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Abstract

Small rhythmic circuits, such as those found in invertebrates,
have provided fundamental insights into how circuit dynamics
depend on individual neuronal and synaptic properties.
Degenerate circuits are those with different network parame-
ters and similar behavior. New work on degenerate circuits and
their modulation illustrates some of the rules that help maintain
stable and robust circuit function despite environmental per-
turbations. Advances in neuropeptide isolation and identifica-
tion provide enhanced understanding of the neuromodulation
of circuits for behavior. The advent of molecular studies of
mRNA expression provides new insight into animal-to-animal
variability and the homeostatic regulation of excitability in
neurons and networks.
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Introduction
Many early researchers who wished to understand how
circuit dynamics arise from the properties of neurons and
their synaptic connections turned to small rhythmic cir-
cuits found in invertebrates [1], and this continues today
[2**]. While these circuits were initially called ‘simple’ it
became apparent that despite having small numbers of
neurons, nothing about them was simple. Indeed, many
fundamental principles, now clearly relevant to larger
circuits, came first from small, invertebrate circuits. The

explosion of new technologies tantalizes us with the hope
that the secrets of how larger brain circuits work will
reveal themselves. We highlight new insights that are still
www.sciencedirect.com
coming from small circuits of well-identified neurons.
Today, as in the past, it is the ability to unambiguously
identify neurons, and then establish their connectivity,
that is crucial for understanding how a circuit works. A
recognizable and well-defined output pattern can be key
for interpreting the results of circuit perturbation, so
much of what we discuss comes from rhythmically active
central pattern generating circuits, with their easily
measurable functional outputs.

Space limitations force us to make difficult choices
about papers and topics. Notably, we have not treated

the large topics of developmental reconfigurations [3*],
the use of small circuits in the design of robotic con-
trollers, or much valuable work from Drosophila [4**],
C. elegans and other preparations.
Reciprocal inhibition and half-center
oscillators
Reciprocal inhibition was one of the earliest circuit el-
ements recognized, both for its role in contrast
enhancement in the Limulus retina [5] and for control-
ling alternating patterns of activity in movement [6].
Here, we focus on work on reciprocal inhibition in
rhythmically active invertebrate circuits (Figure 1)
although there is an important literature in the spinal
cord of developing and adult vertebrates [7,8].

Reciprocal inhibition is at the core of left-right alter-
nation in many motor systems such as Clione [9],
Dendronotus, and Tritonia [10e12] swim circuits and the
leech heartbeat system [13e19]. In some systems, the
two neurons that participate are copies of the same
neuron and can be loosely thought of as ‘identical’
although no two biological neurons are ever truly
identical (Figure 1a). In other instances, more complex
circuits have embedded motifs of reciprocal inhibition

between neurons of different cell types, and these
neurons may make and receive different sets of syn-
aptic inputs (Figure 1b).

Early theoretical work [20] defined two distinct
mechanisms that can account for the activity transi-
tions between the two reciprocally inhibitory neurons
in a half-center oscillator. In the escape mode the off-
on transition depends on the inhibited cell depolariz-
ing past its synaptic threshold (Figure 1c). In the

‘release’ mode the on/off transition depends on the
active neuron falling below its synaptic threshold
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Figure 1

Network based reciprocal inhibition. a) Schematic of a half-center network consisting of two neurons connected by reciprocally inhibitory synapses.
Traces in blue and green demonstrate the alternating bursting pattern of activity generated by such networks. b) Half-center oscillators are the building
blocks of many CPGs. Top: a simplified circuit diagram of the gastric circuit of Cancer borealis with a half-center oscillator between LG and Int1 neurons
forming its core. Intracellular recordings from LG and Int1 showing an alternating bursting pattern of activity. Figure is modified from [106]. Bottom: a circuit
diagram of the Tritonia swim CPG, consisting of three types of interneurons: cerebral cell (C2), dorsal swim interneuron (DSI) and ventral swim inter-
neuron (VSI) connected with reciprocal inhibitory and excitatory connections. To the right of the diagram are the intracellular recordings from DSI and VSI
showing an alternating bursting pattern of activity. Figure modified from [12]. c) Example traces from half-center oscillators built with dynamic-clamp
operating with either escape (top) or release (bottom) mechanism based on differences in the synaptic threshold (Vth) Figure modified from [23*].
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(Figure 1c). While these two modes can be rigorously
distinguished in theoretical work, often transitions
show mixed modes of activity [21].

A recent theoretical study is among the first to address
the dynamics that can occur in half-center oscillators
composed of neurons with different intrinsic properties
[22**]. In this study the authors generated a series of

model networks with a variety of conductances, char-
acterized their stability, and attempted to find corre-
lation motifs associated with that stability. For example,
altering IA and ICas in opposite directions results in
similar effects on circuit stability, and decreasing IH
produces losses of rhythmicity. Understanding the
relationship between half-center parameters and cir-
cuit stability to perturbation is the subject of another
recent paper on half-center oscillators [23*]. In this
work, the authors used the dynamic clamp to construct
half-center oscillators from biological neurons, as has
been done previously [24e26] but examined exten-

sively the differential responses of half-centers in
release and escape modes to perturbations [23*].

Figure 2 illustrates that the mechanism of oscillation
strongly influences the response of the network to
Current Opinion in Neurobiology 2022, 76:102610
perturbation, in this case temperature. Figure 2a com-
pares the responses of dynamic-clamp constructed half-
centers in escape and release modes to a 10 �C increase
in temperature [23*]. In the left panel, the raw physi-
ological traces show that the temperature change only
modestly altered the activity of the circuit in the escape
mode, as is seen by the almost invariant cycle frequency
illustrated in the spectrogram at the bottom. In contrast,

in the right panel, when the circuit is in the release
mode, the temperature increased the frequency of the
half-center and made its activity more irregular, seen in
the spectrogram.

Figure 2b contrasts the effects of temperature on two
forms of the gastric mill rhythm of the stomatogastric
ganglion (STG) [27*,28]. These two forms of the
rhythm share the strong reciprocal inhibition between
LG and Int1 (see connectivity diagrams) but are acti-
vated by stimulation of different descending modulatory
neurons. While these two modes of activation are

degenerate in the sense that they both activate rhythms
characterized by alternation between the DG and LG
neurons (Figure 2), they are differentially robust to
temperature changes (Figure 2b). At control tempera-
tures they show similar properties (Figure 2b), but the
www.sciencedirect.com
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Figure 2

Temperature robustness of small rhythmic circuits. a) Response of reciprocally inhibitory circuits with escape and release mechanisms and
temperature-independent synaptic and H currents to an increase in temperature. Top panels show membrane potential oscillations of two neurons
forming half-center oscillators in escape (left) and release (right) during a temperature step. Middle panel shows the saline temperature. Bottom panels
show the spectrograms of the first neuron’s voltage traces in both right and left panels. Bright yellow band corresponds to the cycle frequency of os-
cillations. Modified from [23*]. b) Differential sensitivity of gastric mill rhythms generated by stimulation of disparate modulatory pathways to an increase in
temperature. Left panel: A simplified circuit diagram of VCN-gastric mill rhythm and corresponding extracellular recordings of the lateral gastric nerve (lgn)
and the dorsal gastric nerve (dgn) showing robust firing of LG and DG neurons during gastric mill rhythm evoked by stimulation at 7 �C and 23 �C. From
[27*]. Right panel: A simplified circuit diagram of MCN1-gastric mill rhythm and corresponding extracellular recordings of lgn and dgn showing firing of LG
and DG neurons during gastric mill rhythm evoked by stimulation at 10 �C and sporadic firing of these neurons at 13 �C. From [28]. Circuit symbols
defined as in Figure 1.
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MCN1 activated rhythm is less robust, and ‘crashes’ at

lower temperatures. There are a number of potential
explanations for this: 1) different descending pathways
activate circuits operating by different mechanisms
[23*] and 2) the strength of the modulatory drive
evoked in one pattern of stimulation is significantly
higher than the other [29], as we know that activation of
a modulatory current can restore oscillatory activity to a
release half-center circuit that has lost activity at high
temperatures [23*]. Moreover, we know that some
neuropeptides can increase the temperature range of
stable pyloric rhythm activity [30,31**] and gastric mill

activity [32].
Recent work in the leech heartbeat system has focused

on the roles of IH and the Naþ/Kþ pump on the range of
stable alternating half-center patterns of activity [19**].
This work combines computational and experimental
data to argue that comodulation of multiple processes is
more effective at extending functional operating ranges
than modulation of a single current or process.
www.sciencedirect.com
Additional effects of environmental
influences on neurons and circuit
mechanisms
The previous section focused on the effects of tem-
perature on half-center driven circuit mechanisms.
There is a growing literature on other aspects of the

effects of temperature and other environmental in-
fluences on small circuits. A recent study documents
unexpected blue-light responses of neurons in the crab
STG that may allow the animal to be sensitive both to
its depth and the time of year [33**]. Stein and
Harzsch [34**] provide an excellent review of changes
in ocean environments and the effects of these changed
environments on the appreciable contribution of
marine crustaceans to the earth’s biomass. Most
notable are the well-known effects of increased sea
water temperature and decreased mean ocean pH

[34**], with concomitant changes in dissolved O2

levels. In most cases, the effects of oxygen, tempera-
ture, and pH on isolated crustacean circuits have been
studied in isolation [35e37], while in the wild, these
Current Opinion in Neurobiology 2022, 76:102610
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effects are linked, as pH and oxygen levels vary as a
function of ocean temperature [38**]. The obligatory
metabolic trade-offs of the biological compensations
that occur as animals live close to their temperature
limits [38**] highlight the importance of understand-
ing the compensatory mechanisms that neurons and
circuits employ to cope with multiple stressors, and the
interactions among those multiple stressors. For

example, a recent study on the pyloric pacemaker
neurons [39*] showed that loss of bursting activity
follows different dynamical mechanisms in response to
extremes of temperature and pH.

Faria et al. [38**] argue that animals die at extremes of
temperature when their metabolic demands become
too extreme. The effects of temperature extremes on
neuronal and circuit robustness are revealed with
in vitro experiments in dissected preparations and
continuously exchanged saline [27*,30,37,40,41*].

When the effects of temperature were studied on the
pyloric rhythm of crabs, the isolated in vitro and the
in vivo rhythms were almost indistinguishable over the
temperatures most commonly encountered in the wild,
but at higher temperatures, the in vivo and in vitro-
recorded rhythms diverged [42]. A recent study,
DeMaegd and Stein [41*] studied the effects of tem-
perature on axonal conduction velocity in three iden-
tified motor neurons from the crab, C. borealis and
showed that temperature has a modest effect on prop-
agation and spike timing in different axons.
Degenerate mechanisms in small circuits
There is a growing literature that suggests that circuits
can have degenerate solutions, that is similar looking
behavior with different underlying parameters across
individuals [12,43,44,45,46,47**,48,49,50**,51*]. While

it is often assumed that genetically identical animals
produce similar behavior, this turns out not to be
invariably the case. There are numerous studies in
worms, flies, fish, and mice, that indicate that genetically
identical animals show behavioral diversity similar to that
shown in wild-caught animals [52*,53,54,55**, 56].
Moreover, repeated performance of the same task is
often associated with variable activity in the network
generating this task [57**]. New work in Aplysia suggests
a plausible set of synaptic mechanisms that can account
for some of this variability [57**].
Although degenerate mechanisms exist and can produce
similar motor patterns, because of the differences in

their underlying parameters, these solutions are differ-
entially sensitive to extreme perturbations such as those
described in the previous section [31**,58,59*]. An
example of this is seen in a recent study in Aplysia that
illustrates that some changes in task switching can only
occur from one of the possible, seemingly degenerate
network states [51*]. Moreover, evolutionary studies
Current Opinion in Neurobiology 2022, 76:102610
illustrate that similar motor patterns can result from
different connectivity patterns and that seemingly
similar looking connectivity can result in differences in
behavior [60].
Neurons that switch among networks
Neurons can switch their participation between net-
works [48,51*,61,62,63,64,65,66], in some cases as a
function of modulation of synaptic strength [48,61].
New studies [67**,68*] address the regulation of
intrinsic properties in switching [67**,68*].

Fahoum and Blitz [67**] studied the effects of modu-

latory neuron activation on switching of neurons be-
tween the fast pyloric and slower gastric mill rhythms of
the STG of the crab (Figure 3a). Specifically, the LPG
neuron switches its participation from exclusively the
pyloric rhythm, to being part of the gastric mill rhythm
as modulatory inputs are activated. Nonetheless, hy-
perpolarization of other gastric mill neurons does not
prevent this switching, arguing that it does not depend
on specific synaptic inputs from other neurons [67**].

Drion et al. [68*] is a computational study (Figure 3b)

that builds on earlier work [48], and illustrates that the
properties of half-center oscillators are strongly influ-
enced by the presence of a slow negative conductance.
Moreover, a five-cell circuit with the same architecture
as Gutierrez et al. [48] shows increased stability and
switching between fast and slow behaviors that depend
on the presence of the slow negative conductance gated
by modeling neuromodulatory inputs [68*].
Neuropeptide and amine modulation of
small circuits
All circuits are subject to neuromodulation. Studies on
small circuits have revealed extraordinary richness in
modulatory systems and showed that most modulatory
neurons release several cotransmitters, including neu-
ropeptides and small molecules [69,70] (Figure 4). One
of the challenges in understanding the organization of

neuromodulatory systems is to quantitatively charac-
terize the varieties of motor patterns evoked under
different modulatory conditions. A new paper [71**]
uses unsupervised dimensionality reduction methods to
characterize the dynamics of ordered, disordered and
modulated STG rhythms (Figure 4b).

While comodulation is likely the rule rather than the
exception in the regulation of many networks, como-
dulation systems are often difficult to study rigorously. A
new study [72**] quantitatively compares the actions of

several peptide neuromodulators on synaptic strength
and intrinsic excitability. By looking at single and dual
applications of two peptides (CCAP and proctolin) on
the same target neurons, the authors establish that the
actions of the cotransmitters appear to add linearly on
www.sciencedirect.com
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Figure 3

Modulation of intrinsic properties enables switching between networks. a) A simplified circuit diagram of fast (pyloric) and slow (gastric) networks
with a lateral posterior gastric (LPG) neuron in the middle that switches between the networks based on the neuromodulatory conditions. Top trace:
extracellular pyloric dilator nerve (pdn) recording PD neurons spikes marking the pyloric rhythm; middle trace: an example intracellular trace of the LPG
neuron showing dual pyloric and gastric mill-timed bursting during the stimulation of the projection modulatory commissural neuron 5 (MCN5); bottom
trace: extracellular dgn recording with dorsal gastric (DG) neuron spikes marking the gastric rhythm. Figure modified from [67**]. b) A simplified network
inspired by the crustacean pyloric and gastric networks represented by two half-center oscillator circuits generating fast and slow rhythms coupled with a
hub neuron, following precedent of [48]. Circuit neurons include a slow negative conductance and are weakly connected. Voltage traces of model neurons
2 (fast or pyloric), 3 (hub) and 4 (slow or gastric), from top to bottom (courtesy of Guillaume Drion).
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the synaptic strengths, but not so when looking at a
voltage-dependent intrinsic current [72**].

Many modulators act on voltage-dependent currents, or
themselves have voltage-dependent actions. Conse-
quently, modulators may display a number of state-
dependent actions [73*], including an interaction be-
tween the frequency of the action of the target network
and the modulator action (Figure 4c). Figure 4d shows
that the effects of a modulator can depend critically on
the mechanisms underlying circuit function.

The effects of modulators on the strength of gap

junctions are often overlooked, but gap junction regu-
lation is crucial in the retina and in many body organs
[74]. The crustacean cardiac ganglion produces syn-
chronous activity that is necessary for a robust heart-
beat. The cardiac ganglion is modulated by many
amines and peptides [75], two of which are serotonin
and dopamine [76*]. While both serotonin and dopa-
mine are generally excitatory, serotonin can
desynchronize bursts but dopamine promotes stable
bursting, associated with strengthening of the gap
junction coupling [76*].

There are hundreds of crustacean neuropeptides [77**,
78*,79,80**,81**], consisting of approximately 20
neuropeptide families, with multiple isoforms in most of
these families. Many of these neuropeptides are
www.sciencedirect.com
biologically active. This richness raises several fasci-
nating questions:

a) Are the same isoforms released from all presynaptic
release sites?

b) How many different isoforms are found in a given
presynaptic neuron?

c) Do different isoforms show differential stability to-
wards degradation and therefore different time
courses of action?

d) How different are the dose-response curves of
different isoforms of the same peptide?
New advances in Mass Spectroscopic Imaging (MSI)
[77**] should bring us closer to resolving the first two
of these issues. In MSI, a laser beam is used to
generate mass spectrometry profiles at specific tissue
localizations, and then these spectra can be analyzed

to determine accurately which peptides are where in a
tissue [77**,80**]. There are many mass spectrom-
etry methods under development, some of which can
be combined with traditional microscopy. However,
the resolution and 3D reconstructions for peptides are
still not as good as can be done with quality confocal
techniques with antibodies [77**]. While the high-
quality visualizations in 3D now available with con-
ventional immunocytochemistry provide excellent
anatomical localizations, peptide antibodies are
Current Opinion in Neurobiology 2022, 76:102610
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Figure 4

Neuropeptidergic modulation of small circuit activity. a) Left: Different neuropeptides acting through different receptors have convergent action on the
same inward voltage-dependent current (IMI) in crustacean STGs. Right: Divergent neuromodulatory actions at the cellular and network level occur due to
differential expression of peptide receptors across neurons in a network. b) Left: Probability distributions of states corresponding to different firing patterns
in pyloric networks in decentralized condition (with modulatory projections blocked) and with bath application of modulators RPCH or proctolin. Right:
Example spike trains of LP and PD neurons corresponding to several distinct circuit activity states shown in the treemaps. Figure modified from [71**]. The
numbers in the blue boxes refer to the changes in probabilities of the regular triphasic state with the addition of neuromodulators. c) Peptide-activated
currents are dependent on oscillation frequency. Left: Proctolin-activated currents for different slopes of voltage ramps. Magnitude of a transient
component of proctolin-activated current (IMI-T) depends on the slope of the ramp. Right: Voltage waveforms and activity phases of a model LP neuron at
different burst frequencies. Frequency-dependence of IMI-T shifts the burst phases in a model of LP neuron. Figure modified from [73*]. d) Schematic
representations of gastric circuits with different configurations but similar outputs responding differently to neuromodulation. CabPK peptide application
(top left, green traces) and MCN1 stimulation (top right, gray traces) generate different gastric circuit configurations with similar rhythms, represented by
schematic activity patterns of LG and Int1. Application of a peptide hormone (purple) increases the cycle frequency of CabPK rhythm by reducing
interburst interval (bottom left), but decreases the MCN1-rhythm frequency by prolonging the burst duration (bottom right). Figure modified from [59*].
Circuit symbols defined as in Figure 1.
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unlikely to adequately distinguish among all isoforms.
Thus, the hope for the future is that MSI localization
of peptides in anatomical samples will reach the pre-
cision of the best light microscopy except in specific
cases [82].

Even when multiple isoforms of a peptide family
interact with the same receptor, it is likely that they do
so with different affinities [83*] and may show differ-
ential stability in physiological hemolymph [84e86].
There are no systematic studies that directly compare
large numbers of peptide family members for stability in
hemolymph and their dose-dependent actions. Recent
studies call attention to the importance of post-
translational modifications in the physiological func-
tion of peptides [87*]. In the STG of the lobster,
Current Opinion in Neurobiology 2022, 76:102610
Homarus americanus, specific antibodies demonstrate that
non-amidated and amidated forms of the C-allatostatin
peptides are found in different anatomical locations. In
the cardiac ganglion of the same species, it was shown
that these different forms differ in their physiological

actions [82,83*].

Many neuropeptides are released both hormonally and
from descending modulatory neurons. Hemolymph
modulator composition is altered by feeding and differs
between fed and unfed crabs [80**,88*]. Fed crabs
showed modified STG motor patterns [89*]. While this
is not surprising, there are relatively few instances in
which the connections between circulating hormones
elicited by feeding and specific changes in circuit con-
figurations are established [89*].
www.sciencedirect.com
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In the feeding system of Aplysia, ingestion and egestion
are antagonistic behaviors, and fascinating new work
argues that persistent effects of cAMP are important for
maintaining a persistent network state [90**,91], as the
animal switches between these two behaviors. An
intriguing study in the Aplysia feeding system suggests a
new mechanism for driving a rhythmic behavior that
results from organelle-derived intracellular calcium os-

cillations [92**].
Homeostasis regulation and ion channel
correlations
In long-lived animals, be they crabs or humans, the life-

time of proteins is much shorter than the animal’s life-
time. Consequently, the proteins in long-lived neurons
must be continuously replaced while the animal main-
tains its characteristic function. The first computational
models and experiments relevant to this problem date
back to the 1990s [93,94]. Since then, the work on ho-
meostatic regulation of synaptic strength and intrinsic
excitability has become a major research interest in both
small and large circuits [95,96**,97,98,99*,100,101,
102**]. Despite the large amount of attention paid to
these issues by workers who use rodent preparations,

interesting and fundamental work is still being done by
workers on small circuits [102**,103**].

There are strong correlations in mRNA expression of ion
channel genes in single identified crustacean neurons
[102**]. In a fascinating set of experiments, Santin and
Schulz [103**] studied the correlated expression of ion
channel genes in single PD neurons from the crab STG.
They found that silencing the neurons and removing their
synaptic andmodulatory inputs produced a loss of some of
the characteristic correlations in ion channel expression in
these neurons but that these correlationsweremaintained

when the neurons were voltage-clamped to their control
voltage waveforms. These results extend and confirm
earlier studies [104,105], suggesting that the specific
patterns of correlated channel expression arise in an
ongoing manner from continuous interactions between
activity and programs of gene expression.
Conclusions
Small circuits with identified neurons continue to pro-
vide significant advantages for understanding how cir-
cuit dynamics arise from the properties of individual
neurons. Insights from computation, molecular analyses,
and biochemistry are supplementing insights from
electrophysiology and behavior. Using these systems,
one can hope to achieve the time-honored goals of
integrating information from intracellular signaling to

circuit function to behavior.
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