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a b s t r a c t 

Mathematical models of biological systems often have components that vary on different timescales. 

This multi-timescale character can lead to problems when doing computer simulations, which can re- 

quire a great deal of computer time so that the components that change on the fastest time scale can 

be resolved. Mathematical analysis of these multi-timescale systems can be greatly simplified by par- 

titioning them into subsystems that evolve on different time scales. The subsystems are then analyzed 

semi-independently, using a technique called fast-slow analysis. In this review we describe the fast-slow 

analysis technique and apply it to relaxation oscillations, neuronal bursting oscillations, canard oscilla- 

tions, and mixed-mode oscillations. Although these examples all involve neural systems, the technique 

can and has been applied to other biological, chemical, and physical systems. It is a powerful analysis 

method that will become even more useful in the future as new experimental techniques push forward 

the complexity of biological models. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Biological systems often feature interacting components that

ary on disparate timescales. For example, changes in a cell’s

nvironment trigger variations in protein levels through a se-

uence of protein–protein interactions, leading to changes in gene

ranscription, followed by translation and often post-translational

odification. This process may be followed by translocation of

roteins, such as ion channels or hormone receptors, into the

ell’s plasma membrane, which allows the cell to respond appro-

riately to its environment. This whole process can take hours,

ven though the fastest components (such as protein–protein

nteractions) occur on the timescale of seconds. An even wider gap

xists between rapid cellular events such as neuronal electrical

ctivity and much slower circadian rhythms coordinated through

he suprachiasmatic nucleus of the hypothalamus and involving

hythms in gene expression. 

Such examples are problematic for computer simulations of

athematical models, which are computationally expensive if

hanges at the fastest timescale are resolved. Fortunately, there are

pecialized mathematical techniques that can be applied to ana-

yze the behavior of systems in which the separation of timescales

s sufficiently large. There is a substantial literature on multiple-
∗ Corresponding author. Fax: +1 850 644 4053. 
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cale asymptotic analysis of systems with timescale separation

e.g., [48] ). Alternatively, one can employ geometric methods of-

en denoted as fast-slow analysis to simplify the investigation of

he system by breaking it into two or more reduced subsystems

hat are more tractable than the full model. There are two primary

oals of this article. The first is to provide an overview of some

ast-slow analysis techniques. The second is to illustrate some be-

aviors that come about in multi-timescale systems and that are

est understood from the viewpoint of fast-slow analysis. We use

xamples that involve the dynamics of electrically excitable cells,

ut other studies of multiscale dynamics and their analysis fo-

us on chemically reacting systems, intracellular calcium dynam-

cs, ecology, climate dynamics, and other application areas (e.g.,

45,55,67,74,75,77] ). 

A system of ordinary differential equations that evolves on two

imescales can be formally written as 

d � x 

dt 
= F ( � x , � y ) (1) 

d � y 

dt 
= εG ( � x , � y ) (2) 

here ε > 0 is small. The fast variables � x evolve on a faster

imescale than the slow variables � y , and we can define a cor-

esponding fast subsystem d � x /dt = F ( � x , � y ) , with 

�
 y as parameters,

nd slow subsystem d � y /dτ = G ( � x F ( � y ) , � y ) , where � x F is defined from

 ( � x , � y ) = 0 and τ = εt corresponds to a slow timescale. The di-

ensionality of the two subsystems differs among applications,

http://dx.doi.org/10.1016/j.mbs.2016.07.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2016.07.003&domain=pdf
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but the general approach of fast-slow analysis is to treat the sub-

systems separately. The idea underlying this splitting into subsys-

tems is that from a general initial condition, the system will be

governed by the fast subsystem and will settle to the neighbor-

hood of a fast subsystem attractor, where F = 0 , that is parameter-

ized by � y . Within this neighborhood, the system will evolve slowly,

governed by the slow subsystem, unless a boundary of the attrac-

tor is reached and the fast subsystem takes over again. Fast-slow

analysis is often employed to study relaxation oscillations, such as

those that occur in the van der Pol oscillator with strong damp-

ing [96,102] . Here, the original second-order nonlinear differential

equation can be converted into two first-order differential equa-

tions, yielding a single fast variable and a single slow variable.

This system has been used to describe a heartbeat [103] , and sim-

ilar planar systems have been used to describe electrical impulses

in neurons [40,41,68] , intracellular calcium dynamics in a neuron

[34] , and hourly hormone pulses [105] . 

More than twenty years after Richard FitzHugh used fast-slow

analysis to analyze what is now called the FitzHugh–Nagumo

model, John Rinzel adapted the fast-slow analysis technique to un-

derstand the dynamics underlying bursting in neurons and pan-

creatic β-cells [4,78,79,82,83] . Bursting is characterized by ac-

tive episodes of rapid electrical oscillations (also called impulses,

spikes, or action potentials) separated by quiescent or silent

phases, repeated periodically. It is ubiquitous in neurons and en-

docrine cells [24,95] and has been shown to be more effective

at evoking neurotransmitter and hormone secretion than continu-

ous trains of action potentials [61,104] . The technique developed by

Rinzel explains such things as the existence of the bursting oscil-

lation, patterns in interspike interval duration, the duty cycle (the

fraction of the period during which the system is spiking), transi-

tions between bursting and continuous spiking, and the roles that

various ionic currents play in the bursting pattern. In addition,

the bifurcations of the fast subsystem are useful for categorizing

bursts; the bifurcation responsible for the transition from silent to

active phase and that associated with the transition from active

to silent phase determine the type of bursting oscillation [7,51,80] .

Fast-slow analysis is now regularly used in the analysis of bursting

oscillations, and in the first portion of this article we describe the

method and give some applications. 

In addition to relaxation and bursting oscillations, one other

class of oscillations that comes up in fast-slow systems is called

mixed-mode oscillations (MMOs). These consist of small-amplitude

oscillations mixed with large-amplitude oscillations, often repeated

periodically. MMOs have been identified and analyzed using math-

ematical models in chemically reacting systems [55,75] , voltage dy-

namics of neurons [10,30,33,44,50,62,65,85–87] and electrically ex-

citable pituitary cells [107,108] , intracellular calcium dynamics [45] ,

and elsewhere [67] . The small-amplitude oscillations are often due

to canards , which are orbits that follow a curve or sheet of at-

tracting equilibria as well as a portion of a repelling curve/sheet

of equilibria of the fast subsystem. Though originally studied in a

system with one fast and one slow variable [31,37] , canards can be

generic in systems with two or more slow variables, so they occur

over much larger regions of parameter space in the latter case (see

[29] for an excellent review of canards and MMOs). In the con-

text of neurons, the small oscillations are subthreshold voltage os-

cillations, while the large oscillations are action potentials. Thus,

the canard orbits have the effect of increasing the time between

spikes, and thereby reducing the spike frequency [87] . In electri-

cally excitable pituitary cells the canard orbits themselves are the

“spikes”, which are typically quite small, and the large oscillations

are repolarizations that occur between bursts [106] . In the second

portion of this article we illustrate how canard orbits come about

in the context of MMOs and discuss some applications of MMOs in

electrically excitable neurons and pituitary cells. 
We note that when the first issue of Mathematical Biosciences

as published in 1967, little of what we discuss in this article had

een discovered. Relaxation oscillations had been around for half a

entury, but bursting oscillations, canards, and mixed-mode oscil-

ations were all in the future. The future is now! 

. Relaxation oscillations and canards in a planar fast-slow 

ystem 

Planar systems allow us to illustrate how the basic interplay be-

ween fast and slow variables can give rise to a characteristic form

f oscillations. Furthermore, they provide a clear view of transitional

henomena that arise as a parameter is varied such that a bifurca-

ion from steady state to oscillatory behavior occurs. We will illus-

rate these points with a single model system, noting that qualitatively

imilar phenomena occur in other systems with similar mathematical

tructure. 

As mentioned above, the van der Pol oscillator with strong

amping is the canonical fast-slow system with a single fast and

 single slow variable. For purposes of continuity with later sec-

ions, we begin with a fast-slow system that describes membrane

otential oscillations in an electrically active cell and that captures

he dynamic features of the van der Pol oscillator. This is based on

he “s-model” for pancreatic β cells [91] . This model has a variable

or the membrane potential or voltage ( V ), an activation variable for

he fraction of activated delayed rectifier K 

+ channels ( n ), and an

ctivation variable for the fraction of activated K 

+ channels of an-

ther type ( s ). These latter K 

+ channels could be Ca 2+ -activated K 

+ 

hannels, for example. The dynamics of the variables are described

y the following differential equations: 

dV 

dt 
= −(I Ca + I Kdr + I KAT P + I Ks + I L ) /C m 

(3)

ds 

dt 
= 

s ∞ 

(V ) − s 

τs 
. (4)

he change of voltage depends on several ionic currents reflect-

ng ion flux through different ion channels. The V -dependent Ca 2+ 

urrent, I Ca , is an inward current that is responsible for the up-

troke of a spike. It is similar to the Na + current in neurons, al-

hough its inactivation is much slower and is not included in the

-model. (A Na + current is also not included, since Na + chan-

els are inactivated in mouse β cells.) Like the Na + current, the

a 2+ current activates very rapidly, and in the s-model it is as-

umed to adjust instantaneously to changes in V . This is called a

uasi-equilibrium or quasi-steady-state approximation and is often

sed in multi-timescale models [42] . Using this assumption, the

a 2+ current is I Ca = g Ca m ∞ 

(V )(V − V Ca ) , where g Ca is the maxi-

um conductance (the conductance when all channels are acti-

ated), V − V Ca is the driving force that powers ion flux through

pen channels, and m ∞ 

( V ) is the equilibrium activation function,

iven by the increasing sigmoid function 

 ∞ 

(V ) = 

1 

1 + e 
v m −V 

s m 

. (5)

his function, which ranges from 0 to 1, is half-maximal at V = v m 

nd the steepness of the curve is determined by s m 

(the curve is

teeper when s m 

is small). The other inward or depolarizing cur-

ent is I L , which is a constant-conductance leakage current that

roups together the effects of various ion-specific flows and takes

he form I L = g L (V − V L ) . 

Model (3) and (4) includes three outward or hyperpolarizing

urrents, all carried by K 

+ . The first, I Kdr , is the standard delayed

ectifier that is responsible for the downstroke of an action po-

ential. Activation of this current is considerably slower than that

f the Ca 2+ current (otherwise there would be no spike), so the
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Table 1 

Parameters for the planar fast-slow system, based on [91] . 

g Ca = 280 pS g L = 25 pS g Kdr = 1300 pS 

g s = 35 pS g KATP = 13 pS C m = 4524 fF 

V K = −80 mV V Ca = 100 mV V L = −40 mV 

v m = −22 mV v n = −9 mV v s varies 

s m = 7 . 5 mV s n = 10 mV s s = 0 . 5 mV 

Fig. 1. Relaxation oscillations produced by a planar fast-slow system. (A) The fast 

variable V has a square wave time course. (B) The slow variable s has a sawtooth 

time course. Here, v s = −40 mV. 
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Fig. 2. The trajectory of a relaxation oscillation (red) in the phase plane. Also 

shown are the V -nullcline (black) and the s -nullcline (green). Here, v s = −40 mV. 

(For interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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uasi-equilibrium approximation is not typically used in the s-

odel. However, we apply the approximation here so as to main-

ain a planar system. This has the effect of eliminating the spikes,

ut as we shall see it still allows for relaxation oscillations. With

he quasi-equilibrium approximation, the delayed rectifier current

s I Kdr = g Kdr n ∞ 

(V )(V − V K ) . The n equilibrium function is given

y 

 ∞ 

(V ) = 

1 

1 + e 
v n −V 

s n 

. (6) 

he second K 

+ current, I Ks , reflects K 

+ flux through a separate set

f ion channels that activate on a slow timescale. This timescale is

et by the parameter τ s , which we choose so that s changes much

ore slowly than V . The current is given by I s = g s s (V − V K ) and

he s dynamics are described by Eq. (4) , where the s ∞ 

function is

 ∞ 

(V ) = 

1 

1 + e 
v s −V 

s s 

. (7)

he third hyperpolarizing current, I KATP , reflects K 

+ flux through

TP-sensitive K 

+ channels. These channels respond to the

denosine triphosphate (ATP) that is produced through glucose

etabolism, and the expression of the channels in β cells allows

hem to respond to the blood glucose level [1,23] . For simplicity it

s assumed in the s-model that ATP, and thus the K(ATP) conduc-

ance, is constant, although it is now clear that ATP oscillations oc-

ur in β cells [64,66] . The K(ATP) current is I KAT P = g KAT P (V − V K ) .

ll parameter values for the s-model are given in Table 1 . 

.1. Relaxation oscillations 

The separation in timescales between the fast variable V and

he slow variable s in the s-model gives rise to relaxation os-

illations (e.g., [96,101] ). Fig. 1 A shows the time course of the

ast variable, which has the shape of a square wave. The voltage

ises slowly during the nadir of the oscillations, which we call

he “down phase”, and declines slowly during the peak, which we

all the “up phase”. The transitions between these phases are very

apid. In contrast, the s variable slowly rises during the up phase

nd slowly declines during the down phase, yielding a sawtooth

attern ( Fig. 1 B). 

The dynamics of relaxation oscillations are best understood in

he phase plane ( Fig. 2 ). Here we plot the nullclines, which are
he curves where d V/d t = 0 and d s/d t = 0 , respectively, with the

rajectory of the relaxation oscillation superimposed. From (3) , we

ee that the voltage nullcline is the curve in which the ionic cur-

ents sum to zero. Since this is nonlinear in V , but linear in s , we

an specify the V -nullcline by solving for s in terms of V : 

 = 

−(I Ca + I Kdr + I L + I KAT P ) 

g s (V − V K ) 
. (8) 

he equation for the s -nullcline is just 

 = s ∞ 

(V ) = 

1 

1 + e 
v s −V 

s s 

. (9)

The nullclines partition the ( s , V )-plane into regions of uniform

ow direction; the direction of flow switches between left and

ight when the s -nullcline is crossed and between up and down

hen the V -nullcline is crossed. 

Note that the V -nullcline corresponds to the surface { F ( � x , � y ) =
 } in the notation of the general fast subsystem given by Eq. (1) .

his surface is also known as the critical manifold , since it is the

urface of critical points of the fast subsystem and has manifold

tructure; this terminology will be useful later. The critical mani-

old is Z-shaped, consisting of three branches, pairs of which meet

t folds or “knees”, which are saddle-node bifurcations of the fast

ubsystem Eq. (3) for the s-model. The s -nullcline is a sharp sig-

oid curve. These cross on the middle branch of the V -nullcline,

esulting in an equilibrium point of the full system at which the

erivatives of both variables are 0. However, this is an unstable

quilibrium, and it is surrounded by a stable limit cycle that is the

elaxation oscillation. 

Because of the separation of timescales, a typical phase point

oves quickly in the V direction to the V -nullcline, governed by

he fast subsystem. It then moves slowly along this nullcline as s

lowly changes, governed by the slow subsystem. During the down

hase of the relaxation oscillation the phase point moves leftward

long the bottom branch of the V -nullcline until the branch turns

round at the left knee. It then moves rapidly upward to the top

ranch, again reflecting the fast subsystem dynamics. Now in the

p phase, the phase point moves slowly rightward along the top

ranch of the V -nullcline, driven by the slow subsystem, until the

ullcline turns at the right knee. From here the phase point moves

apidly down to the bottom branch of the V -nullcline, and the cycle

s restarted. 

.2. Canards 

Canards, named in part after the French word for ducks, were

rst discovered and studied in planar systems yielding relaxation

scillations [6,35,58] , mostly the van der Pol oscillator. Canard

scillations occur in a small range of parameter values near an

Andronov)-Hopf bifurcation induced by variation of a single pa-

ameter in a fast-slow system. In the case of a planar fast-slow

ystem, they are transitional phenomena that appear at the inter-

ace between a stable stationary state and large-amplitude relax-

tion oscillations. Because the transition from stationarity or small-

mplitude oscillations to large-amplitude oscillations corresponds 
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Fig. 3. Time courses of several canards during a canard explosion. (A) v s = 

−47 . 2 mV. (B) v s = −46 . 8604 mV. (C) v s = −46 . 86031215575 mV. (D) v s = 

−46 . 86031215573 mV. 

Fig. 4. Trajectories of the four canards from Fig. 3 , with the same color correspon- 

dence. The s -nullcline shown is for v s = −47 . 2 mV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Parameters for the 3-dimensional s-model (3), (4), (10), 

based on [91] . 

g Ca = 280 pS g L = 25 pS g Kdr = 1300 pS 

g s = 20 pS g KATP = 13 pS C m = 4524 fF 

V K = −80 mV V Ca = 100 mV V L = −40 mV 

v m = −22 mV v n = −9 mV v s = −40 mV 

s m = 7 . 5 mV s n = 10 mV s s = 0 . 5 mV 

τ̄n = 8 msec 
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to an exponentially small interval of parameter values, the phe-

nomenon is known as a canard explosion [13,58] . 

Fig. 3 shows several examples of canards in the transition from

a stable hyperpolarized equilibrium to a full-blown relaxation os-

cillation for the s-model. These all occur in the parameter range

from v s = −47 . 2 to −46 . 86031215573 mV. The first oscillations,

shown in panel A, occur very close to a supercritical Hopf bifur-

cation and have small amplitude with sawtooth shape. As v s is in-

creased, moving further past the Hopf bifurcation, the oscillations

grow and become slower. Panel D shows an example in which

the canard oscillation has transitioned into a large-amplitude re-

laxation oscillation, but with a noticeable shoulder. The changes in

shape of the oscillation that occur in the figure are generic in the

vicinity of a singular Hopf bifurcation that gives rise to relaxation

oscillations [2,3] . 

An explanation for this canard explosion is again based on a

phase plane analysis ( Fig. 4 ). Here, the V and s -nullclines are again

shown, but now v s has been adjusted so that the intersection oc-

curs very close to the left knee, just above the v s value at which

the Hopf bifurcation occurs. Superimposed are the four canard tra-

jectories from Fig. 3 . In each case, the trajectory moves along the

bottom branch of the V -nullcline, and then it moves some dis-

tance up the middle branch before either jumping back to the

lower branch (the three smaller orbits) or jumping away to the

upper branch (magenta orbit). Indeed, the motion along the mid-

dle branch is a hallmark of a canard orbit. The different canards

shown here were obtained using different values of the parame-

ter v s ; the canard amplitude increased when v s was made slightly

larger, which translates the s -nullcline upward (the four different

s -nullclines are almost indistinguishable, and we show only one

of them). The two canards in Fig. 3 C and D were obtained with

v s values that differ only at the eleventh decimal place, and be-

tween these additional canards exist. Indeed, the “maximal ca-

nard”, which occurs at v s values between these two, travels all the

way up the middle branch of the V -nullcline before jumping back

to the bottom branch. It is possible that the name “canard” also

was chosen to label these oscillations because of the word’s conno-

tation as French slang for hoax, corresponding to the superficially

unbelievable observation that such small parameter changes could

yield such significantly different orbits. 
Although canards were first discovered and analyzed in planar

ast-slow systems, they are rarely seen in that setting because of

he small region of parameter space in which they exist. While

nteresting and important mathematically, they are of little im-

ortance in biological or chemical systems. However, in systems

ith two or more slow variables, the behavior can be generic, and

herefore the importance of canards in such systems is greater. We

iscuss these later, but first we consider another type of behavior

hat can be produced in systems with a single slow variable, as

ong as there are at least three variables in the model in total. 

. Bursting oscillations in systems of dimension ≥ 3 

For fast-slow models of 3 or more dimensions, relaxation oscilla-

ions can occur that are similar to those in the planar case. In this

ase, however, the possibility of richer fast and slow subsystem dy-

amics arises as well. The extensions of the ideas explaining relaxation

scillations in planar fast-slow systems can be used to understand a

ide range of bursting dynamics. One complication in bursting is that

ith fast variables � x ∈ R 

m for m ≥ 2, a fast subsystem attractor may

ot be a set where F ( � x , � y ) = 0 . This issue is critical for many forms of

ursting activity, but it necessitates the use of some additional math-

matical tools in fast-slow analysis. 

.1. Bursting with the s-model 

Bursting consists of episodes of fast oscillations, often called

pikes, separated by epochs of quiescence. The spiking phase is

alled the active phase and the quiescent phase is called the silent

hase . To illustrate bursting, we modify the s-model used in the

ast section by removing the quasi-equilibrium approximation for

he delayed rectifier activation variable n . Then, the delayed recti-

er K 

+ current becomes I Kdr = g Kdr n (V − V K ) , where the n dynam-

cs are described by 

dn 

dt 
= 

n ∞ 

(V ) − n 

τn (V ) 
. (10)

he time constant function for n is given by 

n (V ) = 

τ̄n 

1 + e 
V−v n 

s n 

. (11)

he s-model then consists of the three differential Eqs. (3) , (4),

10) , and since n is no longer at quasi-equilibrium, the system pro-

uces spikes, due to the fast (instantaneous) activation of the Ca 2+ 

urrent and the slower activation of the delayed rectifying current.

arameter values are given in Table 2 . 

Fig. 5 illustrates an example of bursting produced by this s-

odel. During part of each cycle, the V and n variables change on

 timescale that is much faster than the timescale for s . Indeed, s

lowly rises during a burst active phase in response to the voltage

pikes (during which the mean voltage is elevated) and slowly de-

lines during a silent phase when the voltage is low. The obvious

eparation of timescales allows us to bypass a formal dimensional

nalysis that is helpful in some other systems. In this case, it is

lear that V and n can be categorized as fast variables and s as a

low variable. 
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Fig. 5. (A) Bursting oscillations consist of periodic cycles of active and silent phases. 

An active phase, such as the one shown here, consists of a succession of rapid im- 

pulses or spikes; here these are difficult to discern until the end of the active phase 

because they occur so quickly. (B) The activation variable for the delayed rectifier 

K + current responds rapidly to changes in V . (C) The activation variable for a sec- 

ond, slowly-activating K + current responds slowly to changes in V . For the same 

value of s (e.g., s = 0 . 5 , dashed line), the system can be in either the active “a” or 

the silent “s” phase. 

Fig. 6. The nullclines of the fast subsystem, for values of s at the peak and nadir of 

the s oscillation during bursting. Fast-subsystem equilibria, located at the intersec- 

tions of the nullclines, are indicated with colored circles. 
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Fig. 7. Phase portraits of the fast subsystem showing equilibria (filled = stable, tri- 

angle = saddle point), limit cycles (closed trajectories), some trajectories, and a 

separatrix (cyan curve connecting to the saddle point). (A) s = 0 . 25 , (B) s = 0 . 5 , 

(C) s = 0 . 82 . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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.2. Analysis of the fast subsystem 

Although it involves only a single timescale, the dynamics of

he planar fast subsystem (3) and (10) can best be understood us-

ng phase plane analysis, just as with the analysis of the relaxation

scillator. The voltage nullcline is nonlinear in V , but linear in n , so

e solve for n in terms of V : 

 = 

−(I Ca + I s + I L + I KAT P ) 

g K (V − V K ) 
. (12) 

he equation for the n -nullcline is also linear in n and nonlinear in

 and is given by: 

 = n ∞ 

(V ) . (13)

xample nullclines are plotted in Fig. 6 . Importantly, from

q. (12) , it follows that the V -nullcline depends on the slow vari-

ble s , which is treated as a parameter of the fast subsystem. Dur-

ng bursting, s ranges from 0.25 to 0.82 ( Fig. 5 C), so we plot the

 -nullcline at these two extreme values of s . It is evident that the

ullcline moves leftward when s is increased. Although the change

n the nullcline does not seem very great, it results in a change in

he equilibrium structure of the system. With s = 0 . 25 , the nadir of

he s oscillation in Fig. 5 , there is a single intersection of the null-

lines, and thus a single fast-subsystem equilibrium. With s = 0 . 82 ,

he peak of the s oscillation during bursting, there are three in-

ersections and thus three fast-subsystem equilibria. The two ad-

itional equilibria come about via a saddle-node bifurcation of the

ast subsystem at a point of tangency of the V - and n -nullclines at
 ≈ 0.33, and as s increases, this bifurcation produces equilibria at

ower voltages than that of the original equilibrium. 

More details about the fast subsystem dynamics are presented

n Fig. 7 for three different values of s . When s = 0 . 25 (panel a),

orresponding to its nadir during a burst, the single equilibrium

s unstable and is surrounded by a stable limit cycle. This reflects

ontinuous spiking that occurs when s is held frozen at this low

alue. When s = 0 . 82 (panel c), corresponding to its peak dur-

ng a burst, the high-voltage unstable equilibrium persists, but the

imit cycle is now gone. There are now a low-voltage globally sta-

le equilibrium and an intermediate-voltage saddle point. Thus, if

 = 0 . 82 , the fast subsystem will converge to a steady state at a

ow voltage. At a value of s between these two extremes, s = 0 . 5 ,

he system has two stable structures: a stable limit cycle reflect-

ng continuous spiking and a stable equilibrium reflecting quies-

ence at a low-voltage or hyperpolarized state (panel b). The curve

hat separates the basins of attraction of the two stable struc-

ures, called the separatrix , is provided by the stable manifold of

he saddle point (cyan curve), which is locally tangent to the sad-

le point’s stable eigenvector. The basin of attraction of the limit

ycle lies inside this separatrix, while the basin of attraction of the

table equilibrium lies outside the separatrix. 

Bursting can be understood in terms of the interplay between

he fast subsystem phase plane and the slow subsystem dynamics.

t the beginning of the active phase, the slow variable s is small,

o there is a single stable structure, a limit cycle, in the fast sub-

ystem (as in Fig. 7 A). The resulting sustained spiking of ( V , n ) in-

reases the mean value of V , which in turn causes s to increase,

overned by the slow subsystem Eq. (4) . For a range of s values,

he system is bistable (as in Fig. 7 B), but the system keeps spiking

ince the trajectory is in the basin of attraction of the limit cycle

or each s . As s continues to increase, the limit cycle expands, and

t is eventually annihilated through a fast subsystem homoclinic

ifurcation at a critical value of s for which the limit cycle con-

ects with the saddle point. For s above this value, the trajectory

s attracted to the only attractor of the fast subsystem, namely the

table equilibrium. Once it reaches a neighborhood of this attrac-

or, the slow subsystem dynamics takes over as in the relaxation

scillation case and the silent phase begins. Since V is now hyper-

olarized, the slow subsystem dynamics causes s to decline, taking

he fast subsystem back through the interval of bistability (as in

ig. 7 B). Unlike during the active phase, however, the trajectory is
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Fig. 8. Fast-slow analysis of bursting. (A) A bifurcation diagram of the fast subsys- 

tem with s treated as a bifurcation parameter. Solid curves represent stable station- 

ary solutions, while dashed curves represent unstable stationary solutions. The two 

thick curves represent the minimum and maximum values of V for the periodic 

branch. HB = supercritical Hopf bifurcation, SN = saddle-node bifurcation, HM = 

homoclinic bifurcation. (B) The bursting trajectory projected into the s − V plane. 

(C) Superposition of the fast subsystem bifurcation diagram (black), the s -nullcline 

(green), and the bursting trajectory (red). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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now in the basin of attraction of the equilibrium, so the trajectory

remains at a hyperpolarized voltage. Eventually, as s continues to

fall, the stable node and the saddle point coalesce at the fast sub-

system saddle-node bifurcation, and the trajectory is now attracted

to the stable limit cycle (as in Fig. 7 A), restarting the active phase.

The fact that the fast subsystem can be either spiking or silent for

the same values of s , due to fast-subsystem bistability, is reflected

in the bursting shown in Fig. 5 ; during the rising phase of s the

system is spiking, while during the falling phase it is silent. 

3.3. Bursting viewed through bifurcation analysis 

The fast subsystem analysis can be summarized with a bifurca-

tion diagram, in which s is used as a bifurcation parameter, as il-

lustrated in the projection to the ( s , V ) plane shown in Fig. 8 A. For

s near 0 there is a branch of stable equilibria at elevated voltages.

A supercritical Hopf bifurcation (HB) occurs near s = 0 . 15 ; there,

the equilibrium branch is destabilized and a branch of stable pe-

riodic spiking solutions emerges. The unstable equilibrium branch

continues past s = 1 . 2 (the s equilibrium function ranges from 0 to

1, but when treating s as a parameter we are free to make it as

small or large as desired) and turns back to the left at a saddle-

node bifurcation (SN 2 ). This is not the same as the saddle-node bi-

furcation discussed earlier, since it involves the coalescence of the

high-voltage branch of unstable equilibria with a middle branch of

saddle points. The middle equilibrium branch spans an interval of

s -values from SN 2 down to where it meets the low-voltage equilib-

rium branch at another saddle-node bifurcation, SN 1 , which is the

bifurcation discussed earlier. The lower equilibrium branch is sta-

ble for all values of s for which it exists. Together, these fast sub-

system equilibrium branches form a Z-shaped curve, or Z-curve;

recall that this is also called the critical manifold . Turning now to

the periodic solutions, the periodic branch emanating from the HB

opens to the right, and both the minimum and maximum voltage

values of the oscillation are shown. This family of periodic orbits

continues until its termination at a homoclinic bifurcation (HM),

where the lower branch of the periodic curve connects with the

middle branch of the stationary curve. A key feature of this bifur-
ation diagram is the interval of bistability that extends from SN 1 

o HM. 

The middle panel of Fig. 8 shows the burst trajectory of the full

ystem projected into the ( s , V )-plane. Since the bursting is peri-

dic the trajectory is a closed curve, and the spiking at the top of

he trajectory reflects the oscillations on the fast timescale. When

his trajectory is superimposed onto the fast subsystem bifurca-

ion diagram ( Fig. 8 C), along with the s -nullcline, the basis of the

ultiscale oscillation can be deduced. During the active phase the

ystem follows the periodic branch of the Z-curve to the right, on

he slow timescale, until the branch ends at the HM bifurcation.

rom here the trajectory moves down almost vertically, reflect-

ng the fast subsystem dynamics. The trajectory is now attracted

o the bottom stationary branch, within a neighborhood of which

he slow subsystem dynamics takes over. Since the trajectory has

rossed the s -nullcline, the slow motion is now leftward. This drift

ontinues until the bottom equilibrium branch ends at the SN 1 bi-

urcation, after which the trajectory moves almost vertically up-

ard to the periodic spiking branch, governed by the fast subsys-

em, which restarts the cycle. An important note is that during the

ctive phase, the fast subsystem attractor is the family of stable

eriodic orbits. These orbits do not satisfy d V/d t = d n/d t = 0 , and

ence, according to what we have introduced so far, the slow sub-

ystem is not well-defined. Mathematically, this issue is handled by

veraging , such that not V itself, but rather its average over a pe-

iodic orbit, appears in the s -equation in the slow subsystem. We

efer the reader to [4,16,38,81,94] , for example, for details. 

What do we learn from this fast-slow analysis of bursting?

here are actually several important observations that can be made

hat would not be so easily deduced without such an analysis.

irst, since the branch of fast subsystem periodic orbits terminates

t a homoclinic bifurcation, where period approaches infinity, we

xpect the spike frequency to decline near the end of the active

hase of bursting. Although not evident from the voltage time

ourse shown in Fig. 5 A, this is in fact what happens. Another ob-

ervation that comes from the fast-slow analysis is that it should

e possible to reset the bursting from active to silent, or silent

o active, with a brief perturbation. This is because the fast sub-

ystem is bistable, so an appropriate perturbation can move the

ystem from one basin of attraction to the other. Furthermore, if

he system is reset from silent to active phase, then the result-

ng active phase should be shorter than its normal duration (and

imilarly for an active-to-silent reset, resulting in a short silent

hase). 

While these observations involve the structure of the fast

ubsystem bifurcation diagram, other observations involve the s -

ullcline as well. Any intersection of this nullcline with an equi-

ibrium branch of the fast subsystem is an equilibrium of the full

ystem. If the intersection occurs on the lower branch of the Z-

urve, then the equilibrium will be stable, so the full system will

ot burst but will instead be at a hyperpolarized equilibrium. If

he intersection occurs on the stable portion of the upper branch

f the Z-curve, then the equilibrium will again be stable, but now

he system will be at a depolarized equilibrium. This is referred

o as depolarization block and is typical of many excitable systems

ith excessive stimulatory input. If the intersection occurs on the

iddle branch between SN 1 and HM, as in Fig. 8 C, then the full-

ystem equilibrium is unstable and bursting will occur. Finally, if

he nullcline intersects the Z-curve middle branch above the HM,

utting through the periodic branch, then in the limit τ s → ∞ ,

he full system will spike continuously. Away from this limit the

ystem may either spike continuously or burst, depending on the

alue of τ s and on how close the intersection is to the HM [7] .

he s -nullcline can be adjusted by changing either v s or s s ; increas-

ng v s translates the nullcline upward, while increasing s s changes

he slope of the nullcline so that it is less like a step function.
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Table 3 

Parameters for the phantom bursting model (14)-(17), 

from [8] . 

g Ca = 280 pS g L = 25 pS g Kdr = 1300 pS 

g s 1 = 20 pS g s 2 = 32 pS C m = 4524 fF 

V K = −80 mV V Ca = 100 mV V L = −40 mV 

v m = −22 mV v n = −9 mV v s 1 = −40 mV 

v s 2 = −42 mV s m = 7 . 5 mV s n = 10 mV 

s s 1 = 10 mV s s 2 = 0 . 4 mV τ̄n = 8 ms 
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Fig. 9. Bursting produced by the model with two fast and two slow variables. (A) 

Bursting is terminated when the second slow variable is clamped at its mean value 

( s 2 = 0 . 45 ) at time t = 50 s. (B) The oscillation profiles of the two slow variables 

are quite different, due to their different time constants. Variable s 1 changes more 

rapidly than does s 2 . (C) Projection of the burst trajectory in the s 1 − V plane. 
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Fig. 10. The fast subsystem bifurcation diagram and superimposed slow s 1 nullcline 

for the model with two fast and two slow variables. In this diagram s 2 = 0 . 45 , but 

when s 2 is allowed to vary it shifts the fast subsystem bifurcation diagram leftward 

as it increases, as indicated with the arrow. 
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djusting either parameter can convert bursting to continuous

piking or to a steady state. 

.4. Phantom bursting: The advantage of two slow variables 

The bursting described thus far relies on two things: bistabil-

ty in the fast subsystem and the appropriate intersection of the

low nullcline with the Z-curve. Both of these restrictions, which

imit the region of parameter space for which bursting occurs, arise

ue to the fact that there is a single slow variable. If a second

low variable is introduced into the system, both restrictions are

emoved and bursting can become more robust. This effect was

rst demonstrated in the case of bursting in neuron R15 of Aplysia

63] . The bursting produced here has low spike frequency at both

he beginning and the end of the active phase, so the frequency

rofile is shaped like a parabola. Rinzel explained this parabolic

ursting using fast-slow analysis [83] with a published model, the

lant model, that contained two slow variables [76] ; it can also

ccur with a simpler phase model, with just one fast variable that

volves on a circle, as long as two slow variables are present [4] . If

ne constructs a fast subsystem bifurcation diagram using one of

he slow variables, say s 1 , as a bifurcation parameter, then there is

o region of bistability. Instead, the periodic branch terminates at

he SN 1 bifurcation, in what is known as a Saddle Node on Invari-

nt Circle (or SNIC) bifurcation, making it impossible for bursting

o occur if there were only a single slow variable. However, if, as

n the Plant model, there is a second slow variable s 2 that slowly

hifts the fast subsystem bifurcation back and forth as it varies,

hen bursting is possible. Indeed, there are fast subsystem SNIC bi-

urcations along a whole curve in ( s 1 , s 2 )-parameter space. Further-

ore, since the bursting trajectory now intersects this curve, and

ence passes near a fast subsystem homoclinic orbit, at both the

eginning and the end of the active phase, the bursting will be

arabolic. 

We focus now on a more recent example, in which fast-

ubsystem bistability is present, but the slow nullcline intersects

he Z-curve in a way such that bursting would not occur if there

ere not a second slow variable [8] . We use the 4-dimensional sys-

em that we refer to as the “phantom bursting model”: 

dV 

dt 
= −(I Ca + I Kdr + I Ks 1 + I Ks 2 + I L ) /C m 

(14) 

dn 

dt 
= 

n ∞ 

(V ) − n 

τn (V ) 
(15) 

ds 1 
dt 

= 

s 1 ∞ (V ) − s 1 

τs 1 

(16) 

ds 2 
dt 

= 

s 2 ∞ (V ) − s 2 

τs 2 

. (17) 

his system is very similar to the s-model, but there are some

hanges. The slow variable s has been renamed s 1 and the time

onstant τ s 1 reduced to make it faster. Also, the slope parameter

 s 1 has been increased from 0.5 mV (see Table 1 ) to 10 mV. A sec-

nd slow variable s 2 has been introduced with a time constant that

s much greater than τ s 1 . This is the activation variable for a K 

+ 

urrent, called I s 2 , that replaces the constant-conductance K 

+ cur-

ent ( I KATP ) used in the s-model. Parameter values are shown in

able 3 . 

Fig. 9 A shows the bursting produced by this model. When the

econd slow variable, s 2 , is clamped at its average value at t = 50 s

he bursting abruptly terminates and the system becomes silent.

ad s 2 been clamped during the burst active phase then the sys-

em would have entered a continuous spiking state instead. In ei-

her case, bursting is prohibited when s 2 is not allowed to oscillate.

his lack of bursting arises in spite of the fact that the oscillations
n s 2 are rather small, as shown in Fig. 9 B. In fact, the s 1 oscilla-

ions are much larger, since s 1 changes much faster than s 2 . 

Using the fast-slow perspective that was presented for the s-

odel, we view the burst trajectory by projecting it into the

 1 − V plane ( Fig. 9 C). Although there are similarities to the burst

rajectory with the s-model, there are also major differences. Most

ignificantly, s 1 does not increase monotonically during the active

hase, but instead the trajectory turns around near the end of the

ctive phase as s 1 declines, causing an overlap in the projection.

his can be understood by again looking at the fast subsystem bi-

urcation diagram ( Fig. 10 ), which is actually a snapshot at s 2 =
 . 45 , with the superimposed s 1 nullcline. Because the nullcline is

ess steep than in the s-model, it now crosses the Z-curve at sev-

ral locations. Most importantly, it intersects the bottom branch

f stable equilibria and the periodic branch of stable spiking solu-

ions. Thus, when s 2 is clamped, the full system will be bistable,

ith a stable hyperpolarized equilibrium and a stable continuous

piking solution, explaining what we observe in Fig. 9 A when s 2 is

lamped. 

When s 2 is allowed to vary, however, its increases move

he fast subsystem bifurcation diagram to the left and its de-
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creases move the diagram to the right. Thus, during a silent

phase when the trajectory is following the lower branch of the

Z-curve, it reaches the point of intersection with the nullcline,

where d s 1 /d t = d V/d t = d n/d t = 0 , and must wait for s 2 to decline

sufficiently so that SN 1 passes the nullcline before escaping and

making a fast jump to the active phase. After this transition, the

trajectory moves rightward along the periodic branch until it

converges to the continuous spiking state corresponding to the

intersection of the s 1 -nullcline with the family of periodic orbits.

Then it must wait for s 2 to increase sufficiently so that the HM

bifurcation moves past the intersection. Since the periodic branch

moves along with the Z-curve, and the motion is to the left, the

spiking trajectory will drift back leftward during the latter portion

of the active phase, resulting in the overlap observed in Fig. 9 C. 

The bursting scenario described above has been called phan-

tom bursting [8] . The name stems from the observation that the

burst period can be quite different from the time constants of the

two slow variables, so if one wishes to determine the identity

of the slow process driving bursting by correlating the burst pe-

riod to the time constant of any slow variable, the identification

will be inconclusive. Indeed, the bursting is driven by a combi-

nation of the two slow variables, and the contribution made by

each will vary depending on both fast- and slow-subsystem pa-

rameters [112] . Importantly, because phantom bursting does not

require that the slow nullcline intersect the fast subsystem bifurca-

tion diagram in any restrictive way, the parameter range in which

phantom bursting can be generated is much larger than that for

bursting driven by a single slow variable. 

3.5. What biologists can get from fast-slow analysis 

While fast-slow analysis may seem relatively abstract, it can ac-

tually be quite useful in understanding biological systems, particu-

larly when analysis of the model is done in conjunction with ex-

perimental studies. One example is the study of developing neural

networks in the spinal cord, where all synaptic coupling is excita-

tory. One might expect this network to be very active, given the

purely positive interactions among neurons. Instead, the network

is mostly silent, with occasional episodes of activity [71] . A mod-

eling study proposed that the network bursting activity is due to

synaptic depression, so when the cells spike together the strength

of the coupling between them slowly weakens due to depression.

A mean field model was designed that could be analyzed in the

phase plane, and it exhibited relaxation oscillations. It was then

simple to demonstrate that electrical perturbations applied dur-

ing the silent phase of the network burst could elicit a premature

episode of activity, and that the duration of the premature episode

should be longer when the stimulus is applied later in the silent

phase [98] . This can be understood from Fig. 2 . When the trajec-

tory is moving along the bottom branch (“off” phase), if V is per-

turbed upward across the middle branch, then it will be attracted

to the top branch (“on” phase) and move rightward until the up-

per knee is reached. This is the premature activity episode. This

prediction was tested in the laboratory on embryonic spinal cords

and shown to be valid. In addition to this prediction, the model

predicted that, in the presence of noise, there should be a positive

correlation between the duration of the preceding inter-episode

duration and the episode duration, but not between the episode

duration and the following inter-episode duration. This model pre-

diction was also validated experimentally [98] . So this example il-

lustrates how the development of a simple model and fast-slow

analysis of the model can be important in interpreting experimen-

tal data and in designing new experiments. 

Another example of the utility of fast-slow analysis to biologists

involves the effects of glucose on the bursting pattern of pancre-

atic β-cells. At a low glucose concentration, the β-cells are typ-
cally silent. At higher glucose levels they begin to burst, and as

he glucose level is increased the duty cycle (active phase dura-

ion divided by the total oscillation period) increases [70] , increas-

ng the amount of insulin secreted. The very first model for β-cell

lectrical activity was able to account for this, assuming that the

TP generated by metabolism of internalized glucose increases the

ctivity of Ca 2+ pumps in the plasma membrane of the cell [22] .

he extra pumping activity slows down the accumulation of Ca 2+ 

hat occurs during a burst active phase, and speeds up the re-

oval of intracellular Ca 2+ during the silent phase. Thus, at higher

lucose levels the active phases get longer and the silent phases

et shorter, increasing the duty cycle. This was later elegantly ex-

lained using fast-slow analysis of the model [78] and the explana-

ion can be understood from Fig. 8 . The glucose can be thought of

s translating the s -nullcline upward in this figure. With low glu-

ose it intersects the bottom branch of the Z-curve, so that the sys-

em has a stable low-voltage equilibrium. As glucose is increased

he intersection rises until it occurs on the middle branch of the

-curve. In this case the equilibrium is unstable and bursting com-

ences. The speed at which the trajectory travels along the lower

ranch of the Z-curve depends on the horizontal distance of the

rajectory from the s -nullcline; shorter distances typically mean

hat the trajectory travels more slowly. When the nullcline and Z-

urve intersect near the lower knee the trajectory typically travels

lowly along the lower branch (long silent phase) and more rapidly

long the spiking branch (short active phase), yielding a low duty

ycle. At higher glucose, the nullcline is translated upward so that

he trajectory travels more rapidly along the lower branch (shorter

ilent phase) and more slowly along the top branch (longer active

hase), so that the duty cycle is greater. With sufficiently high lev-

ls of glucose the nullcline intersects the spiking branch and the

odel cell spikes continuously, just as the β-cell does. 

. Robust canard phenomena in non-planar systems 

We have seen that in planar fast-slow systems, the switch from

uiescent, steady-state behavior to relaxation oscillations via a Hopf

ifurcation involves an abrupt transition, over an exponentially small

nterval of parameter values, through a family of canard solutions that

ass along a structure that is repelling for the fast subsystem. Since

hree-dimensional fast-slow systems can also exhibit transitions from

uiescence to relaxation oscillations via Hopf bifurcations, it is natu-

al to expect a similar phenomenon in this setting. Interestingly, the

igher-dimensional phase space introduces additional rotations not

resent in the planar case, giving rise to novel solution classes called

ixed-mode oscillations and torus canards, and also provides a signif-

cant increase in robustness of canard-related phenomena. 

.1. Mixed-mode oscillations 

We first give a general description of the structures that un-

erlie mixed-mode oscillations and the systems that can be used

o study them. We aim to introduce enough notation to be precise

nd to equip readers to begin to study these phenomena in models

f interest, while avoiding technicalities. In the next subsection, we

roceed to illustrate these ideas with a particular example system.

To understand the phenomenon of mixed-mode oscillations in a

inimal setting, we consider the following three-dimensional sys-

em, written in notation motivated by neuroscience models: 

˙ 
 = F (v , n, h ) , (18)

˙ 
 = εN(v , n ) , (19)

˙ 
 = εH(v , h ) , (20)
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here the parameter ε is very small, 0 < ε � 1, and we suppress

eference to all other parameter values. For system (18) –(20) , the

ast and slow subsystems are 1- and 2-dimensional, respectively.

he critical manifold is given by 

 = { (v , n, h ) : F (v , n, h ) = 0 } , 
hich generally is a 2-dimensional surface, parameterized by the

low variables n and h . 

To connect with the examples considered in the planar case

nd with the typical situation for many biological models exhibit-

ng a switch from excitability to relaxation oscillations, let us sup-

ose that S is a cubic 2-dimensional surface consisting of 3 planar

heets, S = S − ∪ S 0 ∪ S + , connected pairwise at curves, L − and L + .
et us also assume that S can be expressed as a graph of a func-

ion n = n (v , h ) with F (v , n (v , h ) , h ) = 0 . We can linearize the fast

ubsystem at any point p ∈ S to determine its stability with respect

o the fast dynamics; since the fast subsystem is 1-d, linearization

mounts simply to computing F v (p ) . Assume that the outer sheets

 

± have F v < 0 and hence consist of stable fast subsystem equi-

ibria, while S 0 has F v > 0 corresponding to instability. This simple

tability analysis becomes inconclusive when F v = 0 , which is the

ondition for a fold bifurcation for the fast subsystem that we have

lready seen in the planar case and that holds along L ±. 

To continue to generalize from the planar case, suppose that

s a particular system parameter is varied, a critical point p 

∗ of

he full system (18) –(20) moves from S −, where it is stable, to S 0 ,

here, far enough away from L −, it is unstable. While p 

∗ is on the

table sheet S −, with the structure we have described and some

dditional standard assumptions to ensure a global return, system

18) –(20) has excitable dynamics with the unstable middle sheet S 0 

cting as a threshold: a perturbation large enough to push a tra-

ectory from a neighborhood of p 

∗ across S 0 towards S + will yield

 transient excursion in phase space followed by a return to the

ritical point p 

∗. But what happens when p 

∗ crosses through the

old L − into S 0 ? In the planar case, a canard explosion occurred,

o we can expect something interesting in the dynamics of system

18) –(20) as well. With three variables, however, some additional

rocessing and notation, which we shall introduce shortly, are re-

uired to describe the situation. 

In what we have presented so far about fast-slow analysis, we

ould try to understand the flow along the critical manifold S by

onsidering the slow subsystem (19) and (20) with v slaved to ( n ,

 ) by the requirement F = 0 . Unfortunately, as we have seen pre-

iously, this slaving can break down at the folds L ±, whereas we

re interested in dynamics that extends across the folds. Because

 is a function of (v , h ) along S , however, we can consider the dy-

amics of (v , h ) on S instead of the dynamics of ( n , h ), which has

he advantage that it does not require switching between differ-

nt sheets if a trajectory crosses a fold. To take this approach in a

ay that represents dynamics on S , we first implicitly differentiate

 (v , n, h ) = 0 and continue to use ˙ x to denote dx / dt to obtain 

 v ̇ v + F n ̇ n + F h ̇ h = 0 . (21)

n Eq. (21) , ˙ n and 

˙ h are both O (ε) , due to equations (19) and (20) .

hus, in our second step, we introduce a slow time τ = εt, use x ′ 
o denote dx / d τ , and combine (21) with Eq. (20) to write 

F v v ′ = F n N + F h H, 

h 

′ = H. (22) 

ystem (22) is singular in the sense that F v = 0 at the folds,

orresponding to the possible switch to fast dynamics, which

eans that there is no derivative term in the v equation there. To

llow us to study trajectories that do not necessarily exhibit fast

umps as soon as they approach the folds, we take the third and

nal step of rescaling time by dividing τ by −F v , which is called

esingularization . Applying this step to system (22) and reverting
ack to ˙ x to denote differentiation by the resulting time variable,

ith apologies for the abuse of notation, yields the desingularized

educed system 

˙ v = F n N + F h H, 

˙ 
 = −F v H. (23) 

It is important to note that F v , which is 0 on the folds L ±, has

he opposite sign on the outer sheets S ± of S from what is has

n the middle sheet S 0 . We continue to assume, without loss of

enerality, that F v < 0 on S ± and F v > 0 on S 0 . Then trajectories of

22) and (23) have the same orientation on S ± but orientations are

eversed for (23) , relative to (22) , on S 0 . 

System (23) has critical points where 

 n N + F h H = 0 , (24) 

 v H = 0 (25) 

oth hold. If F n � = 0 � = F h , then these conditions can be met two

ifferent ways, which we denote as follows: 

• (CP) H = N = 0 , or 
• (FS) F v = F n N + F h H = 0 . 

If (CP) holds, then since we are only considering points on S ,

hich is defined by F = 0 , solutions correspond to critical points of

he original full system (18) –(20) as well as of the reduced system

22) . If (FS) holds but not (CP), then the fold condition F v = 0 is

et, which restricts us to L ±, but we do not have H = N = 0 and

ence we do not have a true critical point. Points that satisfy (FS)

ut not (CP) are called folded singularities , while both (FS) and (CP)

re satisfied where a true critical point hits a fold L ±. 

Now, we can return to considering trajectories that travel along

 and reach the fold L − at a point x ∈ L − for parameter values such

hat p 

∗ ∈ S 0 . If the normal switching condition 

(F n N + F h N) | x ∈ L − � = 0 

s satisfied, then x is called a jump point and the trajectory will un-

ergo a fast jump away from L −. A periodic trajectory that reaches

oth L − and L + at jump points will be a standard relaxation oscil-

ation. On the other hand, if the normal switching condition fails,

hen (FS) holds and the trajectory reaches the fold at a folded

ingularity. 

This description leads to (at least) two questions: (1) What type

f dynamics results when a trajectory encounters a folded singu-

arity, and (2) How can this scenario be robust in 3 dimensions,

here a folded singularity is generically an isolated point on a 1-d

old curve? To address the first question, note that as far as sys-

em (23) is concerned, a folded singularity x is a critical point.

s such, we can linearize system (23) about x and classify it as

 node, saddle, or spiral, just as with any other critical point; we

all these points folded nodes , folded saddles , and folded spirals , re-

pectively. Suppose that x is a folded node with real eigenvalues

s < λw 

< 0 and corresponding strong and weak eigenvectors v s 
nd v w 

, respectively. There is then a unique trajectory γ s ( t ) in S −

f (23) that converges to x tangent to v s . Other than γ s ( t ), trajec-

ories that asymptotically approach x along S − do so tangent to

 w 

. Thus, in the scenario that we have been discussing, if there

s a folded node x ∈ L −, then there exists a singular funnel on S −,

ounded on one side by γ s ( t ) and on the other by the fold itself,

hich contains a branch of the weak eigenvector v w 

. Trajectories

hat start in the singular funnel are, as the name would suggest,

unneled into the folded node. 

Under the desingularized reduced flow of (23) , trajectories are

ttracted to a folded node on L − from regions in both S − and S 0 .

ut as noted earlier, the flow of the reduced system (22) , which

epresents the original system dynamics, is reversed on S 0 relative

Jodie
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Fig. 11. The surface { v ′ = 0 } for the HH system ( 26 ) with I = 9 . 6 , oriented to em- 

phasize that n can be treated as a function n (v , h ) as given by (27) . Solid arrows 

indicate attracting sheets of the surface, S ± , while dashed arrows indicate folds L ± . 
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to the flow of (23) . Hence, under (22) , trajectories approach x from

S − but are repelled from x on S 0 . This switch allows trajectories to

pass from S − to S 0 near x for ε > 0 sufficiently small; that is, the

folded node allows canard dynamics to occur! In light of this ob-

servation, γ s ( t ) is called the singular strong canard . Furthermore, it

can be shown that in the set-up that we have described, for 0 <

ε � 1, the singular funnel perturbs to an open set of initial con-

ditions from which corresponding trajectories pass from a neigh-

borhood of S − to a neighborhood of S 0 before exhibiting a large

amplitude fast excursion away from the fold, as long as the rele-

vant trajectory of (23) meets the fold transversally [14,113] . Given

that the linearization of the fast subsystem along the critical man-

ifold sheets S −, S 0 off of L − yields nonzero eigenvalues (as we have

assumed), these sheets perturb to nearby invariant manifolds [39] ,

say S −,ε , S 0 ,ε , for 0 < ε � 1. Interestingly, detailed analysis shows

that S −,ε , S 0 ,ε develop rotations near L −; true canards occur at in-

tersections of S −,ε , S 0 ,ε , and they and nearby trajectories not only

travel along S 0, ε but also inherit small amplitude oscillations in

the vicinity of L − from the rotational structure of S −,ε and S 0, ε

[113] . 

Mixed-mode oscillations (MMOs) are solutions consisting of al-

ternating phases of small and large amplitude oscillations. The ca-

nard dynamics that we have described can naturally give rise to

MMOs, with the small oscillations occurring in the vicinity of the

fold, as long as the global dynamics brings trajectories that depart

from the funnel back into the funnel. Under additional global con-

ditions, periodic MMOs may occur. Note that the funneling process

favors existence and stability of such solutions; as long as there is

a global mechanism to return trajectories that depart from x back

to the singular funnel in the singular limit dynamics, then they

will end up funneled back to x , and stable periodic MMOs will

result for 0 < ε � 1 [14] . The funnel structure also provides an

answer to question (2), about robustness, as it yields, for fixed pa-

rameter values, an entire region of initial conditions that generate

canard dynamics, which result in MMOs if the relevant conditions

are met; moreover, the folded node together with the funnel rep-

resent a structure that naturally persists over significant intervals

of parameter values. Finally, as far as the generality of this form

of dynamics, it should also be noted that this same scenario ap-

plies in systems including more than one fast variable [114] . In

that case, the core of the dynamics near the fold is still repre-

sented by a 3-dimensional system with one fast and two slow

variables. 

4.2. Mixed-mode oscillations in the Hodgkin–Huxley equations 

Mixed-model oscillations are not typically associated with the

classical exploration of firing in the squid giant axon by Hodgkin

and Huxley that provided the fundamental mathematical frame-

work in which a whole galaxy of neuronal models have been

constructed [47] . Surprisingly, many years after the model’s orig-

inal formulation, a form of mixed-mode oscillations was reported

in the Hodgkin–Huxley (HH) equations, with slowed ionic time

constants corresponding, for example, to low temperature dynam-

ics [32] . It was subsequently established that these MMOs truly

fit the two-slow-variable canard-induced MMO framework, and a

more complete characterization of the effects of particular time

constants on these solutions was provided [87,88] . While a range

of other HH-type neuronal models support MMOs without low-

temperature adjustments (see [29] , Table 5), we take advantage

of the thorough exploration and relative low-dimensionality of the

HH equations and use that system to illustrate MMOs here. 

Taking a quasi-steady state approximation for the fastest activa-

tion variable in the model, which turns out to be a center manifold

reduction [87] , and nondimensionalizing yield the following three-

dimensional HH system: 
v ′ = [ I − m 

3 
∞ 

(v ) h (v − E Na ) − g K n 

4 (v − E K ) − g L (v − E L )] , 

h 

′ = (h ∞ 

(v ) − h ) / (τh t h (v )) , 
n 

′ = (n ∞ 

(v ) − n ) / (τn t n (v )) , (26)

here ε = C m 

/ 120 � 1 for membrane constant C m 

, where τh =
n = 1 in the classical case (omitting units here and simply as-

uming that appropriate units have been chosen to render system

26) dimensionless), where the functions in the model are given

y 

m 

(v ) = 

(100 v + 40) / 10 

1 − exp (−(100 v + 40) / 10) 
, 

βm 

(v ) = 4 exp (−(100 v + 65) / 18) , 

αh (v ) = 0 . 07 exp (−(100 v + 65) / 20) , 

βh (v ) = 1 / (1 + exp (−(100 v + 65) / 20)) , 

αn (v ) = 

(100 v + 55) / 100 

1 − exp (−(100 v + 55) / 10) 
, 

βn (v ) = 0 . 125 exp (−(100 v + 65) / 80) , 

ith x ∞ 

(v ) = αx (v ) / (αx (v ) + βx (v )) for x ∈ { m , h , n },

 h (v ) = 1 / (αh (v ) + βh (v )) , t n (v ) = 1 / (αn (v ) + βn (v )) , and where

 K = 0 . 3 , g L = 0 . 0025 , E Na = 0 . 5 , E K = −0 . 77 , E L = −0 . 544 with I ,

 m 

specified in figure captions below. 

The fast subsystem in system (26) consists of the v -equation

lone, while the h , n equations form the slow subsystem. MMOs, if

hey exist, should therefore follow an attracting branch of the crit-

cal manifold { v ′ = 0 } up to a fold containing a folded node singu-

arity. We can express v ′ = 0 as 

 = 

[
I − m 

3 
∞ 

(v ) h (v − E Na ) − g L (v − E L ) 

g K (v − E K ) 

]1 / 4 

, (27)

hich is indeed a cubic-shaped surface with attracting inner and

uter branches, a repelling middle branch, and folds joining the re-

elling branch to each of the attracting ones ( Fig. 11 ). Sure enough,

or appropriate choices of I , ε, τ h , τ n , with at least one of τ h , τ n >

, a folded node singularity and MMOs exist. The MMOs consist of

epeated cycles comprising a slow passage along the low-voltage

hyperpolarized) attracting branch of { v ′ = 0 } , small-amplitude os-

illations in the vicinity of the lower fold near the folded node, a

ast jump away from the fold, and then one or more global ex-

ursions, composed of a slow passage along the high-voltage at-

racting branch of { v ′ = 0 } and a fast jump back to the low-voltage

ranch. Each such excursion may land in the funnel of the folded

ode, completing an MMO cycle, or may miss the funnel, in which

ase at least one more global excursion is needed; for sustained

MOs to occur, some global excursion must eventually culminate



R. Bertram, J.E. Rubin / Mathematical Biosciences 287 (2017) 105–121 115 

0 50 100 150 200 250 300
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
a b

c d
time (msec)

v

0 50 100 150 200 250 300
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time (msec)

v

0 50 100 150 200 250 300
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time (msec)

v

0 50 100 150 200 250 300
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time (msec)

v

Fig. 12. Time courses of MMOs for the HH Eq. (26) with τh = 3 , τn = 1 , C = 0 . 84 . MMO patterns for different parameter values include different numbers of small oscillations 

and global excursions per cycle. (A) MMOs for I = 7 . 9 with one global excursion per cycle. (B) MMOs for I = 8 . 4 with one global excursion per cycle. (C) MMOs for I = 8 . 9 

with two global excursions per cycle. (D) MMOs for I = 9 . 3 with three global excursions per cycle. 
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ith the entry of the trajectory into the funnel. Time courses of ex-

mple MMOs appear in Fig. 12 . Some involve one global excursion

er cycle, others include more. For some of these examples, the

mall oscillations in the full (v , h, n ) -phase space are visualized in

ig. 13 . 

.3. Torus canards 

As a final example of dynamics arising specifically in multiple-

imescale systems, we consider a more complicated form of ca-

ards known as torus canards . Recall from our presentation of

ursting that the bursting solutions considered could be repre-

ented as the composition of a silent phase, with slow drift along

 lower branch of the critical manifold (Z-curve), a fast jump away

rom that branch at a fast subsystem fold bifurcation, an active

hase combining oscillations on the fast timescale with slow drift

n the slow timescale, and a fast jump back to the lower branch

t a fast subsystem homoclinic bifurcation where the fast oscilla-

ions end. This form of dynamics was enabled in a system with 2

ast variables and 1 slow variable by the fact that the nullcline of

he slow variable intersected the Z-curve at an appropriate point

n its middle branch. If that intersection point occurred on the

ower branch of the Z-curve, on the other hand, then the inter-

ection point was a stable rest or quiescent equilibrium state for

he full system, while if the intersection was higher up the branch,

hen sustained stable, periodic oscillations, corresponding to tonic

piking, could result. 
t  
Just as we encountered canards in the transition from lower to

iddle branch equilibria in a planar system, as well as in the tran-

ition of an equilibrium from S − to S 0 in the non-planar case, we

an expect canard solutions in the transition from stable rest to

ursting. And also as in those cases, these canard solutions should

e characterized by passage near a fold from an attracting to a re-

elling structure for a fast subsystem, which would arise at pa-

ameter values near where the intersection of the slow nullcline

nd the Z-curve lies at the fold. These would be standard canards,

rising on an exponentially small parameter interval, similar to the

cenario observed in the planar case; the second fast variable does

ot qualitatively alter this canard explosion. 

Torus canards, on the other hand, may occur, under the right

ircumstances, at the transition between bursting and tonic spik-

ng. The new feature with torus canards is that the folded struc-

ure across which they pass is not a simple fold or saddle-node

ifurcation for the fast subsystem, but rather a saddle-node of pe-

iodic orbits (SNPO) bifurcation. That is, suppose that the family

f fast subsystem periodic orbits in the bursting scenario termi-

ates in an SNPO instead of a homoclinic, as occurs in some bi-

logical models [9,15,28,54] . At the SNPO, a stable family of fast

ubsystem periodic orbits, call it P, comes together with an unsta-

le family, which in turn, in the bursting scenario, terminates in

 homoclinic bifurcation on the middle branch of the Z-curve. A

ursting trajectory that is following P will typically jump down to

he silent phase from a neighborhood of the SNPO. Near the tran-

ition to tonic spiking, however, a canard mechanism may allow

he trajectory to travel beyond the SNPO and track the unstable
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a b

c d

Fig. 13. Phase space views of MMOs for the HH Eq. (26) with τh = 3 , τn = 1 , C = 0 . 84 . (A) Full MMO solution for I = 7 . 9 (cf. Fig. 12 A). (B) Zoomed view shows trajectories 

entering the singular funnel (from the right) and engaging in small-amplitude oscillations before exiting the neighborhood of the fold of { v ′ = 0 } (to the left) for I = 7 . 9 (cf. 

Fig. 12 A). (C) Zoomed view with I = 8 . 4 (cf. Fig. 12 B). (D) Zoomed view with I = 8 . 9 . Note that some trajectories come in from the right and leave again without engaging 

in any small-amplitude oscillations. These orbits are not in the singular funnel and correspond to the first in a pair of successive global excursions, which occurs between 

periods of small-amplitude oscillations for this value of I (cf. Fig. 12 C). 
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periodic orbits before jumping down. That is, the passage near the

SNPO plays the role of the passage near the fold that occurs with

standard canards, while the resulting excursion along the unstable

family of periodics is analogous to the excursion along a repelling

structure such as S 0 in the standard case. 

Although torus canards have been found in some 3-dimensional

neuron models [15,28] , we present a nice example provided by a

5-dimensional model for a Purkinje cell in the cerebellum (pro-

posed as a reduction of a model with over 60 0 0 variables [54] ).

We present the model in the form given in [15] , namely 

C ˙ V = −J − I L − I CaH − I NaF − I KDR − I M 

, 

˙ m i = αi (1 − m i ) − βi m i , 

˙ h NaF = αNaF (1 − h NaF ) − βNaF h NaF (28)

for each i ∈ { CaH , KDR , KM }. In system (28) , V denotes volt-

age and the terms on the right-hand-side of the voltage equa-

tion represent an externally applied current J , a leak cur-

rent I L = g L (V − V L ) , a high-threshold non-inactivating calcium

current I CaH = g CaH m 

2 
CaH 

(V − V CaH ) , a fast inactivating sodium

current I NaF = g NaF m 

3 
NaF, ∞ 

h NaF (V − V NaF ) , a delayed rectifier potas-

sium current I KDR = g KDR m 

4 
KDR 

(V − V KDR ) , and an M-type (mus-

carinic) potassium current I M 

= g KM 

m KM 

(V − V KM 

) . We follow pre-

vious work and treat m KM 

as the single slow variable in the model

[15] . 
The rate functions take the forms 

αCaH = 1 . 6 / (1 + e −0 . 0072(V −5 . 0) ) , 

βCaH = 0 . 02(V + 8 . 9) / (−1 + e 0 . 2(V +8 . 9) ) , 

αNaF = αn,NaF /αd,NaF , αn,NaF = 1 . 0 / (1 + e (V +59 . 4) / 10 . 7 ) , 

αd,NaF = 0 . 15 + 1 . 15 / (1 + e (V +33 . 5) / 15 ) , 

βNaF = (1 − αn,NaF ) /αd,NaF , 

αKDR = αn,KDR /αd,KDR , αn,KDR = 1 . 0 / (1 + e −(V +29 . 5) / 10 ) , 

d,KDR = 0 . 25 + 4 . 35 e −| V +10 . 0 | / 10 . 0 , 

βKDR = (1 − αn,KDR ) /αd,KDR , 

αKM 

= 0 . 02 / (1 + e −0 . 2(V +20 . 0) ) , 

βKM 

= 0 . 01 e −(V +43 . 0) / 18 . 0 . (29)

he function m NaF , ∞ 

is given by 

 NaF, ∞ 

= 1 . 0 / (1 + e −0 . 1(V +34 . 5) ) , 

hile remaining parameter values are listed in Table 4 [15] . 

Model (28) and (29) generates tonic spiking for J = −34 . 0 nA

nd below ( Fig. 14 A). As noted with our previous discussion of

ursting, the tonic spiking solution corresponds to a stable peri-

dic orbit for which the leftward and rightward drift of the slow

ariable m KM 

are balanced, which yields pinning to a very small

art of the stable periodic orbit family in the fast subsystem bifur-

ation diagram ( Fig. 15 A). 
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Table 4 

Parameters for the reduced Purkinje cell model (28) and (29) [91] . 

channel reversal potential (mV) conductance ( μmho) 

leak (L) V L = 70 g L = 2 

high-threshold calcium (CaH) V CaH = 125 g CaH = 1 

fast sodium (NaF) V NaF = 50 g NaF = 125 

delayed rectifier potassium (KDR) V KDR = −95 g KDR = 10 

M-current (KM) V KM = −95 g KM = 0 . 75 

a b

c d

Fig. 14. Time courses in the transition from spiking through torus canards to bursting for model (28) and (29) . Note the different horizontal timescales in different panels. (A) 

Periodic tonic spiking for J = −34 . 0 nA. (B) Periodic amplitude-modulated tonic spiking corresponding to a headless torus canard for J = −32 . 94 nA. (C) Amplitude-modulated 

bursting corresponding to a torus canard with a head for J = −32 . 93828 nA. (D) Periodic bursting for J = −30 . 0 nA. 
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As J is increased, for example to −32 . 94 nA, the model exhibits

mplitude-modulated spiking ( Fig. 14 B). In this regime, there are

o silent phases, but a projection of the trajectory onto the fast

ubsystem bifurcation diagram in ( m KM 

, V )-space suggests that this

olution is a torus canard, following a family of stable periodic or-

its, crossing an SNPO, and then following a family of unstable pe-

iodic orbits before jumping back to the stable periodic branch on

ach cycle ( Fig. 15 B). This type of canard solution, with alterna-

ion between just two branches of a cubic structure, is sometimes

eferred to as a headless canard , or in this case, a headless torus

anard. 

Further increases in J yield torus canards with heads . These solu-

ions also involve at least one passage from a stable to an unstable

ranch of fast subsystem periodic orbits, but in this case, a sub-

equent fast jump carries the trajectories back to a small neigh-

orhood of the lower branch of fast subsystem equilibria on the

ritical manifold. Thus, each features a true silent phase and qual-

fies as a bursting solution. Fig. 14 C shows a seemingly aperiodic

orus canard pattern that features visibly amplitude-modulated

piking within each active phase, corresponding to multiple pas-
ages along each periodic orbit branch before the fast jump to

he lower branch. Finding such a solution requires tuning J very

recisely; we used J = −32 . 93828 nA, while a similar pattern was

hown previously for J = −32 . 93825 nA [54] . For a much broader

arameter range, we find periodic torus canards with heads that

ack obvious spiking amplitude modulation in the active phase but

hat still include excursions along the unstable periodic orbit fam-

ly ( Fig. 15 C). 

Torus canards with heads last up to approximately J =
31 . 2 nA, above which regular bursting, with a jump down at the

NPO, takes over ( Figs. 14 D, 15 D). Of course, more sophisticated

ethods than direct simulations, starting with bifurcation studies

f the full model, would be needed to pinpoint the exact J val-

es where transitions between solution types occur, and still more

ork would be needed to explain the mathematical details of the

ynamic mechanisms involved. 

As it stands now, however, mathematical theory that rigorously

ails down the properties of torus canards is still far from com-

lete. It appears that in the torus canard scenario, as a bifurca-

ion parameter is varied starting from the tonic spiking regime,
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a b

c d

Fig. 15. Projections of solution trajectories onto fast subsystem bifurcation diagrams for model (28) and (29) . In all diagrams, the solid (dashed) blue curve is the critical 

manifold (Z-curve) of stable (unstable) fast subsystem critical points, the solid (dashed) red curves are the maximum and minimum voltages of families of stable (unstable) 

fast subsystem periodic orbits that meet in a SNPO bifurcation, the black curve is an attracting model trajectory, and the cyan curve is the slow ( m KM ) nullcline. Note the 

differences in axis scales across panels; in (B) - (D) , we have zoomed in, but the same right knee (at large m KM ) and Hopf bifurcation (at large negative m KM ) structures are 

present. (A) Tonic spiking for J = −34 . 0 nA. Arrows denote direction of change of m KM in each region, which is similar in other panels; spiking trajectory passes above and 

below the m KM -nullcline. (B) Periodic amplitude-modulated tonic spiking corresponding to a headless torus canard for J = −32 . 94 nA. When the trajectory reaches the SNPO, 

its net drift switches from right to left and it follows the branch of unstable periodics. (C) Periodic bursting corresponding to a torus canard with a head for J = −32 . 92 nA 

(note that this value is different from Fig. 14 C). This solution features a similar change in drift to the headless canard but jumps down all the way to the lower branch of the 

Z-curve after it follows the unstable periodics. (D) Periodic bursting for J = −30 . 0 nA, which lacks an excursion along the branch of unstable periodics. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the full system undergoes a torus bifurcation, which gives rise to

spiking solutions that exhibit amplitude modulation across suc-

cessive spikes. This modulation is initially small but then rapidly

(with respect to parameter variation) grows in a torus canard ex-

plosion, eventually yielding a transition to bursting. Within the

torus canard explosion, there are torus canard solutions, which

pass from the attracting to the repelling branch of the fast subsys-

tem periodic orbit manifold, across the SNPO. Existing theoretical

work on torus canards has proceeded by averaging the fast subsys-

tem dynamics and applying various principles of canard theory to

the resulting averaged systems [5,84] ; these works also developed

certain reduced or canonical models that seem to capture the key

transitions observed numerically. A rigorous connection of canard

theory within an averaged system to the torus canard dynamics

seen in simulations in the corresponding full system has not yet

been established, although relevant results may be imminent [109] .

5. Discussion 

In this article we illustrate some dynamical systems methods by

which one can take advantage of well-separated timescales to an-

alyze multi-timescale systems and thereby elucidate the dynamic

mechanisms underlying the solutions that they generate. As we
ave presented, a variety of such methods exist that apply once the

lassification of the timescales on which the dynamic components

volve has been established. These methods generally proceed by

ocusing on fast and slow dynamics sequentially, with an initial

dentification of fast subsystem attractors followed by an evalua-

ion of how slow dynamics can sweep the system along or be-

ween these attractors. The consideration of slow dynamics, with

aster variables slaved to the slow ones via some sort of rapid con-

ergence to an equilibrium, is analogous to the quasi-steady state

pproach that commonly is applied in the analysis of biochemical

eactions and other biological systems [11,12,43,90] . We have also

een some instances, such as with canards and mixed-mode oscil-

ations, when the separation of timescales can break down along

 trajectory, even though the fast and slow timescales in the un-

erlying dynamical system appear to be well separated, and unex-

ected solution behaviors can result. 

Of course, there are a range of other types of multiple-timescale

ynamics and analysis that have appeared in the literature or are

n need of future attention. For example, within the general area of

ursting, an entire book was published about 10 years ago on top-

cs that go beyond the fundamental bifurcation-based burst classi-

cations [24] , and many other examples have appeared since then.

 few examples of related areas include bursting dynamics that
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nvolve more than the usual two (active-to-silent and silent-to-

ctive) fast subsystem bifurcations per cycle (e.g., [89] ), burst dy-

amics in stochastic systems (e.g., [21,26,46,59,73,97] ), analysis of

he phase-dependence of how bursting systems respond to forc-

ng (e.g., [18,27,92] ), and map-based representations of bursting

ynamics (reviewed in [49] ). Fast-slow analysis along the lines of

hat we have presented has been used to analyze multi-stability

f bursting solutions for fixed parameter values [17,19,20] , while

ther authors have considered how bistability between bursting

nd spiking dynamics can arise (e.g., [93] ). 

While methods of fast-slow analysis have proven quite useful

n a wide variety of analyses, the reality is that, when model-

ng a biological system in practice, it may not be evident how

any timescales are needed to capture observed dynamics. Sim-

larly, once a model has been constructed, with parameter values

etermined based on biological principles or parameter estimation

ethods, it may turn out that the timescales of some of the model

ariables are not so well separated, and in some cases it may not

e clear how to partition the variables into timescale classes. In

ddressing such questions, it is useful to recognize the importance

f nondimensionalization [60] . Naturally, the same timescale pa-

ameter can appear to be much larger or smaller depending on

he units in which it is expressed. Nondimensionalization removes

his arbitrariness, providing unitless parameter groupings and il-

uminating the effective timescales that are present. Nonetheless,

ven after this step, judgments will be needed about when dif-

erences in time constants truly represent distinct timescales. As

 starting point, numerical experimentation can be used to check

hether model dynamics changes qualitatively as time constants

f certain variables are pushed apart, in which case these variables

hould probably be considered as evolving on the same timescale.

nfortunately, this process may be less precise than one would de-

ire; however, if it can be complemented by an analysis (e.g., using

he fast-slow techniques that we have surveyed) of the dynamic

echanisms involved in producing solution behavior and in chang-

ng it as parameters are varied, then a more definitive assessment

f timescale separation can be made (e.g., [69] ). 

One interesting case arises when certain variables evolve on in-

ermediate timescales, relative to the more extreme fast and slow

imescales in a system. How one partitions the variables into sub-

ystems will in general determine the type of information that can

e extracted from the analysis. For example, in [107] a 4-variable

odel for the electrical activity of a pituitary cell was analyzed

sing several different partitions of the variables. The traditional

pproach is to treat the slowest variable as “slow” and the remain-

ng three variables as “fast”, as we presented in our discussion of

ursting dynamics. With this splitting one is able to study transi-

ions between active and silent phases of a burst, but the mecha-

ism for the spiking that occurs during a burst is not resolved, and

either is the boundary in parameter space between a spiking so-

ution and a bursting solution. At the opposite extreme, one treats

he fastest variable as “fast” and the remaining three as “slow”.

ow the dynamics of the full system are interpreted in terms of

 folded critical manifold and canard orbits, which are the basis

f the small spikes in the so-called pseudo-plateau bursting exhib-

ted by pituitary cells. The limitation now is that the 3-dimensional

low subsystem is hard to work with, and by treating 3 of the

 variables as slow one is not taking advantage of timescale dif-

erences that could exist between these three variables. The best

pproach, as demonstrated in [107] , is to partition the variables

nto 3 distinct timescales; one variable is “fast”, two variables

re “intermediate”, and the slowest variable is “slow”. Now the

-dimensional critical manifold of the 1-fast/3-slow splitting be-

omes a 2-dimensional critical manifold, which is simpler to work

ith. Also, canards are retained, and form the basis for the small

pikes that occur during a pseudo-plateau burst. Most importantly,
he 1-fast/2-intermediate/1-slow splitting provides the resolution 

o analyze the spiking or bursting orbit during all phases of the

rajectory. We anticipate that 3-timescale splittings will be a focus

f theoretical and applied multi-timescale analyses in the near fu-

ure, extending what has been done thus far [25,52,56,57,69,107] . 

If the 3-timescale decomposition provides more information

han a 2-timescale splitting, why not partition into 4 distinct

lasses? In fact, the number of timescales that are necessary or

seful for understanding system behavior depends on the system

nd on the features of the behavior in question. Direct inspec-

ion of time course data collected from a biological system, or

odel of that system, may be misleading in this regard. For ex-

mple, the output of mammalian respiratory central pattern gen-

rator circuits can include patterns involving sequences of bursts

f one type followed by a qualitatively different type of burst,

uch as sighing patterns in which a sequence of usual respira-

ory bursts is interrupted by a prolonged sigh-burst. These pat-

erns seem like they should involve 3-timescale dynamics com-

rising fast and slow components that produce the basic burst-

ng rhythm along with a superslow component that gradually al-

ows the system to progress to the point where it produces its

ltered output, such as the sigh. While 3-timescale models can

roduce both patterns [36,53,72,99,100] , careful analysis involving

ondimensionalization, timescale decomposition, bifurcation anal- 

sis, and direct simulations shows that certain mixed bursting pat-

erns of this type can be produced with just two timescales, while

he sighing patterns truly do require 3 timescales, at least in these

odels [110,111] . In the 2-timescale case, no significant additional

nformation is gained by a partition into 3 timescales. The good

ews is that the methods that we have surveyed, and related ex-

ensions, equip us with the tools to make these types of eval-

ations and thereby elucidate the mechanisms underlying multi-

imescale biological dynamics, explain transitions between differ-

nt solution behaviors under variation of system parameters, and

ake informed predictions for subsequent biological testing. 
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