39], for instance, pro-
vided that they are applicable for heterogeneous networks.
Other methods, particularly, those based on the mathematical
theory of groupoids, aim to find the minimum-size network
architecture producing formal phase-locking patterns [40],
regardless of stability and particularities of cell and synapse
models. For instance, the minimum-size CPG model for
quadrupeds requires eight cells and overall six underlying
assumptions [41]. Note that gait transitions, often depend-
ing on the specifics of cell and synapse types, are typi-
cally ignored or neglected a priori by these methods. Other
approaches for managing gait transitions are discussed in [42].

The principal limitation of our method is that it relies
on the local properties of the CPG at each step. Although
this deterministic approach works well for simple CPGs,
it may become less manageable for larger networks that
are expected to produce more complex multiphase dynamics.
On the other hand, one of the main aims of our approach is
the development of the design principles for simple CPGs,
with the focus on the basic functional mechanisms underlying
locomotion.

The main applications of our reduced models (in addition
to their contribution to understanding the basic mechanisms
producing locomotion in living beings) are in the field of
robotics [42], [43] and rehabilitation [44], [45].
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APPENDIX A
CELL MODELS

A. A-Model

This model, used in [30], is described by the following
equations:

C
dVi

dt
= 7− INa − IL − gD Di (α)(Vi − Eex)+ I (i)

syn

τ
dhi

dt
= h∞ − hi , IL = gL(Vi − EL)

INa = gNamhi (Vi − ENa), m =
(

1+ e
Vi−Vm

km

)−1

h∞ =
(

1+ e
Vi−Vh

kh

)−1
, τ = τ0 + τM − τ0

cosh
(

Vi−Vτ
kτ

)
(4)

where C = 10 pF, gL = 4.5 nS, EL = −62.5 mV, gNa =
4.5 nS, ENa = 50 mV, Vm = −40 mV, km = −6 mV,
Vh = −45 mV, kh = 4 mV, τ0 = 80 ms, τM = 160 ms,
Vτ = −35 mV, kτ = 15 mV, and gD = 10 nS.

B. B-Model

This generalized FitzHugh–Nagumo model proposed in [8]
is described by the following equations:⎧⎨
⎩

τ V̇i = Vi − V 3
i − xi + I − gD Di (α)(Vi − Eex)+ I (i)

syn

ẋi = ε(X∞ − Xi ), X∞ = 1

1+ e−4Vi

(5)

where τ = 6.75 ms, I = 0, gD = 10, Eex = 1.15, and
ε = 0.15 ms −1.

C. C-Model

This adaptive exponential integrate-&-fire model [31] is
described by the following equations:

C
dVi

dt
= −gL(Vi − EL)+ gee

Vi−VT
�T +

−gD Di (α)(Vi − Eex)− ui + I + I (i)
syn

τw
dui

dt
= a(Vi − EL)− ui (6)

subject to the reset rule

if Vi > 20, then

{
Vi ← Vr

ui ← ui + b
(7)

where C = 501.8 pF, gL = 30 nS, EL = −70.6 mV, VT =
−50.4 mV, �T = 2 mV, Eex = 20 mV, τw = 71.4 ms, a =
4 nS, b = 100 pA, Vr = −45 mV, I = 800 pA, ge = 25 pA,
and gD = 10 nS.

APPENDIX B
SYNAPSE MODELS

A. β-Model

Model β follows the FTM paradigm [32]: A(V ) =
(1/(1+ e−νβ(V−θβ ))).

TABLE II

SYNAPSES STRENGTH

TABLE III

SYNAPSES PARAMETERS FOR ALL THE EMPLOYED CELL MODELS

B. γ -Model

In this model, the activation (nonstate-dependent) is
A(V ) = H (V − θγ ), where H (·) is the Heaviside function.

C. δ-Model

This dynamical so-called α-synapse model [33], [46] has a
state equation given by

ṡ = a(1− s)
1

1+ e−νδ(V−θδ)
− b s (8)

with the activation function given by A(V , s) = (a + b/a)s.

D. Synapse Parameters

The synapse strengths are listed in Table II, whereas the
values of the other parameters are listed in Table III.
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