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Abstract Experimental results in rodent medullary slices
containing the pre-Bötzinger complex (pre-BötC) have
identified multiple bursting mechanisms based on persistent
sodium current (INaP) and intracellular Ca2+. The classic
two-timescale approach to the analysis of pre-BötC bursting
treats the inactivation of INaP, the calcium concentration,
as well as the Ca2+-dependent inactivation of IP3 as slow
variables and considers other evolving quantities as fast
variables. Based on its time course, however, it appears
that a novel mixed bursting (MB) solution, observed both
in recordings and in model pre-BötC neurons, involves at
least three timescales. In this work, we consider a single-
compartment model of a pre-BötC inspiratory neuron that
can exhibit both INaP and Ca2+ oscillations and has the
ability to produce MB solutions. We use methods of dynam-
ical systems theory, such as phase plane analysis, fast-slow
decomposition, and bifurcation analysis, to better under-
stand the mechanisms underlying the MB solution pattern.
Rather surprisingly, we discover that a third timescale is
not actually required to generate mixed bursting solutions.
Through our analysis of timescales, we also elucidate how
the pre-BötC neuron model can be tuned to improve the
robustness of the MB solution.
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1 Introduction

Certain neurons in the pre-Bötzinger complex (pre-BötC)
of the mammalian brainstem exhibit bursting activity in the
inspiratory phase of respiration, which has been extensively
studied both experimentally and computationally. Two dis-
tinct bursting mechanisms have been identified in the pre-
BötC, depending on the persistent sodium current (INaP) or
a nonspecific cation or CAN current (ICAN), respectively.
The latter is activated by intracellular Ca2+ originating
from the dendrite, where it may be influenced by synap-
tic input and intracellular calcium stores, regulated by IP3
receptors (Mironov 2008). Motivated by these experimental
results, Toporikova and Butera (2011) developed a two-
compartment conductance-based pre-BötC neuron model
(TB model) that encompasses both INaP-dependent somatic
bursting and dendritic calcium oscillations that activate the
CAN current and thereby contribute to somatic voltage
dynamics. This model produces not just two but three types
of bursting; in addition to the INaP-dependent somatic burst-
ing and ICAN-dependent dendritic bursting, it produces a
somato-dendritic bursting or mixed pattern that depends
on both currents and is also seen experimentally (e.g.,
Dunmyre 2011). The focus of this paper is the analysis of
the mechanisms underlying this mixed bursting, the eluci-
dation of the timescales that are needed to produce it, and
the determination of parameter changes that can enhance its
robustness.

Neurons in the pre-BötC appear to be electronically com-
pact (Dunmyre et al. 2011; Del Negro et al. 2011), and
qualitatively similar dynamics arise when the model of
Toporikova and Butera (TB model) is reduced to a sin-
gle compartment. Thus, Park and Rubin (2013) used such
a reduction and studied a single-compartment model of a
pre-BötC inspiratory neuron featuring both NaP and CAN
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currents, as well as intracellular calcium oscillations that
activate the CAN current but are themselves independent of
somatic voltage, as in previous computational and experi-
mental work (Mironov 2008; Toporikova and Butera 2011).
The dynamics of this model is given by the following
equations:

Cm

dV

dt
= −gL(V − VL) − gKn4(V − VK)

−gNam
3∞(V )(1 − n)(V − VNa)

−gNaPmp∞(V )h(V − VNa)

−gCANf ([Ca])(V − VNa) (1a)
dn

dt
= (n∞(V ) − n)/τn(V ) (1b)

dh

dt
= (h∞(V ) − h)/τh(V ) (1c)

d[Ca]
dt

= KCa(JERIN − JEROUT) (1d)

dl

dt
= AKd(1 − l) − A[Ca]l (1e)

with

x∞(V ) = 1/(1 + exp((V − θx)/σx)), x ∈ {m, mp, n, h} (2a)

τx(V ) = τ̄x/cosh((V − θx)/2σx), x ∈ {n, h} (2b)

f ([Ca]) = [Ca]nCAN/(K
nCAN
CAN + [Ca]nCAN) (2c)

JERIN =
(

LIP3 + PIP3

[ [IP3][Ca]l
([IP3] + KI )([Ca] + Ka)

]3)

×([Ca]ER − [Ca]) (2d)

JEROUT = VSERCA
[Ca]2

K2
SERCA + [Ca]2 (2e)

[
Ca]ER = [Ca]Tot − [Ca]

σ
. (2f)

In system (1a)-(1e), V denotes voltage, n, h are voltage-
dependent gating variables, [Ca] is intracellular calcium
concentration, and l represents the fraction of IP3 chan-
nels that have not been inactivated, which affects the flux
of calcium between the cytosol and endoplasmic reticulum

(ER) denoted by JERIN , JEROUT . Additional description of
model components has been given previously (Toporikova
and Butera 2011; Park and Rubin 2013).

Default parameter values and corresponding units for
this system are given in Table 1. We refer to the system
of Eqs. (1a)-(1e) as the full model. Following the termi-
nology used in Park and Rubin (2013), we call the system
of Eqs. (1a)-(1c) the somatic subsystem and the system
of Eqs. (1d)-(1e) the dendritic subsystem; however, we
emphasize that this is a one-compartment model and hence
includes just one voltage variable. The somatic subsystem
alone, with gCAN = 0, is based on an earlier pre-BötC
model (Butera et al. 1999) that can switch between quies-
cence in which no spikes occur, a second form of activity
called square-wave bursting in which silent phases lacking
voltage spikes rhythmically alternate with active phases of
spiking, and a third activity pattern consisting of uninter-
rupted tonic or sustained spiking, depending on parameter
choices. The dendritic subsystem variables ([Ca], l) act
as a relaxation oscillator. In the full system, calcium still
evolves independently from somatic activity patterns, and
the dynamics of ([Ca], l) affects the dynamics of (V , n, h);
the parameter gCAN controls the coupling strength.

Similarly to the TBmodel (Toporikova and Butera 2011),
the full model (1a)-(1e) can produce two types of intrinsic
bursting behaviors, depending on chosen parameter val-
ues. One type of bursting (somatic bursting) depends on
persistent sodium current inactivation, whereas the other
type (dendritic bursting) relies on intracellular Ca2+. [IP3]
and gNaP are two critical parameters that can be used
to switch the bursting mechanism from one type to the
other (Toporikova and Butera 2011; Park and Rubin 2013).
Specifically, the level of [IP3] determines whether the
([Ca], l) system exhibits a stable steady state or a stable
oscillation, while [Ca] and gNaP both affect the dynamics of
the somatic subsystem. In the two extreme cases, bursting
is driven by either somatic membrane properties or Ca2+
oscillations alone. However, in some region of (gNaP, [IP3])
parameter space, these mechanisms interact to produce a

Table 1 The values of the parameters in the pre-BötC model given by Eq. (1) and (2)

Parameter values

Cm 21 p F gNa 28 nS σh 5 mV LIP3 0.37 pL · ms−1

VNa 50 mV gK 11.2 nS τ̄n 10 ms PIP3 31, 000 pL · ms−1

VK −85 mV gL 11.2 nS τ̄h 10, 000 ms KI 1.0 μM

VL −58 mV gNaP 2 nS KCAN 0.74 μM Ka 0.4 μM

θm −34 mV gCAN 0.7 nS nCAN 0.97 VSERCA 400 aMol · ms−1

θn −29 mV σm −5 mV [IP3] varied, μM KSERCA 0.2 μM

θmp −40 mV σn −4 mV [Ca]Tot 1.25 μM A 0.001 μM−1 · ms−1

θh −48 mV σmp −6 mV KCa 0.000025 pL−1 Kd 0.4 μM

σ 0.185
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somato-dendritic bursting pattern. Figure 1 shows the three
types of bursting.

One of the most interesting somato-dendritic bursting
solution patterns presented in Park and Rubin (2013) is gen-
erated when [IP3] = 0.95 and gNaP = 2 (Fig. 1, bottom
panel). This pattern consists of long bursts separated by
sequences of short bursts and is observed experimentally
(Dunmyre et al. 2011). For convenience, we refer to such
solutions as mixed bursting (MB) solutions. Numerical sim-
ulations show that MB solutions of system (1a)-(1e) are
quite sensitive to changes of values of parameters such as
[IP3] and gNaP, to changes of timescale parameters, and to
changes in timescale separation.

Since a regular bursting solution requires at least two
timescales, it is natural to expect that MB solutions, which
involve a gradual temporal progression of bursts, might
need a third timescale. In this paper, we aim to better
understand the mechanisms underlying the dynamics of
the MB solution (Park and Rubin 2013) and to deter-
mine what mix of timescales is involved in generating
this solution. More generally, we seek to analyze what
combinations of timescales can support MB solutions and
whether the full model can be tuned to make the MB
solution more robust, corresponding to the fact that it
is seen in experiments (Dunmyre et al. 2011). With this
goal, we will nondimensionalize the equations to reveal the

presence of different timescales; determine how to group
the timescales that are present (in particular, whether to use
two or three classes); set up reduced systems based on the
separation of timescales; and use the reduced systems to
explain the mechanisms underlying the dynamics of MB
solutions.

By uncovering the mechanisms underlying the MB solu-
tion pattern in the full model, we deduce what combination
of timescales can generally support MB solutions and con-
clude that a third timescale is not actually required to
generate MB solutions in this model. In the course of our
analysis, we also attain and illustrate important insights into
how the full model can be tuned to make MB solutions more
robust.

2 Methods and preliminary analysis

Since the dendritic system (1d)-(1e) evolves independently
of Eqs. (1a)-(1c), it is useful to visualize its nullclines,
namely the curves where d[Ca]/dt = 0 and dl/dt = 0,
respectively, in the ([Ca], l) phase plane. With our default
parameter values (Table 1), the nullcline of [Ca] is a cubic
curve and that of l is sigmoidal (Fig. 2A). The dendritic
subsystem generates relaxation oscillations involving jumps
in [Ca] between branches of the [Ca]-nullcline alternating

Fig. 1 Time series for bursting
solutions of the full system
(1)–(2). This model produces
(A) somatic bursting (shown for
[IP3] = 0.9μM and
gNaP = 2.5 nS), (B) dendritic
bursting ([IP3] = 1.2μM and
gNaP = 1 nS), and (C)
somato-dendritic bursting
([IP3] = 0.95μM and
gNaP = 2 nS), with other
parameter values as in Table 1;
all patterns repeat periodically 0 0.5 1 1.5 2

x 10
4

−60

−40

−20

0

20

time(ms)

V

(A)

0 0.5 1 1.5 2
x 10

4

−60

−40

−20

0

20

time(ms)

V

(B)

0 0.5 1 1.5 2
x 10

4

−60

−40

−20

0

20

time(ms)

V

(C)



248 J Comput Neurosci (2016) 41:245–268

Fig. 2 Basic structures of the two subsystems (1a)-(1c) and (1d)-(1e)
with parameter values as given in Table 1 but without coupling and
with [IP3] = 1μM. (A): Nullclines of [Ca] (red) and l (cyan) for
the dendritic subsystem (1d)-(1e). The attracting periodic orbit for this
subsystem is shown in black (with clockwise flow passing through
the numbered regions in increasing order). Yellow symbols mark key
points along the solution trajectory (star: start of phase ; circle: start
of phase ; square: start of phase ; triangle: start of phase ). (B):
Projection onto (h, V )-space of the bifurcation diagram for the somatic
subsystem along with the h-nullcline shown in cyan. The curve S

(black) denotes the fixed points of the Eqs. (1a)-(1b) with h taken
as a constant parameter, and the blue curve shows the maximum and
minimum V along the family of periodics (P). S and the h-nullcline
intersect in a fixed point of the full model (1), which is labeled. (C):
Projection of a burst trajectory (black) of model (5) onto the bifurca-
tion diagram for the somatic subsystem generated with c = 0.0171
fixed, along with the h-nullcline (cyan). The blue and red dashed lines
indicate the h values where the lower fold and homoclinic bifurcations
occur, respectively

with drift in ([Ca], l) along these branches (Fig. 2A); the
[Ca]-jumps appear to be fast relative to the slow drift.

Since the somatic subsystem (1a)-(1c) is influenced by
the dendritic subsystem and the somatic subsystem includes
more than two variables, it is not as useful to examine
somatic subsystem nullclines and instead we turn to bifur-
cation diagrams based on an approach called fast-slow
decomposition.

2.1 Fast-slow decomposition and bifurcation diagrams

In the classical fast-slow decomposition approach, which
has been applied to a wide range of neuroscience models
(see e.g. Rinzel 1987; Rubin and Terman 2002; Ermentrout
and Terman 2010), variables in a model system are identi-
fied as fast or slow depending on the rates at which they
evolve. The behavior of fast variables is analyzed with slow
variables frozen. Once attractors for fast dynamics are iden-
tified, then one considers how the dynamics of the slow

variables can yield drift along a family of fast subsystem
attractors. If this family terminates, then fast dynamics are
once again used to identify the next fast subsystem attractor
that is reached. Indeed, interesting solutions often involve
multiple fast and slow components. Trajectory segments
corresponding to these epochs of fast and slow dynamics
are concatenated to form a singular solution, which rep-
resents an estimate for an actual solution near the limit
in which the rate of change of the slow variables goes
to zero.

A standard bifurcation diagram is a representation of the
equilibria and periodic orbits that are present for a system
over a range of values of some parameter, known as the
bifurcation parameter, as well as the bifurcations associated
with changes in existence and stability of these structures
(Strogatz 2014; Guckenheimer and Holmes 2013; Shilnikov
et al. 2001). For example, in Section 3.4, we will consider
a traditional 1-parameter diagram for the dendritic subsys-
tem, with [IP3] treated as a bifurcation parameter. For a
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system with a single slow variable, one way to complete a
fast-slow analysis is to treat the slow variable as a parame-
ter, compute the fast subsystem’s bifurcation diagram with
respect to that variable (Rinzel 1987; Izhikevich 2000),
and then consider how the slow variable’s dynamics moves
a trajectory along the structures in the diagram.

In this vein, the first step of fast-slow decomposition
analysis of the somatic subsystem (1a)-(1c) can be per-
formed by treating the slowest variable, h, as a bifurcation
parameter for the other, faster model (1a), (1b). The result-
ing bifurcation diagram (Fig. 2B) includes an S-shaped
curve of equilibria (S) and a family of stable periodic orbits
(P) for Eq. (1a), (1b). The bifurcations where S turns around
are called saddle-node or fold bifurcations. The family P
initiates in a homoclinic (HC) bifurcation at an h value
where Eq. (1a), (1b) have a homoclinic orbit, which con-
verges to a point called the homoclinic point on the middle
branch of S as t → ±∞. As h is increased above this
value, the family P persists until it terminates in a saddle-
node of periodic orbits (SNPO) bifurcation, which occurs
where P coalesces with a second family of unstable periodic
solutions. This unstable orbit family is born in a subcritical
Andronov-Hopf (AH) bifurcation (the subcriticality refers to
the fact that unstable orbits emanate from the bifurcation
point). We sometimes refer to hAH , hLF and hHC as the
h values where the AH, LF and HC bifurcations happen,
respectively.

To complete the fast-slow analysis, we next consider
the h dynamics relative to this bifurcation diagram. How
h evolves depends on the location of its nullcline, which
is V -dependent. If the h-nullcline intersects S on its lower
branch, then the intersection point is a stable equilibrium
point for the full model and hence the full system exhibits
quiescence. To first approximation, if the intersection point
lies on the middle branch of S yet below the homoclinic
point, then the full system exhibits the square-wave burst-
ing (Rinzel 1987) mentioned in the Introduction, consisting
of slow drift to the right along the lower branch of S, a
fast jump to elevated voltages at the lower fold or knee
of S, fast oscillations along P accompanied by slow drift
to the left in h, and a fast jump back down to the lower
branch of S near HC on each cycle. An example of such
a square-wave bursting solution, superimposed on the rele-
vant bifurcation diagram for the nondimensionalized model
(5) derived below in Section 2.3, appears in Fig. 2C. Finally,
if the intersection point lies above the homoclinic point on
the middle branch of S, then the full system exhibits the
sustained oscillations known as tonic spiking. The location
of the intersection of the h-nullcline and S depends on the
tuning of parameters (e.g. gNaP, gton).

In a systemwith 3 disparate timescales, timescale decom-
position can also be used (Nan et al. 2015). We refer to the
three widespread timescales that will appear in model (1) as

fast, slow, and superslow. Note that for the fast-slow decom-
position of the somatic subsystem alone, it does not matter
if h is slow or superslow, as long as it is much slower than
the other variables V, n.

2.2 2-parameter bifurcation diagrams

Suppose that in a 1-parameter bifurcation diagram as
described in the previous section, generated with respect to
a parameter p1, a particular bifurcation occurs, say at p1 =
pc
1. Generally, although not always, it can be expected that if

another parameter, say p2, is perturbed by a small amount,
then that bifurcation will still happen for some value of p1

near pc
1. When this holds, we can trace a curve of values

in the (p1, p2) plane at which this bifurcation occurs. The
resulting plot is called a 2-parameter bifurcation diagram.
If there are multiple bifurcations that arise as p1 is varied
for each fixed p2, then we can include multiple curves in
our 2-parameter bifurcation diagram.

For example, by treating [Ca] as the second bifurcation
parameter for Eq. (1a)-(1b) and following in (h, [Ca]) the
HC and LF points in the 1-parameter bifurcation diagram
as shown in Fig. 2B, we obtain a 2-parameter bifurcation
diagram in (h, [Ca])-space (Fig. 3).

We will make heavy use of 2-parameter bifurcation dia-
grams in our analysis because they can help us identify how
variations in 2 slow variables affect fast variable dynamics
and they can show us how variation of parameters related
to timescales can promote or compromise the existence of
mixed bursting (MB) solutions. First, as a final preliminary
step before embarking on our main analysis, to better justify
the fast-slow decomposition approach and to clearly iden-
tify the timescales that are present, we nondimensionalize
the full system (1a)-(1e).

Fig. 3 Homoclinic bifurcation curve (red) and the curve of saddle-
node bifurcations (blue) corresponding to the lower fold of the
bifurcation diagram (Fig. 2B) in (h, [Ca]) parameter space
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2.3 Nondimensionalization and simplification
of timescales

Our analysis will depend heavily on exploiting the presence
of different timescales. As a first step, it is helpful to rescale
the variables so that the important timescales can be explic-
itly identified. To this end, we define new dimensionless
variables (v, c, τ ), and voltage, calcium and timescalesQv ,
Qc and Qt , respectively, such that

V = Qv · v , [Ca] = Qc · c , t = Qt · τ. (3)

Note that n, h and l are already dimensionless in Eq. (1).
Details of the nondimensionalization procedure, includ-

ing the determination of appropriate values for Qv , Qc and
Qt , are given in Appendix B. From this process, we obtain
a dimensionless system of the form

Rv

dv

dτ
= f1(v, n, h, c) (4a)

Rn

dn

dτ
= g1(v, n)/tn(v) (4b)

Rh

dh

dτ
= h1(v, h)/th(v) (4c)

Rc

dc

dτ
= f2(c, l) (4d)

Rl

dl

dτ
= g2(c, l) (4e)

with parameters Rv , Rn, Rh, Rc and Rl given in Eq. (9),
where the functions f1, f2, g1, g2, h1, tn and th are specified
in Eq. (10), both of which appear in Appendix B. All func-
tions on the right hands of these equations are of size O(1),
except 1/tn and 1/th, which are bounded by 1. We use the
notation O to denote an order of magnitude estimate: x ∼
O(10n), where n is the nearest integer to log(x). The param-
eter values given in Table 1 yield Rv ∼ O(1), Rc ∼ O(10)
and Rl ∼ O(1000) (note that these values are as given in
earlier work (Toporikova and Butera 2011; Park and Rubin
2013) except that we reduced A from 0.005μM−1 · ms−1

to 0.001μM−1 · ms−1 to clarify the timescale separation).
To obtain Rx = 1

Qt ·Tx
for x ∈ {n, h} in Appendix B,

we followed the standard procedure of defining scaling fac-
tors Tx = max(1/τx(V )), where τx(V ) appears in system

(1). These factors turn out to be problematic, however,
because both 1/τn(V ) and 1/τh(V ) depend heavily on volt-
age. Specifically, Fig. 4 shows the plots of 1/τn(V ) and
1/τh(V ) over the range V ∈ [−60, 20]. This figure indi-
cates that 1/τn(V ) varies from about 0.1ms−1 to about
20ms−1 and 1/τh(V ) varies from about 0.0001ms−1 to
about 0.04ms−1. From the definition of Tx , we then obtain
Tn ≈ 20ms−1 and Th ≈ 0.04ms−1. As a result, the
terms 1/tx(V ) := 1/τx(V )

Tx
appearing on the right hand sides

of the n and h equations in Eq. (4) vary from O(0.001)
to O(1). However, nondimensionlization requires the right
hand sides to be O(1). Therefore, the quantities Rn and
Rh, based on Tn and Th, respectively, cannot capture the
timescales for n and h. In other words, because the evolu-
tion rates of n and h depend on voltage V (t), these variables
will have different timescales at different phases within a
solution. As a first step in addressing this issue, we tem-
porarily remove the reliance of the timescales of n and h

on voltage by setting the two functions τh(V ), τn(V ) in (1)
to be constants, τh, τn, respectively. As a result, we obtain
the following dimensionless full model, which we call the
constant-τ model:

Rv

dv

dτ
= f1(v, n, h, c) (5a)

Rn

dn

dτ
= g1(v1, n) (5b)

Rh

dh

dτ
= h1(v1, h) (5c)

Rc

dc

dτ
= f2(c, l) (5d)

Rl

dl

dτ
= g2(c, l) (5e)

with relative rates of all variables:

Rv = O(1), Rx = τx

Qt

= O(τx), x ∈ {n, h} (6a)

Rc = O(10), Rl = O(1000). (6b)

From Eq. (6) we conclude that v evolves on a fast timescale,
c evolves on a slow timescale, and l evolves on a superslow
timescale for the baseline parameter values, although the
values Rv , Rc and Rl can be varied by changing Cm, KCa

Fig. 4 Functions (A) 1/τn(V )

and (B) 1/τh(V ). Note the
difference in vertical scales
between panels
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and A, respectively, as shown in Eq. (9) in Appendix B. The
constants τn and τh appearing in Eq. (6b), which control the
timescales for n and h, will need to be determined. To start
our analysis, we will set [IP3] = 1μM, although we will
vary it again in Section 3.4. For our other parameter values
fixed as in Table 1, this choice ensures that the dendritic sub-
system acts as a standard relaxation oscillator, with simple
nullcline interactions.

To analyze the dynamics of Eq. (5), our approach is
to use fast-slow decomposition, treating h as a bifurcation
parameter for the somatic subsystem (5a)-(5b) and consid-
ering the effect of the dendritic system (c, l) on the resulting
bifurcation diagram, in some cases by using 2-parameter
bifurcation diagrams (Section 2.2). In the following, we will
first determine what timescales for n and h, controlled by τn

and τh, are needed for Eq. (5) to generate an MB solution,
while other timescales are as specified in Eq. (6); second,
we will ascertain which timescales can be combined without
losing the qualitative features of MB solutions; and third,
we will deduce what combinations of timescales can support
MB solutions in general. For convenience, we henceforth
omit units of parameter values.

3 Results

System (4) is a nondimensionalized version of a 1-
compartment pre-BötC neuron model (Park and Rubin
2013) derived from an earlier 2-compartment model
(Toporikova and Butera 2011). This system exhibits a clear
separation of timescales between v (fast), c (slow) and
l (superslow), as described in Section 2.3. To analyze
the system with a fast-slow decomposition approach (see
Section 2.1), we also need a clear separation of timescales
between n, h and the other variables. However, this sep-
aration is lacking, since the rate factors multiplying the
equations for the gating variables depend on the voltage.
Until we resolve this issue, we consider the adjusted sys-
tem (5), with τn, τh constant, and we temporarily group n

as a fast variable and h as a slow variable, as has been sug-
gested in past studies of the Butera model, such as Best et al.
(2005).

To explain the mechanisms underlying the dynamics
of the model, we link various two-dimensional projec-
tions, each corresponding to either a 1-parameter bifur-
cation diagram with respect to some parameter, a 2-
parameter bifurcation diagram, or the phase plane of one
oscillator (Section 2). Since (c, l) oscillates independently
of (v, n, h), it is useful to consider the system from
the perspective of a fast-slow system driven by a slow-
superslow oscillation (cf. (Nan et al. 2015)). There are three
slow/superslow variables, h, c, l, in the full system. Changes
in l affect the somatic subsystem (5a)-(5c) indirectly, in the

sense that l is coupled to c and c is coupled to v, but l does
not appear in the v equation. Thus, if we treat all slow or
superslow variables as bifurcation parameters, then it is suf-
ficient to consider only h and c when studying the dynamics
of the somatic subsystem (Park and Rubin 2013). With these
two parameters, it is convenient to treat h as a bifurca-
tion parameter for the geometric analysis of the somatic
subsystem and to consider the effect of c on the resulting
bifurcation diagram. Instead of using c directly, we follow
Park and Rubin (2013) and choose gCANT ot

= gCANf (c) as
a bifurcation parameter, where f is the Hill function of c

given in Eq. (2c).

3.1 The constant-τ model generates MB under certain
conditions

Based on simulations of the constant-τ model (5) over a
range of τn and τh values, we find that under the choice
τn = 5 and τh = 1000, (5) yields an MB solution, the
time series of which is shown in Fig. 5A. In this case, h

evolves on a superslow timescale, comparable to l. To gener-
alize this result to other parameter values, we seek to derive
conditions under which MB patterns occur.

3.1.1 Coupling from the dendritic subsystem affects
the somatic subsystem bifurcation diagram

As a first step, we investigate the coupling effect in Eq. (5).
When gCAN = 0, the constant-τ model decouples into two
systems, each of which has a multiple-timescale structure.
For the parameter values we have chosen, the bifurca-
tion structure and the nullclines for the uncoupled systems
are qualitatively as shown in Fig. 2. Since the coupling
in our system is unidirectional, the oscillations in (c, l)

are independent of gCAN and of the dynamics of the
(v, n, h) subsystem. Since c is slow and l is superslow,
these are relaxation oscillations that can be described in
terms of fast-slow (or here, slow-superslow) decomposi-
tion. Specifically, the oscillations consist of a superslow
excursion through the silent phase (Fig. 2A, ), a slow
jump away from the c-nullcline up to the active phase
(Fig. 2A, ), a superslow excursion through the active
phase (Fig. 2A, ), and a slow jump back to the silent phase
(Fig. 2A, ).

In contrast, if gCAN > 0 (e.g., gCAN = 0.7 in Fig. 5A),
then the (v, n, h) subsystem depends on gCAN and on the
(c, l) oscillation. An example of the coupling effect can
be seen in Fig. 5B: the magenta (respectively blue) curve
denotes the bifurcation diagram of the somatic subsystem
that is obtained for c at 0.0171 (respectively 1) and we can
see that as c increases, the bifurcation diagram will shift to
the left. This shift includes movement of the relevant bifur-
cations within the diagram, namely the lower fold (LF),
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Fig. 5 Simulation of one cycle of the MB solution generated by
(5), together with corresponding bifurcation diagrams, for τn = 5,
τh = 1000, [IP3] = 1 and other parameter values as given in Table 1.
Circled numbers and yellow symbols correspond to phases of the (c, l)

oscillation and the points of transition between them, as shown in
Fig. 2A. (A): Temporal evolution of v. (B): The effect of c on the
bifurcation diagram for the (v, n) system, projected into (h, v)-space,

along with the h-nullcline (cyan). Increasing c from 0.0171 to 1 results
in a shift of the bifurcation diagram to the left (magenta to blue) and
switches the homoclinic bifurcation to a SNIC. (C): Homoclinic bifur-
cation curve (red), the curve of saddle-node bifurcations corresponding
to the lower fold of the bifurcation diagram (blue) and the trajectory
(black) in (h, gCANT ot

) parameter space

the homoclinic (HC), and the Andronov-Hopf (AH) bifur-
cations; that is, the bifurcation points hAH , hLF and hHC

depend on c.
To generalize this observation, we consider the 2-

parameter bifurcation diagram of the (v, n) subsystem
where we use h and gCANT ot

as bifurcation parameters
(Section 2.2); see Fig. 5C. The red (respectively blue) curve
in this panel is the curve of HC (respectively LF) bifurca-
tions, which terminates (respectively initiates) each burst,
as noted previously (Section 2.1). Since the increase of
gCANT ot

moves the bifurcation diagram in the direction of
decreasing h, both the LF and HC curves are negatively
sloped in (h, gCANT ot

)-space. The two curves eventually
meet, corresponding to the homoclinic occurring at the knee
of S (also known as a SNIC bifurcation (Shilnikov et al.
2001; Ermentrout and Terman 2010)).

3.1.2 Low calcium permits small bursts while a jump
in calcium terminates them

Superimposing the trajectory of the full model (5) on the
2-parameter bifurcation diagram allows us to understand
how the smaller bursts within the MB solution occur and
terminate. Recall that for c fixed, the somatic subsystem
generates a small square-wave burst, as can be seen in
Fig. 2C, when c is fixed at 0.0171, corresponding to its value

at the beginning of the first small burst of an MB solution
(near the yellow star in Fig. 5A), with the (c, l) oscilla-
tion in phase . Within each burst cycle, the trajectory
evolves from the lower fold of S, where it jumps to higher
v and starts to oscillate, to the HC bifurcation, where oscil-
lations end, and back to the fold; in other words, h evolves
through the same interval of values twice per cycle. In the
2-parameter bifurcation diagam of Fig. 5C, this corresponds
to a trajectory segment traversing from LF to HC and back
to LF. Now, what happens if c is not fixed?

As long as (c, l) remain in phase , we have f2(c, l) =
0. Thus, fast-slow decomposition tells us that the slower l

dynamics governs this subsystem, with evolution occuring
on a superslow timescale. Hence, during the first small burst
period, which is relatively short, c only increases by a small
amount. As a result, the bifurcation diagrams for c corre-
sponding to the beginning and end of the first small burst lie
extremely close to each other. Thus, another small burst can
occur. In fact, we see from Fig. 5C that until the (c, l) sys-
tem leaves phase (yellow circle in Fig. 5C and A), a gap
remains between LF and HC and the trajectory can continue
to pass back and forth between these curves, yielding small
bursts.

As the trajectory passes the yellow circle and moves into
phase , f2 = 0 no longer applies, and the flow switches
from superslow to slow. More precisely, the c coordinate
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starts to jump up on the slow timescale, while h remains
on the superslow timescale. The 2-parameter bifurcation
diagram shows that this jump in c, or correspondingly in
gCANT ot

, pulls the system out of the square-wave bursting
region between the LF and HC curves. The fact that the tra-
jectory in (h, gCANT ot

)-space reaches the LF and HC curves
six times before gCANT ot

jumps up corresponds to the exis-
tence of the six small bursts (see Fig. 5A). In fact, since
the l-nullcline lies close to the left knee of the c-nullcline,
as discussed in the Remark of Appendix A, the jump up
is gradual; a seventh small burst actually occurs during the
initial part of the jump up (just after the yellow circle in
Fig. 5A) and is followed by the start of an eighth small burst.
In the singular limit, however, this additional bursting will
be lost and all small bursts will occur within phase .

3.1.3 Short bursts are followed by a long incrementing burst

As this jump of c occurs, it induces a burst of higher
frequency spiking with gradually incrementing spike ampli-
tudes (Fig. 5A). The increase in frequency arises because
the trajectory pulls far away from the HC (or SNIC) curve,
which is associated with slow oscillations. This deviation
occurs because h, which is evolving superslowly, remains
almost constant during phase , while c evolves on the
slow timescale. In other words, the increase in c shifts the
HC/SNIC in the fast system bifurcation diagram to much
lower h values (Fig. 5B), while h itself hardly changes. Thus,
the trajectory now oscillates at an h value far away from the
HC/SNIC. At this value, the periodic orbits have relatively
small amplitude, as can also be seen near the AH bifurca-
tion in Fig. 5B. Once the jump of c is complete and phase

begins (Fig 5C, yellow square), c again evolves super-
slowly and h can gradually drift left towards the SNIC, with
oscillation amplitude growing along P correspondingly.

Finally, as phase begins, c no longer tracks l on
the superslow timescale and instead evolves on the slow
timescale, just as during phase . Hence, the slow jump
down in c will bring the trajectory far below the HC/SNIC
curve (Fig. 5C), so the trajectory enters the silent phase and
the long burst terminates. The overall duration of the long
burst is set by the superslow time scale, since both c and h

evolve on that scale in phase . After the long burst ends,
the solution returns to our starting point (star in Fig. 5A and
C) and one cycle of the MB solution is completed.

3.1.4 Conditions for MB activity

Based on the results so far, we have identified the following
conditions that conspire to yield MB patterns:

(C1): It is necessary that the somatic subsystem acts as
a square-wave burster for c values arising during

phase of the (c, l) oscillation, so that there exist
small burst solutions before c jumps up to its active
phase. In other words, there must be a gap in h

between the LF and HC curves in the (h, gCANT ot
) 2-

parameter bifurcation diagram for c small (Fig. 5C).
(C2): The trajectory needs to cross the gap between the LF

and HC curves multiple times, with each crossing
taking long enough to allow for a square-wave burst,
so that there are multiple small bursts before the long
burst; the timescales of h, v, and c should be related
during the square-wave bursting (SW) period in a
way that makes this outcome possible.

(C3): The transition to the long burst occurs due to the
jump up of c to the active phase, which requires the
timescale for c to become faster than h and l after
the SW phase.

We next use these three conditions to find the right com-
bination of timescales that are generally needed to obtain an
MB solution.

3.2 A certain combination of timescales supports MB
solutions in the constant-τ model (5)

3.2.1 (C1) ⇒ v and n should evolve on the same timescale

(C1) requires that the (v, n, h) subsystem acts as a square-
wave burster for c small, which is determined by the
bifurcation diagram of the (v, n) subsystem with h treated
as a bifurcation parameter. Note that the AH value and the
position of the periodic orbit (P) branch of the bifurcation
diagram for (v, n) depend on Rv and Rn, which determine
the timescales of v and n. Thus, we investigate what mix of
timescales for these two variables is needed.

Rv and Rn can be varied by changing the two parame-
ters Cm and τn, respectively (see the Appendix B). In the
following, we fix Cm = 21 and vary τn to study how it
will affect the (v, n) bifurcation diagram and under what
condition the somatic subsystem can generate a square-
wave bursting solution. Representative results are shown in
Fig. 6A, where the 1-parameter bifurcation diagram of the
(v, n) subsystem with respect to h for c = 0.0171 is com-
puted. While the curve of equilibria of the (v, n) subsystem,
S (black), and the h-nullcline (cyan) are both independent of
τn, the periodic orbit branch, P, is sensitive to changes of τn.
Specifically, an increase of τn moves the family of periodic
orbits to the right in (h, v)-space (Fig. 6A).

For τn = 1, the family of periodic orbits is almost
vertical, as illustrated by the magenta curve in Fig. 6A,
and is in a position where it will not influence the attract-
ing solution. Indeed, under such a choice, the constant-τ
model yields a solution lacking v spiking and MB cannot
exist. Specifically, for c at its minimum, the h-nullcline and
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Fig. 6 Bifurcation diagrams for the somatic subsystem for various τn

values. (A): Bifurcation diagrams for the somatic subsystem with h as
a parameter and c fixed at 0.0171. From the magenta curve to the blue
to the red, τn varies from 1 to 5 to 10. As τn increases, AH and P move
to the upper right, while the h-nullcline (cyan) and S (black) remain
unchanged. (B): Two curves of HC bifurcations (red, τn = 5; green,

τn=10) in (h, gCANT ot
) parameter space. The curves of LF bifurcations

for τn = 5 and 10 are essentially identical; both overlap completely
with the green curve and hence are not visible as separate entities in
the figure. The horizontal line represents gCANT ot

= 0.116, where the
green and red curves meet

the equilibria branch S intersect at one stable fixed point
on the upper branch of S and two unstable fixed points
on the middle branch (Fig. 6A). Notice that the increase
of c, which moves S (black) and P (magenta) to the left,
will not change the stability of the equilibrium point on
the upper branch of S. Hence, for the full range of c

values, there is a stable equilibrium of (v, n, h), and the
trajectory will eventually be attracted by this family of sta-
ble equilibria, yielding a plateau of v, rather than spiking
or MB.

For τn = 5 (respectively τn = 10) and c = 0.0171,
the periodic orbit branch is given by the blue (respectively
red) curve in Fig. 6A. In both cases, unlike when τn = 1,
as h is increased, a stable family of periodic orbits is cre-
ated in a HC bifurcation involving the middle branch of

S and is destroyed in a supercritical AH bifurcation along
the upper branch. Although these two stable periodic orbit
branches appear to be quite similar, there is a crucial differ-
ence between them. For τn = 10, there is a SNIC bifurcation
as the HC bifurcation meets with the LF bifurcation for c

at its minimal value, and this bifurcation persists for all c

values within a complete relaxation oscillation cycle, as can
be seen in the 2-parameter bifurcation diagram in Fig. 6B
(green curve). Thus there is only a tonic spiking solution,
which violates (C1). For τn = 5, there is a gap in h between
the LF and HC curves for c = 0.0171 (Fig. 6A), persist-
ing up to roughly c = 0.14 (Fig. 6B), which will result
in a square-wave bursting solution as required. Therefore,
τn = 5 together with Cm = 21 is a parameter set that
satisfies (C1).

Fig. 7 Bifurcation curves for the (v, n) subsystem of Eq. (5) for
c = 0. The curves of AH bifurcations, LF bifurcations and HC bifur-
cations are given by the green, blue and red curves, respectively. Solid
(respectively, dashed) black curves indicate stable (respectively, unsta-
ble) equilibria of the somatic subsystem. (C1) requires that for fixed
Cm, the curves progress from red to blue to green as h increases. (A):

(Cm, h) parameter space with τn = 5. The two magenta vertical lines
represent Cm = 12.87 and Cm = 35.62, at which the LF and HC bifur-
cation curves intersect and the LF and AH bifurcation curves intersect,
respectively. (B): (τn, h) parameter space with Cm = 21. The two
magenta vertical lines represent τn = 2.909 and τn = 8.116, with
similar interpretations as in (A)
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In summary, among all three cases that we have discussed
above, only τn = 5 (Rn = 5) can support the MB solu-
tion. Recall that we have chosen the timescale of voltage to
be Rv ∼ O(1). To determine whether v and n truly can be
coordinated as evolving on disparate timescales, a natural
question to ask is: can we make the timescales of v and n

more separated without losing the MB solution? To figure
this out, we now fix τn = 5 and allow both Cm and h to vary
to find the somatic (v, n) subsystem 2-parameter bifurca-
tion curves in the (Cm, h) parameter plane, as illustrated in
Fig. 7A. The LF and HC curves are shown in blue and red,
respectively, and the green curve denotes the AH bifurcation
on the upper branch of S.

As we have seen, to allow square-wave bursting, we must
have hAH > hLF > hHC . These inequalities hold between
the two vertical dashed magenta lines in Fig. 7A. These lines
demarkateCm = 12.87 andCm = 35.62, at which the SNIC
bifurcation appears and at which the LF and AH bifurca-
tion curves intersect, respectively. These two lines divide
(Cm, h)-space into three regions, which we can call regions
1, 2, and 3 from left to right. Our analysis has shown that
v engages in tonic spiking for parameter values chosen in

region 1 and v asymptotes to a steady state in at least most of
region 3 (other complicated behaviors may occur on small
parameter intervals and are not considered here). In terms of
the timescale parameters, (C1) requires the timescale of v to
satisfy 0.4596 ≤ Rv ≤ 1.2721 with the timescale of n given
by Rn = 5. Similarly, there is a bounded range of τn values
for which the bifurcation curves align properly for fixed Cm

(Fig. 7B). In other words, a certain difference in rate con-
stants for v and n is required, but the extent of the timescale
separation is bounded, and thus v, n should indeed be con-
sidered as evolving on the same timescale, albeit at different
rates.

3.2.2 (C2) and (C3) ⇒ relationships among all remaining
timescales

Using (C2) and (C3), we can obtain the relation among
timescales for the other three variables, h, c and l, required
to yield an MB solution. Imposing (C3), we require that
the (c, l) system acts as a relaxation oscillator and so the
timescale of c is determined by that of l during its silent
phase. In other words, we haveRc ≈ Rl during phase and

Fig. 8 Time series for attracting solutions of the constant-τ model and
associated bifurcation diagrams when Rv = 1, Rn = 5, Rc = 10,
and Rl = 1000 (pattern shown repeats periodically). (A) and (C):
Rh = 90; (B) and (D): Rh = 10000. Top row shows temporal evo-
lution of v (black); bottom row shows the curves of HC bifurcations

(red), LF bifurcations (blue) and the trajectory (black), projected into
(h, gCANT ot

) parameter space. The yellow symbols indicate transition
points between different phases for the dendritic subsystem, as shown
in Fig. 2A. Circled numbers in (D), which represent the four phases of
the (c, l) oscillation as in Fig. 2A, are omitted in (C)
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phase (Fig. 2A). Moreover, the fact that almost all small
bursts happen during phase suggests that the SW phase
lies in phase . As a result, to consider (C2), we compare
Rh with Rl , rather than Rc, during phase .

Based on (C1), (C3), and (6), we set the timescales to be
(Rv, Rn) ∼ (1, 5) and (Rc, Rl) ∼ (10, 1000), respectively..
By fixing Rl = 1000 and varying τh, which controls Rh,
we study the influence of the relation between Rh and Rl on
the dynamics of Eq. (5). From numerical simulations over a
range of τh values, we find that (5) can generate MB solu-
tions when τh = 1000, but this pattern is lost when τh = 90
(Fig. 8A) or τh = 10000 (Fig. 8B). These numerical results
suggest that h and l may need to evolve at comparable rates
in order for the constant-τ model to generate MB solutions.

The top row in Fig. 8 shows the time series for v, while
the bottom row shows the 2-parameter bifurcation diagrams
in (h, gCANT ot

)-space together with the projection of the
solution shown in the top row. The left panel of Fig. 8 shows
the case when Rh = 90 < Rl = 1000 during phase .
Since the dendritic oscillation follows the c-nullcline on the

Table 2 Timescales for the constant-τ model (5)

Fast Slow

Rv Rn Rc Rh Rl

(0.4596, 1.2721) 5 (0.4596, 5) 1000 ≥ 1000

superslow timescale in this phase, h is evolving faster than
c and thus the trajectory crosses the curves of LF and HC
bifurcations within only one spike. This process will con-
tinue until c jumps up to its maximum value (yellow square),
after which a burst of higher frequency spiking begins via
the mechanism discussed in Section 3.1 and terminates
when c falls down during phase . Therefore, the spiking
persists throughout the c oscillation, failing to yield an MB
solution. In the other case, when h evolves on a timescale
of O(10000), h is slower than l and c, and Eq. (5) gen-
erates a non-mixed bursting solution as shown in Fig. 8B.
This solution arises because the drift of the trajectory in
the direction of decreasing h after passing the curve of LF

Fig. 9 MB dynamics with altered timescales. (A) One period of an
MB solution for Rh = 1000, Rl = 10000. The slowing of l results
in additional small bursts within the cycle. (B) Two periods of an MB
solution for Rc = 1, Rh = 1000, Rl = 1000, such that the model
includes only 2 timescales. (C) Equilibrium curves for the (v, n, c)

system with h as a parameter and l = 0.8. In this view there are 3 dif-
ferent curves corresponding to c = 0.97 (green), c = 0.07 (red), and
c = 0.02 (blue), respectively, which are the 3 values where c′ = 0 with

l = 0.8. AH and HC points are labeled; periodic orbits emanating from
AH points are not shown, to avoid cluttering the plot. (D) Two peri-
ods of an MB solution for Rc = 1, Rh = 10000, Rl = 10000. Note
that the time axis is scaled by a factor of 10 relative to (B). The persis-
tence of MB dynamics with larger Rh, Rl emphasizes that h, l really
do evolve on a separate, slower timescale from the other variables in
the 2-timescale model
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Fig. 10 The graphs of the functions 1/τn(v) and 1/τh(v), with both
default and new choices of σn, an, σh and ah. (A): The graph of 1/τn(v)

for the default parameter values (σn, an) = (−4, 0) (dashed blue),
or for the modified parameter values (σn, an) = (−5, 0.1) (green) or

(σn, an) = (−6, 0.1) (magenta). (B): The graph of 1/τh(v) for the
default parameter value (σh, ah) = (5, 0) (dashed blue), or for the
modified parameter value (σh, ah) = (7, 0.001) (red)

bifurcations is too slow for the solution to reach the
curve of HC bifurcations (see Fig. 8D). As a result, spik-
ing continues throughout the silent and active phases of
the (c, l) oscillation, corresponding to the active phase
of a single burst, until the slow jump down of c during
phase brings the flow below the HC curve, terminat-
ing the burst of v spiking. On the other hand, if we fix
Rh = 1000 and slow down l (e.g., Rl = 10000), then
the MB solution persists, with more small bursts pro-
duced within each MB cycle because phase , during
which small bursts occur, is prolonged; see Fig. 9A. There-
fore, we conclude that for mixed bursting, the timescales
should satisfy the following refined and extended version of
condition (C2):

(C2)’: The trajectory needs to cross the gap between the
LF and HC curves multiple times, with each cross-
ing taking long enough to allow for a square-wave
burst, so that there are multiple small bursts before
the long burst; for this to happen, h should be
slow enough relative to v and n, and c should
evolve at least as slowly as h during the SW
phase.

For the above analysis to apply, we require that c evolves
faster than h and l, but we have not yet specified how fast.
The discussion up to this point shows that if (C3) holds
and we speed up c, then we do not affect (C1), (C2)’, or
(C3). In fact, as long as the relaxation character of the (c, l)

oscillations is maintained, the timescale of c, which deter-
mines how fast the jump up of c happens and hence
determines how fast the transition from the small burst to
the long burst occurs, will not affect the MB pattern qual-
itatively. This claim is supported by the simulation result
that if we make Rc ∼ O(1) = Rv so that c evolves on the
same timescale as v, the MB pattern still occurs, as shown
in Fig. 9B.

3.2.3 Summary: MB requires two but not three separate
timescales

We summarize the choices about the timescales that support
MB dynamics in Table 2. If MBs are truly a three timescale
form of dynamics, then we should be able to separate vari-
ables into three timescale classes and spread the timescales
out as much as we like while still maintaining the MB
solution. However, this is not the case. In fact, the MB solu-
tion breaks down as we make (v, c) and n more separated.
Hence, in a timescale decomposition, the timescales should
be considered as segregating into two classes, as indicated
in Table 2.

This grouping is supported by two additional observa-
tions. First, if we consider (v, n, c) as the fast variables
and compute the bifurcation diagram of the fast subsystem
with respect to h, analogous to Fig. 2B, we obtain a simi-
lar result, see for example Fig. 9C. (Actually, as shown in
Fig. 9C, there is one subtle change: because c′ = 0 has
three solutions for each fixed l in some range as shown
by the red nullcline in Fig. 2A, we get three S-shaped

Fig. 11 The bifurcation diagrams of the somatic subsystem corre-
sponding to the modified forms of τn(v) as shown in Fig. 10B, along
with the h-nullcline (cyan). The other color codings are the same as in
Fig. 10A
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Table 3 Time Scales of n and
h Case σn an Rn σh ah Rh

Default −4 0 O(10) ∼ O(0.1) 5 0 O(10000) ∼ O(100)

Modified −5 0.1 ≈ 5 7 0.001 ∼ O(1000)

equilibrium curves, each with its own AH, HC and LF
points, instead of one. The evolution of l modulates these
curves, just as c modulated the bifurcation curves when

it was slow as in Fig. 5, but the overall MB dynamics
remains similar, as shown in Fig. 9B, and can be understood
using similar arguments.) Second, as we exaggerate the

Fig. 12 Time series for attracting solutions of Eq. (4) and corre-
sponding bifurcation diagrams, with modified τn and τh as shown in
Fig. 10 and Table 3 and with the timescales for the other three variables
given by (Rv, Rc, Rl) = (O(1), O(1), O(1000)). Left panels: Tempo-
ral evolution of v. Right panels: Two-parameter bifurcation diagrams
showing HC (red) and LF (blue) curves, together with the projection
of the trajectory (black) from the left panel, in (h, gCANT ot

)-space. In

the top row, h is evolving on a timescale of O(1000) according to
Table 3, which is made 10 times as slow (respectively fast) as in the
middle (respectively lower) row. The yellow symbols indicate transi-
tion points between different phases for the dendritic subsystem, as
shown in Fig. 2A. Circled numbers in (B), which represent the four
phases of the (c, l) oscillation as in Fig. 2A, are omitted in (D) and (F)
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separation between these two classes, the MB solution per-
sists (Fig. 9D). Therefore, we conclude that the MB solution
of the constant-τ model (5) is not specifically a three-
timescale phenomenon but rather can occur robustly with
two timescales.

3.3 Conditions (C1),(C2)’,(C3) guide selection
of timescales that support MB dynamics in the full
model (1)

Based on the timescales that we have found in Section 3.2,
we can now modify the original full model (1), the
dimensionless version of which is given by Eq. (4), to obtain
MB solutions. Notice that the only difference between
the full model and the constant-τ model is whether the
timescales of n and h are the v-dependent functions τn(v)

and τh(v) or the constants τn and τh. We set Rc =
O(1) by increasing KCa from 2.5 × 10−5 to 1.25 × 10−4

and keep timescales for v and l unchanged so that we
have (Rv, Rc, Rl) = (O(1), O(1), O(1000)). According
to Table 2, we will need to modify τn(v) and τh(v) in
order to obtain Rn ≈ 5 and Rh ≈ 1000 for MB solu-
tions. Specifically, we require these two functions to be less
dependent on v and so as close as possible to the size 5 or
1000. To this end, we introduce a new parameter ax with
default value 0 and abuse notation to redefine 1/τx(V ) =
τ̄x/ cosh((V − θx)/2σx) + ax , where x ∈ {n, h}. We con-
strain the timescales for n and h by varying the parameters
(σn, an) and (σh, ah), respectively.

Figure 10 shows both the original τx functions and their
modified versions with the new parameters we have cho-
sen. The reciprocals of the original τn and τh functions are
given by the dashed blue curves, while the reciprocals of the
modified functions that are now less dependent on voltage
are denoted by the solid curves. Two examples of τn(v), the
reciprocals of which are shown in Fig. 10A, illustrate the
effects of modifying τn on the robustness of MB solutions.
In the case when σn = −6, the upper branch of somatic sub-
system equilibria (magenta) intersects the h-nullcline (cyan)
at a stable fixed point (Fig. 11), leading to a bistability of
silence and bursting and hence compromising the robust-
ness of the bursting solution. There is no such issue in the
other case, when σn = −5. In fact, the resulting bifurca-
tion diagram (Fig. 11, green) is qualitatively the same as the
one denoted by the blue curve in Fig. 6A except that the AH
bifurcation on the upper branch of S is now subcritical, and
so we choose to modify τn(v) with σn = −5, an = 0.1.

Recall that it is not accurate to simply nondimension-
alize 1/τx(V ) by dividing it by its maximum, Tx =
max(1/τx(V )), due to its dependence on voltage. Taking
into consideration the full range of 1/τx(V ) rather than just
the maximum, we summarize the timescales of n and h in
Table 3.

With (Rv, Rc, Rl) fixed at (O(1), O(1), O(1000)), the
version of system (4) derived with the modified τn and
τh given in Table 3 is able to generate an MB solution
(Fig. 12A). The HC and LF curves in the 2-parameter bifur-
cation diagram in (h, gCANT ot

) parameter space, as shown
in Fig. 12B, are qualitatively the same as those denoted by
the red and blue curves in Fig. 5c in Section 3.1. Hence
the mechanisms underlying the MB solution from Eq. (4),
the dimensionless version of the full model, are qualita-
tively the same as those underlying the MB solution from
the constant-τ model as discussed in Section 3.1.

Further speeding up of h (e.g., dividing τh by 10) will
eliminate MB solutions (Fig. 12C), as will the slowing down
of h (e.g., multiplying τh by 10, see Fig. 12E). The bifurca-
tion mechanisms involved are again similar to what happens
to the constant-τ model, as seen by comparing Fig. 12D
with Fig. 8C and F with Fig. 8D. Hence, the results from
the constant-τ model give crucial insights into how to adjust
and group timescales for the original full model to support
MB solutions.

3.4 Robustness of the full model

For the original parameter values as given in Park and Rubin
(2013), MB solutions of the full model have sensitive depen-
dence to [IP3] and gNaP, two critical parameters that help
control the relative contributions of ICAN and INaP and are
used in previous studies to switch between different forms
of bursting dynamics (Toporikova and Butera 2011; Park
and Rubin 2013). With the new mix of timescales cho-
sen in Section 3.3, simulation results show that the full
model can generate MB solutions that are significantly more
robust to variations in both [IP3] and gNaP (Fig. 13). In

Fig. 13 Regions of MB solutions in ([IP3], gNaP)-space for the full
model. The region for MB solutions of the full model for its origi-
nal parameter values as given in Park and Rubin (2013) is shown in
red; the MB region for the new mix of timescales (Rv, Rc, Rl) =
(O(1), O(1), O(1000)), with Rn and Rh given in Table 3, obtained by
making Cm = 21, KCa = 1.25 × 10−4, σn = −5 , an = 0.1, σh = 7
and ah = 0.001, is shown in blue. While the right boundary of the blue
region ends at [IP3] ≈ 1.58 for gNaP ∈ [1.78, 2.43], we only plot the
part with [IP3] ≤ 1 to allow better visibility of the red region
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Fig. 14 Time series of Eq. (4) with Cm = 21, KCa = 1.25 × 10−4, σn = −5 , an = 0.1, σh = 7 and ah = 0.001. Other parameters are as in
Table 1. (A): [IP3] = 0.95, (B): [IP3] = 1.5. In both plots, the yellow symbols have the same meanings as in Fig. 2A

the following, we will examine what happens to the system
dynamics under variations of timescales to yield this great
enhancement of robustness of MB solutions to [IP3] and
gNaP.

3.4.1 Robustness to [IP3]

To explore the dependence of MB solutions of system (4)
on [IP3], we fix gNaP = 2. As [IP3] increases from 0.95
(Fig. 14A) to 1.5 (Fig. 14B), the number of small bursts per
MB cycle decreases. If we keep increasing [IP3], the small
bursts will eventually disappear and the MB solution will
be lost. By understanding the effect, we can deduce what
adjustments are needed to make MB solutions even more
robust to changes in [IP3].

From Fig. 15, we find that an increase of [IP3] shifts the
c-nullcline downward and therefore influences the dynam-
ics of the (c, l) subsystem. A 1-parameter bifurcation dia-
gram for the (c, l) system, with [IP3] as a parameter,
summarizes the effects of [IP3] variations on the intracellu-
lar calcium dynamics more fully (Fig. 16). For each fixed
[IP3], the c-nullcline is cubic and the l-nullcline intersects it

in 1, 2, or 3 points (Fig. 2A). The intersection points are crit-
ical points, which occur along the red curve in Fig. 16 and
may be stable (solid) or unstable (dashed). For each [IP3],
the c-nullcline achieves a local maximum at a left fold or
knee (Fig. 2A). The knees form the blue curve in Fig. 16,
and the loss of stability of the fixed point occurs, in an AH
bifurcation that yields oscillations, when the fixed point is
very close to this knee.

The l-nullcline lies near the knee on a range of [IP3] val-
ues near the loss of stability, as exemplified in Fig. 15A.
(c, l) evolve very slowly near the knee when the nullclines
are so close together (data not shown). Thus, even though c

evolves on the same timescale, determined by its slaving to
l, during phase (Fig. 15: from the yellow star, c ≈ 0.0175,
to the yellow circle, c ≈ 0.0293), for both [IP3] values in
Fig. 15, this phase duration is much longer for [IP3] = 0.95,
where the trajectory spends on long time near the fold (yel-
low circle), than for [IP3] = 1.5, as observed in Fig. 14.
Recall that all small bursts occur during the silent phase
before c gets large, as shown in Figs. 14 and 17; as a result,
there are fewer small bursts for [IP3] = 1.5. Specifically, in
Fig. 17A when [IP3] = 0.95, the silent phase time is long

Fig. 15 Projection of the two MB solutions (black) from Fig. 14 to (c, l)-space. The red curve is part of the c-nullcline and the cyan curve is part
of the l-nullcline. The yellow symbols have the same meanings as in Fig. 14. (A): [IP3] = 0.95. (B): [IP3] = 1.5. Other parameters as in Fig. 14
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Fig. 16 Summary of how structures relevant to the activity of the
dendritic subsystem depend on the parameter [IP3], with all other
parameters involved in the calcium dynamics as given in Fig. 14. The
red solid (respectively, dashed) curve indicates the l-coordinate of the
stable (respectively, unstable) intersection of the c- and l-nullclines,
i.e., fixed points (FP), for the dendritic subsysystem, while the blue
curve denotes the l-coordinate of the left knee (LK) of the c-nullcline
for the dendritic subsystem, both parametrized by [IP3]. The two black
vertical lines indicate the [IP3] values of two AH bifurcations in the
dendritic subsystem where the periodic oscillations (PO) of (c, l) begin
([IP3] = 0.942602) and terminate ([IP3] = 1.58101), respectively

enough for the trajectory to pass between the LF and HC
curves multiple times and hence v exhibits multiple small
bursts. However, for the other case shown in Fig. 17B, the
time available for generating small bursts is so short that
only two small bursts occur before the yellow circle.

Therefore, one way to make the MB solution more robust
to changes in [IP3] is by using another means to prolong
the silent phase of the dendritic subsystem oscillation. To
this end, we can make l slower so that it is more separated
from c and h. In that way, the orbits adhere closer to the
c-nullcline during the silent phase and are slaved to l on a
slower timescale, resulting in a longer silent phase for each
fixed [IP3].

On the other hand, according to (C1), the somatic subsys-
tem must yield bursting for the full system to generate MB
solutions, i.e., there must be a gap in h between the LF and

Fig. 18 Two curves of HC bifurcations (red solid, modified τn: σn =
−5, an = 0.1; red dashed, default τn: σn = −4, an = 0) and two
overlapping curves of LF bifurcations (blue, default and modified τn),
in (h, gCANT ot

) parameter space. The black curve denotes the trajec-
tory for the default τn function, with other parameters the same as
in Figs. 14–17B. The yellow symbols have the same meanings as in
Fig. 14

HC curves in (h, gCANT ot
) parameter space (Fig. 17). As τn

is modified according to Table 3, LF remains unchanged,
while the HC curve moves further away from the LF curve
(Fig. 18). Correspondingly, the range of gCANtot values
for which there exists a gap becomes wider and the gap
also expands relative to the default case. Therefore, the
gCANtot interval over which bursting occurs in the somatic
subsystem is broadened with the modified timescale for n.

As a result, it is natural to expect that within the same
amount of silent phase time of the dendritic subsystem oscil-
lation, the full model with the modified τn will be able to
generate more small bursts. This is not the case, however.
In fact, for [IP3] = 1.5, the full model with the default τn

yields an MB solution consisting of the same number of
small bursts (Fig. 18) as with the modified τn (Fig. 17B).
The effect of the adjustment of the timescale for n is to
increase the duration and the number of spikes within each

Fig. 17 The zoomed view of two-parameter bifurcation diagrams of HC (red), LF (blue) and the trajectory (black) from Fig. 14, projected into
(h, gCANtot)-space. The yellow symbols have the same meanings as in Fig. 14. (A): [IP3] = 0.95, (B): [IP3] = 1.5. Other parameters as in Fig. 14



262 J Comput Neurosci (2016) 41:245–268

Fig. 19 Effect of variations in gNaP on the behaviors of the somatic subsystem with gCANT ot
= 0. (A) Default τn(v). (B) Modified τn(v) (denoted

by the green curve in Fig. 10A). All other parameters are fixed at their standard values

small burst, corresponding to the larger gap between the LF
and HC curves, resulting in more biologically relevant small
burst events.

3.4.2 Robustness to gNaP

To study the robustness of MB solutions to gNaP, we fix
[IP3] at 0.95. Numerical simulations show that as gNaP is
increased, the behavior of the somatic subsystem switches
from quiescence to bursting to spiking, corresponding to the
full system transitioning from bursting driven by the den-
dritic subsystem (dendritic bursting (Toporikova and Butera
2011; Park and Rubin 2013)) to mixed bursting to burst-
ing that involves both the somatic and dendritic subsystems
but without a mix of burst types (somato-dendritic bursting
Toporikova and Butera 2011; Park and Rubin 2013).

A graphical summary of the effect of gNaP variations on
the dynamics of the somatic subsystem is provided in a 1-
parameter bifurcation diagram in Fig. 19A, where the bifur-
cation structure of the somatic subsystem with respect to
gNaP for gCANT ot

= 0 is displayed. In this case, we plot gNaP
against the standard Euclidean norm of the solution, rather

than against V . The hyperpolarized fixed point of somatic
subsystem is stable (red solid), corresponding to quiescence,
for the smaller gNaP values. The stability changes at an AH
bifurcation and the spiking family (blue) becomes stable at a
period doubling (PD) bifurcation. Moreover, the blue curve
terminates at a homoclinic bifurcation involving the unsta-
ble equilibrium branch (red). Between the spiking and the
quiescence is the gNaP interval where the somatic subsys-
tem is available in participating in bursting. According to
previous work on square-wave bursting (Butera et al. 1999),
bursting patterns result for most of the gNaP interval between
the AH and PD bifurcations. A similar bifurcation diagram
for the modified τn function, also for gCANT ot

= 0, appears
in Fig. 19B. The potential bursting interval is broadened
substantially by the modification of τn.

Next we extend this bifurcation analysis and examine the
dependence of MB solutions on both gNaP and gCANT ot

. To
do this, we compute 2-parameter bifurcation diagrams in
(gCANT ot

, gNaP)-space (Fig. 20). The somatic subsystem’s
spiking/bursting boundary (blue, PD) was calculated using
AUTO (Doedel 1981; Doedel et al. 2009), by following the
PD point in (gCANT ot

, gNaP), while the boundary between

Fig. 20 Spiking/bursting and bursting/plateauing boundaries of the somatic subsystem for (A) default τn(v) and (B) modified τn(v) as in Fig. 19
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bursting and quiescence was computed by following the
AH point where the fixed points of the somatic subsystem
lose stability (Fig. 20A). A similar 2-parameter bifurcation
diagram for the modified τn function was also computed
(Fig. 20B). Comparing these two plots shows that for all
gCANT ot

values below 0.05, i.e., for all c values within a
complete relaxation oscillation cycle, the somatic subsys-
tem after modification can generate bursting solutions for a
wider range of gNaP. Recall that in order for the full sys-
tem to generate MB solutions, (C1) requires the somatic
subsystem to engage in bursting for c values arising dur-
ing the silent phase of calcium. Hence with the new mix of
timescales, MB solutions of the full model (4) become more
robust to gNaP.

In summary, through its effects on the somatic subsystem
bifurcation diagrams with respect to both gNaP and gCANtot

(Figs. 18, 19, 20), the new timescale for n helps enlarge
the bursting region in (gCANtot , gNaP)-space, which in turn
enhances the robustness of MB solutions for the full system
with respect to changes in gNaP for each fixed gCAN.

4 Discussion

We consider a single-compartment reduction (Park and
Rubin 2013) of a two-compartment model of a pre-BötC
neuron (Toporikova and Butera 2011), featuring both NaP
and CAN currents, as well as intracellular calcium oscilla-
tions that modulate the CAN current. Previous work char-
acterized the regions of ([IP3], gNaP) parameter space in
which various types of solutions, namely somatic bursting,
dendritic bursting, and somato-dendritic bursting, occur in
these models (Toporikova and Butera 2011; Park and Rubin
2013). While (Park and Rubin 2013) presented a mathemati-
cal analysis explaining relevant bursting mechanisms, based
on the NaP current, the CAN current, or both currents work-
ing together, limited analysis of MB solutions was provided
and little consideration was given to identifying how many
timescales are truly required to obtain these solutions or to
their robustness.

In this paper, we have explained the mechanisms under-
lying MB solutions. Our method is based on the ideas
of fast-slow decomposition, implemented by considering
the interaction of two subsystems (one potentially burst-
ing and the other intrinsically oscillating). This approach is
commonly used in the two-timescale setting and has also
recently been extended for a three-timescale system (Nan
et al. 2015).

In the course of our analysis, we derive certain condi-
tions on the timescales that together support MB solutions,
based on which we obtain a non-intuitive result that the
MB solution is in fact, at its simplest, a two-timescale phe-
nomenon rather than actually requiring three timescales.

Our analysis about how to group timescales in this system
may provide useful information for future studies of irreg-
ular bursting solutions observed in other realistic biological
models and in recordings from respiratory CPG neurons as
well as subthalamic nucleus (STN) neurons in the basal gan-
glia that can exhibit somewhat similar bursting patterns (e.g.
Beurrier et al. 1999; Jasinski et al. 2013; Dunmyre et al.
2011). Our approach may also prove helpful to modelers
making choices about timescale groupings in other physical
systems.

While parts of this work investigate rather specific details
of the MB solution, we have also followed our analysis
with an investigation of how the full model can be tuned
to obtain more robust MB solutions. Notice that the transi-
tions between regimes of different activity patterns yielded
by varying system parameters (e.g. [IP3], gNaP, gCAN)
have been studied in past works (Dunmyre et al. 2011;
Toporikova and Butera 2011; Park and Rubin 2013), in all
of which the MB solution only exists in a very small range
of parameters. In our work, we have investigated why the
new combination of timescales that we have found can sup-
port more robust MB solutions and hence have determined
how to obtain a larger MB region in ([IP3], gNaP) parame-
ter space by changing timescales. This analysis would also
carry over similarly to the robustness analysis of the MB
solution with respect to other parameters, such as gCAN,
that are known to vary across pre-BötC neurons. Given that
MB activity is observed in pre-BötC recordings, we pro-
pose that the modified model that we have derived would
be a reasonable choice for incorporation in future studies
of pre-BötC network dynamics. Based on this model, we
predict that MB is likely to arise for pre-BötC neurons for
which dendritic calcium oscillations contribute significantly
to somatic membrane dynamics, such as through activa-
tion of a CAN current, over an intermediate range of gNaP
values for which the somatic compartment is itself burst-
capable at low Ca2+. From an MB state, both increases and
decreases of gNaP that are sufficiently large should yield
non-mixed bursting. MB dynamics is predicted to be robust
to slowing of IP3 dynamics but not with respect to slowing
of Ca2+ dynamics. Furthermore, although the contribution
of a SNIC bifurcation to MB dynamics is reminiscent of
parabolic bursting (Rinzel 1987), we nonetheless do not
expect pre-BötC neurons to exhibit behavior with the quan-
titative properties of parabolic bursting, because the fast
jumps in Ca2+, relative to the slower persistent sodium
inactivation dynamics, will yield abrupt transitions to rapid
spiking and to quiescence (e.g., Fig. 8A and E) even if there
are two fast subsystem SNIC events per cycle.

As in other earlier work, we have considered only one-
directional coupling, from the dendritic to the somatic
subsystem, such that our model can be thought of as one
oscillator forcing another. This simplification arises because
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we consider a one-compartment model, eliminating the
coupling between compartmental voltages present in two-
compartment models, and the original experiments and
modeling underlying the system that we study did not
highlight an influence of somatic voltage on the included
calcium oscillations (Mironov 2008; Toporikova and Butera
2011). The independent calcium oscillation itself includes
two disparate timescales, and this property significantly
contributes to the generation of MB solutions, which
would not arise, for example, with pure sinusoidal cou-
pling. Nonetheless, similar MB dynamics could likely arise
with other less biological but mathematically similar two-
timescale forcing terms. Moreover, there are many varia-
tions on the coupling among timescales that arise in other
model systems. For instance, Jasinski et al. recently pre-
sented a more detailed model for neurons in the pre-BötC,
where each of membrane potential and cytoplasmic Ca2+
concentration can influence the evolution of the other, and
showed that a heterogeneous population of these neurons
can generate somewhat similar MB solution patterns asso-
ciated with the generation of sighs (Jasinski et al. 2013).
The bidirectional coupling could alter the relevant bifurca-
tion structures and additional analysis would certainly be
needed to explore this complication. Furthermore, previous
work has suggested that the Na+/K+ pump, in addition to
INaP and ICAN, plays an important role in the generation of
the MB solution (Rubin et al. 2009; Jasinski et al. 2013), yet
this is not considered in the system we have studied. Hence,
the generalization of the analysis in this paper to more com-
plicated models, including additional multi-scale forms of
dynamics seen in respiratory neurons and possibly synap-
tic coupling as well, represent important open directions for
future work.

On the analytical side, open problems from the per-
spective of fast-slow decomposition and bursting analysis
include the development of systematic methods to treat
equations that evolve on different timescales in different
parts of phase space (Clewley et al. 2005), the study of
effects of varying additional model parameters, as well
as the identification of unfoldings that relate MB dynam-
ics to other forms of bursting (Osinga et al. 2012). It
is important to note that by using fast-slow decomposi-
tion, we miss the opportunity to capture more complicated
behaviors where timescale separation breaks down (e.g.,
Desroches et al. 2012), including possible chaotic dynam-
ics. By focusing on a specific solution pattern, mixed
bursting, and on aspects of timescales needed to produce
these solutions and to make them robust, we have not pur-
sued a variety of other interesting and important mathemat-
ical directions. For example we have neglected the explo-
ration of scenarios such as codimension-2 bifurcations and
spike-adding mechanisms by which fundamental transitions
in model dynamics could result from parameter variations

as well as quite a range of phenomena that can be associated
with homoclinic and SNIC bifurcations (Andronov and Vitt
1930; Andronov and Leontovich 1963; Shilnikov 1963;
Afraimovich and Shilnikov 1974b; Lukyanov and Shilnikov
1978; Afraimovich et al. 2014; Terman 1992; Shilnikov
et al. 2005; Shilnikov and Kolomiets 2008; Linaro et al.
2012; Desroches et al. 2013; Shilnikov et al. 2001).

While our study is motivated by the bursting patterns
observed in the pre-BötC, it may also be applicable to
other brain areas exhibiting rhythmic activity. In fact, we
have carried out similar analysis on a heuristic model,
consisting of a square-wave burster coupled to a general
relaxation oscillator, which can generate similar MB solu-
tion patterns to the full pre-BötC model considered in
this paper, and we found that qualitatiely similar mech-
anisms underlie these solution patterns in the heuristic
model, again without the need for a third timescale. In
other mammalian CPGs and rhythmic neural circuits, the
NaP current and CAN current have been identified as play-
ing critical roles in pattern generation (Wang et al. 2006;
Tazerart et al. 2007; Zhong et al. 2007; Tazerart et al.
2008; Ziskind-Conhaim et al. 2008; Sheroziya et al. 2009;
Brocard et al. 2013; Tsuruyama et al. 2013). Given that NaP
and CAN currents are widespread and can be essential for
the generation of bursts (Rubin et al. 2009; Dunmyre et al.
2011; Toporikova and Butera 2011; Park and Rubin 2013;
Jasinski et al. 2013), it seems likely that the interaction of
these currents is a fundamental component of the genesis
of bursting solutions in other areas as well. Therefore, it is
likely that our analysis of MB patterns can be extended and
applied to these other rhythmic neuronal systems, both to
explain the underlying dynamics and to assess its timescale
requirements.
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Appendix A: Adjusting timescales in the dendritic
subsystem

The full model (1) is capable of generating an MB solu-
tion (Fig. 21A) using parameter values for which ([Ca], l)
acts as a relaxation oscillator ([IP3] = 0.95μM, A =
0.005μM−1 · ms−1 as in (Park and Rubin 2013)). How-
ever, since the l-nullcline lies extremely close to the left
knee of [Ca]-nullcline (Fig. 21B), the trajectory projected
to ([Ca], l)-space does not jump up to large [Ca] values
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Fig. 21 Time series for attracting solutions of the full model (1) as
well as the bifurcation structure of the dendritic subsystem with param-
eter values as in Table 1 except [IP3] = 0.95[μM], A = 0.005[μM−1 ·
ms−1] as in (Park and Rubin 2013). Green and yellow symbols mark
key points along the solution trajectory (green star: the point with min-
imum gCANT ot

; yellow circle: the point when the trajectory passes the

left knee of the [Ca]-nullcline; green circle: beginning of the long burst
(LB).) (A): Time series for V . (B): Enlarged view of part of Fig. 2B
showing the nullclines for [Ca] (red) and l (cyan) for the dendritic sub-
system, together with the MB solution from the upper row. (C): Part of
time series of [Ca]

and transition to the long burst (LB) phase immediately
after passing the left knee (yellow circle). Instead, it slowly
moves along the l-nullcline for a transient period before
jumping up to the right branch (Fig. 21B and C: from the
yellow circle to the green circle); this effect can be inter-
preted as the influence of the bifurcation in the dendritic
subsystem that initiates the (c, l) oscillation, which occurs
at a value of [IP3] just below 0.95 (Park and Rubin 2013).
Numerically, we observe that small bursts occur during this
period (Fig. 21A). Therefore, the existence of the MB solu-
tion relies heavily on the nullcline interactions, which can be
tuned by changing [IP3]. To clarify the identification of the
timescales involved in the MB behavior and the assessment
of how to group timescales, and to eliminate the sensitivity
of MB solutions to the precise value of [IP3], we increase
[IP3] to 1. As a result, the [Ca]-nullcline moves downward
and hence further from the l-nullcline. Furthermore, we
also slow down l by decreasing A from 0.005 to 0.001 so
that l ∼ O(1000)ms becomes more separated from [Ca],
the delay time of the jump up of [Ca] at the left knee is

significantly decreased, and the dendritic subsystem takes
on a stronger relaxation character.

Remark 1 Although the dendritic subsystem acts as a more
standard relaxation oscillator with the new parameter val-
ues ([IP3] = 1, A = 0.001), [IP3] is not far enough
from the bifurcation value for the influence of the bifurca-
tion mentioned above to completely vanish. Hence, there
is still a transient delay before [Ca] jumps up at the left
knee, but it is much shorter than that with original parameter
values.

Appendix B: Nondimensionalization of the full
model (1)

From numerical simulations, we find that the membrane
potential V typically lies between −60mV and 20mV. Cor-
respondingly, for x ∈ {n, h}, we define Tx = max(1/τx(V ))

over the range V ∈ [−60, 20] and then define tx(V ),
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a rescaled version of τx(V ), by tx(V ) = Txτx(V ). We
also define gmax to be the maximum of the five con-
ductances gL, gK, gNa, gNaP and gCAN. Furthermore, we
let G([Ca]) = [IP3][Ca]

([IP3]+KI )([Ca]+Ka)
and gSERCA([Ca]) =

VSERCA
[Ca]

K2
SERCA+[Ca]2 . Substituting these expressions into

Eq. (1) and rearranging, we obtain the following system:

Cm

Qt · gmax

dv

dτ
= −ḡL(v − V̄L) − ḡKn4(v − V̄K)

−ḡNam
3∞(v)(1 − n)(v − V̄Na)

−ḡNaPmp∞(v)h(v − V̄Na)

−ḡCANf (c)(v − V̄Na) (7a)
1

Qt · Tn

dn

dτ
= (n∞(v) − n)/tn(v) (7b)

1

Qt · Th

dh

dτ
= (h∞(v) − h)/th(v) (7c)

d[Ca]
dτ

= KCa · (LIP3 + PIP3G
3([Ca])l3)

×(
[Ca]Tot − [Ca]

σ
− [Ca]) (7d)

−KCa · gSERCA([Ca]) · [Ca]
dl

dτ
= AKd(1 − l) − A[Ca]l (7e)

with dimensionless parameters ḡx = gx/gmax and V̄x =
Vx/Qv . Note that we have now nondimensionalized the
somatic subsystem (1a)-(1c).

Next we deal with Eqs. (1d)-(1e) by nondimension-
alizing [Ca], which typically lies between 0μM and
1μM, based on numerical simulations. We define Gc =
max(G3([Ca])) andGS = max(gSERCA(Ca)) over the range
[Ca] ∈ [0, 1] and then define Pmax to be the maximum of
{LIP3 , PIP3Gc, GS}. From system (7), we get the following
dimensionless system:

Cm

Qt · gmax

dv

dτ
= −ḡL(v − V̄L) − ḡKn4(v − V̄K)

−ḡNam
3∞(v)(1 − n)(v − V̄Na)

−ḡNaPmp∞(v)h(v − V̄Na)

−ḡCANf (c)(v − V̄Na) (8a)
1

Qt · Tn

dn

dt
= (n∞(v) − n)/tn(v) (8b)

1

Qt · Th

dh

dt
= (h∞(v) − h)/th(v) (8c)

σ

Qt · Pmax · KCa

dc

dτ
= (L̄IP3 + P̄IP3G

3(c)l3)

×( ¯[Ca]Tot − c − σ · c)

−ḡSERCA(c) · c (8d)
1

Qt · Qc · A

dl

dτ
= K̄d(1 − l) − cl (8e)

with dimensionless parameters L̄IP3 = LIP3/Pmax,
P̄IP3(c) = PIP3/Pmax, ḡSERCA(c) = gSERCA([Ca])/Pmax

and K̄d = Kd/Qc .
Since we expect V ∈ [−60, 20] and [Ca] ∈ [0, 1],

suitable choices for the voltage and calcium scales are
Qv = 100mV and Qc = 1μM, respectively. We also see
that values of m∞(V ), mp∞(V ), f ([Ca]), n∞(V ), h∞(V ),
G([Ca]), ḡSERCA([Ca]), n, h and l all lie in the range [0, 1].
For the choice of parameters specified in Table 1, the maxi-
mum conductance is gNa = 28 nS, so we have gmax = gNa.
Numerical evaluations of 1/τn(V ) and 1/τh(V ) for V ∈
[−60, 20] show that Tn ≈ 20ms−1 and Th ≈ 0.04ms−1.
Similarly, we obtain Gc ≈ 0.0421 and GS ≈ 1000 pL ·
ms−1, so we have Pmax ≈ 1305 pL · ms−1. Using these
values we see that all terms in the right hand sides of
Eqs. (8a)–(8e) are bounded (in absolute value) by one.

The coefficients of the derivatives in the left hand sides of
Eqs. (8a)–(8e) now reveal the relative rates of evolution of
the variables. We find that Cm/gmax = 0.75ms ∼ O(1)ms,
1/Tn = 0.05ms ∼ O(0.1)ms, 1/Th = 25ms ∼ O(10)ms,

σ
Pmax·KCa

= 5.67ms ∼ O(10)ms and 1
Qc·A = 200ms ∼

O(100)ms. We choose the fast timescale as our reference
time, i.e., pick Qt = 1ms, and set

Rv := Cm

Qt · gmax
, Rx := 1

Qt · Tx

, x ∈ {n, h},
(9a)

Rc := σ

Qt · Pmax · KCa

, Rl := 1

Qt · Qc · A
. (9b)

As a result, the dimensionless system (8) becomes the
system (4) given in Section 3, namely

Rv

dv

dτ
= −ḡL(v − V̄L) − ḡKn4(v − V̄K)

−ḡNam
3∞(v)(1 − n)(v − V̄Na)

−ḡNaPmp∞(v)h(v − V̄Na)

−ḡCANf (c)(v − V̄Na) := f1(v, n, h, c) (10a)

Rn

dn

dτ
= (n∞(v) − n)/tn(v) := g1(v, n)/tn(v) (10b)

Rh

dh

dτ
= (h∞(v) − h)/th(v) := h1(v, h)/th(v) (10c)

Rc

dc

dτ
= (L̄IP3 + P̄IP3G

3(c)l3)( ¯[Ca]Tot − c − σ · c)

−ḡSERCA(c) · c := f2(c, l) (10d)

Rl

dl

dτ
= K̄d(1 − l) − cl := g2(c, l) (10e)

where Rv , Rn, Rh, Rc and Rl are dimensionless parameters
given in (9).
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