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Chaotic dynamics in neural systems

Krishna Pusuluri, Huiwen Ju and Andrey Shilnikov

Abstract Several basic mechanisms of chaotic dynamics in phenomenological and
biologically plausible models of individual neurons are discussed. We show that
chaos occurs at the transition boundaries between generic activity types in neurons
such as tonic spiking, bursting and quiescence, where the system can also become
bi-stable. The bifurcations underlying these transitions give rise to period-doubling
cascades, various homoclinic and saddle phenomena, torus-breakdown, and chaotic
mixed mode oscillations in such neuronal systems.

1 Introduction

Neurons exhibit various activity regimes and state transitions that reflect their intrin-
sic ionic channel behaviors and modulatory states. The fundamental types of neu-
ronal activity can be broadly defined as quiescence, subthreshold and tonic spiking
oscillations, as well as bursting composed of alternating periods of spiking activity
and quiescence. A single neuron can endogenously demonstrate various bursting
patterns, varying in response to the external influence of synapses, or to the intrinsic
factors such as channel noise. The co-existence of bursting and tonic spiking, as well
as several different bursting modes have been observed in modeling [1, 2, 3, 4, 5]
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and experimental [6, 7, 8] studies. This complexity enhances the flexibility of the
nervous and locomotive systems [9].

The functional role of chaotic behaviors, and the dynamical and bifurcational
mechanisms underlying their onset at transitions between neural activity types like
spiking, bursting and quiescence, have been the focus of various theoretical and
experimental studies. Bursting is a manifestation of multiple time scale dynam-
ics, composed of repetitive fast tonic spiking and a slow quiescent phase. It has
been observed in various fields of science as diverse as food chain ecosystems [10],
nonlinear optics [12], medical studies of the human immune system [11], and neu-
roscience [13]. Various bursting patterns, whether regular or chaotic, endogenous
or as emergent network phenomena, are the natural rhythms generated by central
pattern generators (CPG) [14, 15, 16, 17, 18]. CPGs are neural networks made up
of a small number of constituent neurons that often control various vital repetitive
locomotive functions [16] such as walking and respiration of humans, or the swim-
ming and crawling of leeches [19, 20, 21, 22]. Polyrhythmic bursting dynamics have
also been observed in multifunctional CPG circuits that produce several coexisting
stable oscillatory patterns or bursting rhythms, each of which is associated with a
particular type of locomotor activity of the animal [23, 24, 25]. Bursting has also
been frequently observed in pathological brain states [26, 27], in particular, during
epileptic seizures [28, 29]. Neurons in bursting modes differ in their ability to trans-
mit information and respond to stimulation from those in tonic spiking mode and
therefore play an important role in information transfer and processing in normal
states of the nervous system.

Understanding and modeling the generic mechanisms regulating the neuronal
connectivity and the transitions between different patterns of neural activity, includ-
ing global bifurcations occurring in neuron models and networks, pose fundamental
challenges for mathematical neuroscience, with a number of open problems [30].
The range of bifurcation and dynamical phenomena underlying bursting transcends
the existing state of the theory [31, 32, 33, 34, 35, 36, 37, 39, 38, 40, 41]: this in-
cludes the blue sky catastrophe [42, 43], torus-canard formation and breakdown,
and homoclinic inclination/orbit-flip bifurcations, all of which can occur on the
transition route to bursting in most square-wave and elliptic bursters. Studies of
bursting require nonlocal homoclinic bifurcation analysis, which is often based on
the Poincaré return mappings [44]. Return mappings have been employed for com-
putational neuroscience in [45, 46, 47, 48]. A drawback of mappings constructed
from time series is sparseness, as they reflect only the dominating attractors of a
system. In some cases, feasible reductions to one or two dimensional mappings can
be achieved through slow–fast scale decomposition of the phase variables for the
system [51]. A new, computer assisted method for constructing a complete fam-
ily of onto mappings for membrane potentials, for a better understanding of sim-
ple and complex dynamics in neuronal models, both phenomenological and of the
Hodgkin–Huxley type [52], was proposed in [53]. With this approach one can study,
for example, the spike-adding transitions in the leech heart interneuron model, and
how chaotic dynamics in between is associated with homoclinic tangle bifurcations
of some threshold saddle periodic orbits [54]. Qualitative changes in a system’s ac-



Chaotic dynamics in neural systems 3

tivity at transitions often reveal the quantitative information about changes of certain
biophysical characteristics associated with the transition. This approach has proven
to be exemplary in neuroscience for understanding the transitions between silence
and tonic-spiking activities [55]. Moreover, knowledge about the bifurcation (transi-
tion) predicts cooperative behavior of interconnected neurons of the identified types
[56].

In this Chapter, we discuss nonlocal bifurcations in generic, representative mod-
els of neurodynamics, described by high order differential equations derived through
the Hodgkin-Huxley formalism. We consider a number of neuroscience-related ap-
plications to reveal a multiplicity of causes and their bifurcation mechanisms leading
to the onset of complex dynamics and chaos in these models.

2 Neuronal activities and transition mechanisms

This Chapter deals with neuronal models, both biologically plausible and phe-
nomenological, that can produce complex and distinct dynamics such as tonic spik-
ing, bursting, quiescence, chaos, and mixed-mode oscillations (MMOs) represent-
ing fast spike trains alternating with subthreshold oscillations. MMOs are typical
for many excitable systems describing various (electro)chemical reactions, includ-
ing the famous Belousov-Zhabotinky reaction, and models of elliptic bursters [57].
Geometrical configurations of slow-fast neuron models for bursting were pioneered
in [49, 50, 55] and further developed in [58, 59, 60]. Dynamics of such singularly
perturbed systems are determined by and centered around the attracting pieces of
the slow motion manifolds. These are composed of equilibria and limit cycles of the
fast subsystem [61, 62, 63, 64, 65, 66, 67, 68], that in turn constitute the backbones
of bursting patterns in a neuronal model. Using the geometric methods based on the
slow-fast dissection, where the slowest variable becomes a control parameter, one
can detect and follow the branches of equilibria and limit cycles in the fast sub-
system. The slow-fast decomposition allows for drastic simplification, letting one
clearly describe the dynamics of a singularly perturbed system. A typical Hodgkin-
Huxley model possesses a pair of such manifolds [50, 67]: quiescent and tonic spik-
ing, respectively. The slow-fast dissection has been proven effective in low-order
mathematical models of bursting neurons far from the bifurcation points. However,
this approach does not account for the reciprocal, often complex interactions be-
tween the slow and fast dynamics, leading to the emergence of novel dynamical
phenomena and bifurcations that can only occur in the whole system. Near such ac-
tivity transitions, the bursting behavior becomes drastically complex and can exhibit
deterministic chaos [32, 37, 39, 71, 72, 73, 74, 75, 76].

Slow-fast decomposition

Many Hodgkin-Huxley type models can be treated as a generic slow-fast system
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x′ = F(x, z) z′ = µG(x, z , α), (1)

where 0 < µ � 1, x ∈ Rn , n ≥ 2, and z is a scalar, or can be a vector in R2 (as in the
extended Plant model with two slow variables below); α is a control parameter shift-
ing the slow nullcline, given by G(x, α) = 0, in the phase space. In the singular limit
µ = 0, the z-variable becomes a parameter of the fast subsystem to detect and con-
tinue the equilibrium state (ES), given by F(x, z) = 0, and the limit cycles (LC) of
the fast subsystem. As long as they (ES/LC) remain exponentially stable, by varying
z one can trace down the smooth invariant manifolds in the phase space of (1) such
as Meq with the distinct Z-shape typical for many Hodgkin-Huxley type models (see
Fig. 1), while the limit cycles form a cylinder-shaped surface Mlc. Locally, either is
a center manifold for (1) persisting in a closed system, in virtue of [61, 62, 63]. The
stable upper and lower branches of Meq correspond to the de- and hyperpolarized
steady states of the neuron, respectively. Folds on Meq correspond to the saddle-
node equilibrium states of the fast subsystem. The unstable de-polarized branch of
Meq can be enclosed by the tonic-spiking manifold Mlc typically emerging through
an Andronov-Hopf bifurcation and terminating through a homoclinic bifurcation,
which are the key features of the fast-subsystem of the square-wave bursters [77],
like the Hindmarsh-Rose model [78] and the Chay model [47] (discussed below).

Poincaré mappings

To elaborate on the nature of complex oscillations like bursting and their evolutions,
one needs to examine nonlocal bifurcations that often require the use of Poincaré
return maps [45, 46, 47, 72, 79, 80, 81, 82, 83]. An obvious drawback of maps con-
structed from voltage time series is in their sparseness, as they can typically reveal
some point-wise attractors of the system that trajectories fast converge to, unless
there is a noise or small perturbations are added to get a more complete picture of
the underlying structure. In some cases, a feasible reduction to low-dimensional
mapping can be achieved through slow–fast scale decomposition of slow phase
variables [42, 44, 51]. We proposed and developed a new computer assisted algo-
rithm for constructing a dense family of onto mappings for membrane potentials in
a Hodgkin–Huxley type neuronal model [38]. Such maps let us find and examine
both the stable and unstable solutions in detail; moreover, unstable points are of-
ten the primary organizing centers globally governing the dynamics of the model
in question. The construction of such a map begins with the localization of the
tonic spiking manifold Mlc in the model, using the parameter continuation tech-
nique or the slow-fast dissection, see Fig. 1. Then, a curve on Mlc is defined, which
corresponds to minimal (maximal) voltage values, denoted, say, by V0. By con-
struction, the 1D map M takes all V0 (outgoing solutions integrated numerically)
on this curve back onto itself, after a single turn around Mlc, i.e., M : V0 → V1
for a selected value of the parameter. Two such maps are depicted in Figs. 1 and
2. One can see that these are non-invertible [84, 85], unimodal maps with a single
critical point [86, 87], which happens to be a universal feature of many other square-
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wave bursters in neuroscience applications. With such maps, one can fully study the
attractors, the repellers and their bifurcations, including saddle-nodes, homoclinic
orbits, spike-adding, and period-doubling. We note that detection of homoclinics of
a saddle periodic orbit in the phase space of a model is in general state-of-the art
and the Poincaré map technique allows us to locate them with ease.

Classifications of bursting

The existing classifications [49, 50, 55, 58, 59, 60] of bursting are based on the
bifurcation mechanisms of dynamical systems in a plane, which initiate or terminate
fast trajectory transitions between the slow motion manifolds in the phase space of
the slow-fast neuronal model. These classifications allow us to single out the classes
of bursting by subdividing mathematical and realistic models into the following
subclasses: elliptic or Hopf-fold subclass (FitzHugh-Rinzel [57] and Morris-Lecar
models), square-wave bursters or fold-homoclinic subclass (Hindmarsh-Rose model
[40, 88], models of pancreatic β-cells, cells in the pre-Botzinger complex, as well as
intrinsically bursting and chattering neurons in neocortex); parabolic or circle-circle
subclass (model of R15 cells in the abdominal ganglion of the mollusk Aplysia [4,
24], the reduced leech interneuron model at certain parameter values); and fold-fold
subclass, or top hat models [69], including the reduced heart interneuron model (3)
discussed below.

Transition routes

The current description of the transition routes between tonic spiking and bursting
activities is incomplete and remains a fundamental problem for both neuroscience
and the theory of dynamical systems. The first theoretical mechanism revealed in
[71], explained chaos in the so-called square wave bursters [50] emerging between
tonic-spiking and bursting. Later, two global bifurcations that occur at the loss of
stability of a tonic spiking periodic orbit through quite novel homoclinic saddle-
node bifurcations, were discovered and explained. The first transition, reversible and
continuous, found in the reduced model of the leech heart interneuron [32, 36] and
in a modified Hindmarsh-Rose model of a square-wave burster [40, 44], is based
on the blue sky catastrophe [44, 89, 90, 91, 92]. This was proven in [42] to be a
typical bifurcation for slow-fast systems. This striking term [93], the blue sky catas-
trophe, stands for a novel bifurcation of a saddle-node periodic orbit with a 2D
unstable manifold returning to the orbit making infinitely many revolutions. After
the bifurcation, this homoclinic connection transforms into a long bursting periodic
orbit with infinitely many spikes. The burst duration of the orbit near the transition
is evaluated by 1/

√
α, where 0 < α � 1 is a bifurcation parameter. The second

transition mechanism is due to a saddle-node periodic orbit with non-central homo-
clinics [94]. An important feature of this transition is the bi-stability of co-existing
tonic spiking and bursting activities in the neuron model, see Fig. 1. In this case, the
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burst duration towards the transition increases as fast as | ln(α)|. Another feature of
this bifurcation is the transient chaos where the neuron generates an unpredictable
number of burst trains before it starts spiking tonically. This phenomenon is a direct
consequence of the Smale horseshoe finite shift dynamics in the system [95], which
is a rather atypical phenomenon for such slow-fast systems.

Fig. 1 (A1) Bistability of the coexisting tonic-spiking and bursting in the 3D phase space of the
leech heart interneuron model (3). Inset A2 depicts the shape of the corresponding 1D Poincaré
map with stable fixed point corresponding to the tonic spiking periodic orbit (purple) with a single
voltage minima, and period-7 bursting orbit, and 2 unstable fixed points (red): the right one sepa-
rates attraction basins of tonic-spiking (A4) and bursting A3) activities, whereas the left one causes
chaotic dynamics at spike adding transitions, see Fig. 2.

3 Chaos in neuron models

In this section, we present the basic mechanisms and routes to chaos in a variety of
biophysically realistic neuronal models exhibiting rich and complex dynamics in-
cluding tonic spiking, bursting and quiescence. A bifurcation describing a transition
between neuronal activities typically occurs near saddle (unstable) orbits and re-
sults from reciprocal interactions involving the slow and fast dynamics of the model.
Such interactions lead to the emergence of new dynamical phenomena and bifurca-
tions that can occur only in the full model, but not in either of the slow or the fast
subsystem. Chaotic dynamics can be characterized by unpredictable variations in
the number of spikes during the active phases of bursting and/or the subthreshold
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oscillations. This phenomenon of chaotic dynamics is generally atypical in slow-
fast systems as it occurs within narrow parameter windows only near the transition
boundaries. Indeed, robust and regular dynamics of slow–fast neuron models con-
trast those of real bursting neurons exhibiting a phenomenal time dependent vari-
ability of oscillatory patterns.

Fig. 2 (A) Chaotic bursting in the phase space of the leech heart interneuron model (3) and the cor-
responding map (B) at a transition between two and three spikes per burst in the voltage trace (C)
due to proximity of the primary homoclinic orbit of the repelling fixed point (red) corresponding
to a single minimum of the saddle periodic orbit (red) in (A).

Leech heart interneuron model: period doubling cascades and the blue sky
catastrophe

We first illustrate and discuss the onset of chaotic dynamics in the reduced (3D)
model of the leech heart interneuron (see equations (3) of Appendix). This is a typi-
cal slow-fast Hodgkin-Huxley type (HH) model describing the dynamical interplay
of a single slow variable – persistent potassium current, IK2, and two fast variable
– the sodium current, INa and the membrane voltage V that can be recast in this
generic form [36, 37, 77, 96]:

CV ′i = −
∑
j

I j −
∑
i

I
syn
i
, τh h

′ = f∞(V ) − h, (2)

where C is a membrane capacitance, V is a transmembrane voltage, I j stands for
various in/outward currents including synaptic ones, 0 ≤ h ≤ 1 stands for a gating
(probability) variable, f∞ is a sigmoidal function, and τh is a time scale, fast or slow,
specific for specific currents.
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Fig. 3 Bi-parametric sweep of the leech heart interneuron model (3) using the symbolic toolkit
Deterministic Chaos Prospector [97, 98, 99] to process wave-form traces and to reveal regions of
quiescent behavior, tonic spiking, as well as bursting activity with spike adding cascades: from
2 spikes (orange zone) to 3 spikes (yellowish zone), next to 4 spikes (light green zone) and so
forth. The noisy regions near the boundaries of spike addition reveal the occurrence of chaos,
while the noisy boundary between tonic spiking and bursting portrays the blue sky catastrophe
[32] corresponding to infinitely long bursting.

This model shows a rich set of dynamics and can produce various types of com-
plex chaotic and bistable behaviors, including the period-doubling cascade en a
route from tonic spiking through bursting [32, 39], as well as various types of ho-
moclinic chaos. Following the period-doubling cascade, the model demonstrates
a terminal phase of chaotic tonic spiking that coexists alongside another periodic
tonic spiking activity. For a different set of parameter values compared to the period
doubling cascade, the model can also exhibit the blue sky catastrophe as a continu-
ous and reversible mechanism of the transition between bursting and tonic spiking.
Fig. 1 explains the nature of bi-stability in this model as it exhibits the co-existing
tonic-spiking and bursting oscillations corresponding to the stable fixed point (FP)
(purple) and the period-7 orbit in the 1D map, whose basins are separated by an
unstable FP representing a saddle periodic orbit (red) on the 2D manifold Mlc in
the 3D phase space. The role of the other unstable (red) FP is revealed by Fig. 2. It
is shown that the spike-adding in bursting is accompanied with an onset of chaotic
dynamics orchestrated by the homoclinic orbits and bifurcations involving the other
saddle orbit, see more details in [43, 54, 57, 77, 78, 88, 96]. Fig. 3 shows the bifurca-
tion diagram of the system constructed as a parametric sweep using our previously
developed symbolic toolkit called the Deterministic Chaos Prospector [97, 98, 99]
to process symbolic sequences extracted from wave-form traces and analyze activity
types and underlying bifurcations. This bifurcation diagram identifies the regions of
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quiescence, tonic spiking, as well as bursting with spike adding cascades. The noisy
regions near the boundaries of spike addition reveal the occurrence of chaos. In ad-
dition, the blue sky catastrophe takes place at the noisy region near the boundary
between bursting and tonic spiking.

Period-doubling in the Chay model

Fig. 4 A The (V,Ca) phase space projection overlaying a period-4 orbit (green, gK,C = 11.12)
and a chaotic bursting trajectory (grey, gK,C = 11.5) generated by the Chay model. Here Vmin –
minimal values, labeled with green and black dots in he voltage traces (C), are used to generate 1D
Poincaré return maps: V (n)

min → V
(n+1)
min in Inset B.

The Chay model is a simple, realistic biophysical model for excitable cells, pro-
ducing endogenous chaotic behavior (see its Eqs. (5) of Appendix). The model
transitions from tonic spiking to bursting via period-doubling bifurcations, whereby
chaotic dynamics can also arise. Fig. 4 shows the 2D (V ,Ca)-phase space projection
of the Chay model with a period-4 orbit and a chaotic bursting orbit, along with the
corresponding Poincaré return map. The model goes through a period-doubling cas-
cade and then immediate chaotic bursting, before regular bursting as the bifurcation
parameter gK,C increases.
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Torus breakdown in the bull frog hair cell model

Fig. 5 Poincaré return map,V (n)
min → V

(n+1)
min , for the consecutiveVmin-values in voltage traces gen-

erated by the hair cell model. A Evolution of stable invariant circles (IC) from ergodic to resonant
with further non-smooth torus breakdown as the gK1 parameter is increased from 29.185 through
29.2073 nS. B Chaotic bursting after the torus breakdown at gK1 = 29.213 nS. The flat, stabilizing
section of the map corresponds to hyperpolarized quiescence, while multiple sharp folds reveal
a ghost of the non-smooth IC in the depolarized range. C En route from tonic spiking to regular
bursting, the voltage trace undergoes quasi-periodicity and chaotic bursting. This figure is adapted
from [129].

Next, we consider the hair cell model based on experimental studies of basolat-
eral ionic currents in saccular hair cells in bullfrog [130, 131, 132, 133]. This is
a further extension of the model of the Hodgkin-Huxley type developed in [132]
that includes 12 coupled nonlinear ordinary differential equations, see [96] for its
detailed description. In this model, the transition from bursting to tonic spiking is
due to a torus bifurcation (TB) that leads to onset of quasi-periodic dynamics [129].
Closer to this bifurcation the torus breaks down causing the onset of chaotic bursting
in the system. In case of a supercritical TB, through which a stable torus emerges
at the fold of the tonic spiking manifold MLC (like one in Fig. 1), its development –
growth and breakdown can be well studied using the Poincaré return maps. For ex-
ample, Fig. 5A depicts that, right after the supercritical TB in the hair cell model, a
stable torus (invariant circle) emerges from a stable tonic-spiking periodic orbit and
grows from smooth and ergodic to non-smooth to resonant as the bifurcation param-
eter gK1 increases. Later, when the torus breaks down (starting at gK1 = 29.213 nS),
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bursting becomes chaotic as shown in the Poincaré map (Fig. 5B). Fig. 5C illus-
trates the route from tonic spiking to bursting with chaotic dynamics at the torus
breakdown.

Chaotic mixed-mode oscillations in the extended Plant model

Fig. 6 The extended Plant model can exhibit chaotic bursting near the boundaries of tonic spik-
ing and bursting with spike-adding (A) as well as bistability with chaotic mixed mode oscil-
lations (green) and hyperpolarized quiescence (red) near the transitions between bursting with
spike-adding and hyperpolarized quiescence (B). The corresponding phase space projection of the
bistable states of (B) are shown in (C). Following a subcritical Andronov-Hopf bifurcation, a saddle
periodic orbit (not seen) separates the chaotic mixed mode bursts (green) from the hyperpolarized
quiescent state with spiral convergence (red).

The conductance-based Plant model of endogenous parabolic bursters was orig-
inally developed to model the R15 neuron in the abdominal ganglion of the slug
Aplysia Californica [4]. This was later extended and adapted to model the swim
CPG of the sea slug Melibe Leonina, see [24] for details of the model and the equa-
tions. This model can produce chaotic bursting activity, as shown in Fig. 6A near
the boundary between tonic spiking and bursting activity. In addition, the model ex-
hibits complex chaotic mixed mode oscillations (MMOs) near the transition between
bursting and the co-existing hyper-polarized quiescence state. Fig. 6B illustrates the
model generating spike-varying bursts and small amplitude sub-threshold oscilla-
tions. Such chaotic MMOs coexist with a hyperpolarized quiescent state resulting in
bistability due to a subcritical Andronov-Hopf bifurcation that gives rise to a saddle
periodic orbit whose stable manifold separates the chaotic bursting activity (green)
from the stable (spiraling) hyperpolarized quiescent state (red) as shown in Fig. 6C.
As the parameters are varied gradually the system transitions from this bistable state
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to the monostable hyperpolarized quiescence, or vice verse to a dominant bursting
activity.
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Appendix

Leech heart interneuron model

The reduced leech heart model is derived using the Hodgkin-Huxley formalism:

CV ′ = −INa − IK2 − Ileak + Iapp ,
τNah

′
Na = h∞Na(V ) − h,

τK2m
′
K2 = m∞K2(V ) − mK2 ,

(3)

with

Ileak = 8(V+0.046), IK2 = 30m2
K2(V+0.07), INa = 200[m∞Na(V )]3 hNa (V−0.045),

and where V is the membrane potential, C = 0.5; hNa is a fast (τNa = 0.0405 sec)
activation of INa , and mK2; IL describes the slow (τK2 = 0.25 sec) activation of IK2,
Iapp is an applied current. The steady states h∞Na(V ), m∞Na(V ), m∞K2(V ), of the of the
gating variables are given by the Boltzmann equations given by

h∞Na(V ) = [1 + exp(500(0.0333 +V ))]−1 ,
m∞Na(V ) = [1 + exp(−150(0.0305 +V ))]−1 ,
m∞K2(V ) = [1 + exp (−83(0.018 + Vshift

K2 +V ))]−1.
(4)

The bifurcation parameter Vshift
K2 of the model is a deviation from the experimentally

determined voltage V1/2 = 0.018V corresponding to the half-activated potassium
channel, i.e. to m∞K2(0.018) = 1/2. In its range Vshift

K2 is [−0.025; 0.0018]V the upper
boundary corresponds to the hyperpolarized quiescent state of the neuron, whereas
the model produces spiking oscillations at the lower end Vshift

K2 values and bursts in
between.

Chay model

The 3D Hodgkin-Huxley type Chay model reads as follows:
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V ′ = −gIm
3
∞h∞ (V − VI ) − gK,V n

4
∞ (V − VK ) − gK,C

C
1+C

(V − VK ) − gL (V − VL) ,
n′ = (n∞ [V ] − n) /τn [V ] ,
C′ = ρ

{
m3
∞h∞ (VC − V ) − kCC

}
,

(5)
where n represents the gating variable of the voltage-sensitive K+ channel and C
represents the intracellular free calcium concentration. See [47] for the detailed de-
scription.
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