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I. INTRODUCTION

This Focus Issue “Global Bifurcations, Chaos, and Hyperchaos:
Theory and Applications” is dedicated to the 85th anniversary of the
great mathematician, one of the founding fathers of dynamical chaos
theory, Leonid Pavlovich Shilnikov. His works decisively influenced
the field of nonlinear dynamics as a whole. Research of many schol-
ars from various sciences is deeply rooted in Shilnikov’s scientific
legacy.

In 1965, he discovered and described what is known now as spi-
ral or Shilnikov chaos. Since then, he had made the study of global
bifurcations and transition to chaos the central topic of his work.
L. P. Shilnikov, and the dedicated scientific group he had created,
investigated a multitude of homoclinic phenomena, gave the first
comprehensive theoretical description of the classical Lorenz attrac-
tor, and discovered the synchronization-to-chaos transition via the
torus breakdown. Shilnikov’s pioneering results have long become
classical and been included in most text- and reference books on the
theory of dynamical systems and bifurcations.

As a true great scientist, L. P. Shilnikov had a “magical vision”
gift that let him establish connections between seemingly unrelated
topics, find an unexpected formulation of a problem, or propose
an approach that would suddenly become evident only many years
later. Perhaps, because of that, he became a global “attractor” for
many colleagues and researchers from mathematics to physics, biol-
ogy, neuroscience, chemistry, and engineering, who deeply valued
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personal and professional contacts with L. P. Shilnikov. Many schol-
ars acknowledge that his ideas and charisma vastly influenced their
own development.

For all of us, Leonid Pavlovich was more than just a wise advi-
sor. He was a wonderful individual, our dear colleague, and a role
model in science and life. We miss him greatly. As a tribute to
his memory, we put together this Focus Issue with the overall idea
to highlight a recent progress in the study of higher-dimensional
dynamics done by Shilnikov’s students and followers. This goes back
to our many conversations with Shilnikov. He stressed that chaotic
dynamics were reasonably understood mostly for three-dimensional
systems of differential equations or two-dimensional maps and that
the focus of the dynamical systems research must move to higher
dimensions.

We decided to start with an overview of Shilnikov’s life work
on the theory of dynamical systems, which will be followed by
the description of the papers contributed to this Focus Issue. We
selected to discuss the following themes:

• global bifurcations of high-dimensional dynamical systems,
• Shilnikov saddle-focus and spiral chaos,
• homoclinic chaos,
• homoclinic tangency,
• mathematical theory of synchronization, and
• Lorenz attractor, quasiattractors, and pseudohyperbolicity.

His interests were much broader and included a variety of other
topics, such as the theory of Hamiltonian chaos, non-autonomous
systems, Markov chains and symbolic dynamics of hyperbolic sys-
tems, the theory of solitary waves and its applications, to name a
few. The part of Shilnikov legacy, which we have chosen to eluci-
date, contains the most pioneering and fundamental results, which
made the greatest impact on the chaos theory and determined the
major directions for the future research.

II. EARLY WORKS: GLOBAL BIFURCATIONS

The theory of bifurcations had grown from the pioneering
works of A. A. Andronov and E. A. Leontovich in the 1930s.1–4

Motivated by the development of radiophysics (the theory of oscil-
lations), they showed that a stable periodic orbit of a system of
ordinary differential equations on a plane can be born either out of
a semi-stable periodic orbit or from an equilibrium state in what is
now called the Andronov–Hopf bifurcation, or from a homoclinic
loop to a saddle or to a saddle-node. Their results relied on the
previously developed Poincaré–Bendixson–Dulac theory of systems
on the plane. The mathematical methods for the analysis of multi-
dimensional systems were not developed at the time; therefore, the
higher-dimensional theory of bifurcations was reserved for the next
generations.

Some 20 years later, Shilnikov became interested in the prob-
lem of the generalization of the Andronov–Leontovich theory of
homoclinic loops onto systems of an arbitrary dimension. The chal-
lenge was to develop new theoretical approaches and mathematical
techniques to generalize the planar results for high-dimensional sys-
tems; no one expected the groundbreaking discoveries that he was
going to make.

FIG. 1. Bifurcation of a homoclinic orbit 00 to a saddle giving rise to the emer-
gence of a single stable periodic orbit provided that the characteristic exponents
fulfill the condition −Re λi(0) > λn(0), i = 1, . . . , n − 1. This and the next
figure are hand-drawings from Shilnikov Ph.D. thesis.5

First, he studied two homoclinic bifurcations that result in the
emergence of a single stable periodic orbit out of a homoclinic loop.
These are

1. The bifurcation of a homoclinic loop 00 to a saddle equilib-
rium O with eigenvalues such that Re λi < 0 (i = 1, . . . , n − 1),
λn > 0 and the so-called saddle value σ ≡ λn + max Re λi is
negative; see Fig. 1.

2. The bifurcation of a homoclinic loop 00 to a saddle-node
equilibrium O satisfying Re λi < 0, i = 1, . . . , n − 1, λn = 0; see
Fig. 2.

These results were published in the papers,6,7 which became
chapters of his Ph.D.5 that was defended in 1962. The results were
indeed in line with what happens on the plane. The reason is the
strong dissipation (area-contraction property) of the phase space of
the system near the homoclinic loop. However, the new techniques
were ready to be applied to the general case, which Shilnikov did

FIG. 2. Bifurcation of a homoclinic saddle-node equilibrium state resulting in the
appearance of a single stable periodic orbit after the saddle-node is gone.

Chaos 32, 010402 (2022); doi: 10.1063/5.0080836 32, 010402-2

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos EDITORIAL scitation.org/journal/cha

FIG. 3. (a) Example of a homoclinic loop 00 to a saddle O with real eigenval-
ues λss < λs < 0 < λu in three-dimensional phase space. If the saddle value
σ = λu + λs < 0, a stable periodic orbit is born from such loop; see Fig. 1.
When σ is positive, then additional conditions are needed for a single saddle peri-
odic orbit to be born. In some local coordinates (x, y, u) near O, the unstable and
stable manifolds are the vertical y axis and the (x, u)-plane; the leading eigen-di-
rection is the x axis, and the eigen-direction corresponding to the non-leading
eigenvalue λss is the u-axis. We require that the separatrix 00 does not lie in the
strong-stable manifold W ss. Hence, 00 enters O as t → +∞ along the x axis.
In order to see that the separatrix value A does not vanish, we build two cross
sections to the homoclinic loop: 50 across the local stable manifoldW

s
loc and 51

across the local unstable manifold. Orbits starting on 50 pass near O and hit 51

at the points of a thin wedge tangent to the x axis; the flow along 00 returns this
wedge to 50. The condition A 6= 0 means that the image wedge on 50 is not
tangent to W s

loc, as shown in panels (b) and (c) that represent the cases of the
orientable (b) and non-orientable (c) homoclinic loop.

next. The crucial finding was that when the strong dissipation is vio-
lated, the behavior near the homoclinic loop depends on whether
the eigenvalues of the linearization matrix at the saddle are real or
complex, and in the complex case, the dynamics near the loop can
be chaotic!

This result was published in 1965;8 the word “chaos” was not
a scientific term at that time; therefore, the result was formulated
as the existence of infinitely many saddle periodic orbits near the
homoclinic loop. This fact, that a simple orbit (a homoclinic to a
saddle-focus) can cause complex dynamics, was an amazing and
disturbing discovery, one of the critical events (alike the Smale
horseshoe and the Anosov torus) that initiated the dynamical chaos
theory. We discuss the type of chaotic behavior associated with the
Shilnikov saddle-focus loop in Sec. III.

In the other case, when the nearest to the imaginary axis eigen-
value is real, Shilnikov showed9 that a single periodic orbit emerges
out of a homoclinic loop to a saddle equilibrium provided the four
genericity conditions are satisfied: (i) the saddle value σ must be
non-zero, (ii) the separatrix value A must be non-zero, (iii) when
the homoclinic loop enters the saddle, it must be tangent to the lead-
ing direction, and (iv) there must be only one, and simple, leading
eigenvalue; see Fig. 3.

The papers8–10 gave an initial impulse to a rich theory of homo-
clinic phenomena. This theory became an endless source of exam-
ples and conceptual models of chaotic behaviors. Many of the results

FIG. 4. (a) A saddle–saddle equilibriumO in three-dimensional phase space with
a single homoclinic orbit 00, along which the two-dimensional stable and unsta-
ble invariant manifolds W s(O) and W u(O) intersect transversely. (b) Once the
saddle–saddle vanishes, the homoclinic transitions to a single saddle periodic
orbit Lµ. (c) A saddle–saddle can have several transverse homoclinic orbits; from
Ref. 12.

are now a folklore; however, they have a single origin—the entire
theory has grown out of the early Shilnikov’s works.

Shilnikov’s work on the general case of the homoclinic to a
saddle-node is less known to the applied research community, but
it also led to a remarkable discovery. In Refs. 10 and 11, he exam-
ined the homoclinic bifurcation of a saddle-saddle equilibrium state;
see Fig. 4(a). Unlike the homoclinic saddle-node from his early
publication,7 the saddle–saddle has positive real parts in addition
to the zero eigenvalue and the eigenvalues with negative real parts.
Therefore, both its unstable and stable manifolds have dimension
larger than one. Shilnikov proved that if (i) the homoclinic loop 00

leaves the saddle–saddle O and comes back along the eigen-direction
corresponding to the zero eigenvalue and (ii) the stable and unstable
manifolds of O intersect along 00 transversely, then a single saddle
periodic orbit emerges from the homoclinic orbit to a saddle–saddle
after the latter vanishes; see Fig. 4(b). This looks like the saddle-node
case, where a stable periodic orbit is now replaced with a saddle one.

Let us emphasize that the saddle–saddle can have more than
one homoclinic loop; see Fig. 4(c). Shilnikov11 showed that after a
saddle–saddle with p homoclinic loops disappears, then (i) each loop
produces a saddle periodic orbit and (ii) there emerges a non-trivial
hyperbolic set, which is in one-to-one correspondence with orbits of
the topological Bernoulli shift on p symbols; see Fig. 5.

No matter how many homoclinic loops the saddle-saddle has,
this bifurcation remains of a codimension-1. Thus, in any one-
parameter family that crosses the bifurcation surface corresponding
to the Shilnikov saddle–saddle, one should observe a sudden transi-
tion from simple dynamics (a pair of saddle equilibria) to chaos (the
hyperbolic set after the saddle–saddle is gone).

This was the first example of a scenario of the transition to
chaos. The search for the transition-to-chaos scenarios and their
analysis became one of the main topics of Shilnikov’s research for
many years: such scenarios explain how chaotic dynamics can arise
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FIG. 5. As a saddle–saddle O with two homoclinic loops 01 and 02 disap-
pears, the stable and unstable manifolds of the saddle cycles L1 and L2 intersect
transversely, which causes the onset of a hyperbolic set by virtue of Shilnikov
theorem;13 see Sec. IV.

in real-world applications and determine the further development
of the theory. Other scenarios, such as period-doublings and torus
breakdown, were found later. However, the Shilnikov saddle–saddle
scenario is special because the chaotic dynamics is fully formed
in just a single bifurcation. Another scenario with the same prop-
erty was discovered much later—the birth of a hyperbolic attractor
through the blue-sky catastrophe;14 see Sec. VI.

III. SPIRAL CHAOS

The Shilnikov loop is a homoclinic orbit to a saddle-focus
with a positive saddle value. In the pioneering paper,8 Shilnikov
showed that the existence of such a homoclinic loop in the three-
dimensional phase space implies the existence of infinitely many
saddle periodic orbits near it. Next, he extended this result onto the
four-dimensional case15 where all eigenvalues at the saddle-focus are
complex. In the following paper,16 he analyzed the general multi-
dimensional case and proved that a neighborhood of the homoclinic
loop contains a hyperbolic (chaotic) invariant set, which includes
infinitely many Smale horseshoes. He also gave a detailed descrip-
tion of the chaotic set and showed that its structure is far more
complex than that of the Smale horseshoes. In particular, along with
the chaotic set, a neighborhood of the Shilnikov saddle-focus loop
can contain infinitely many stable periodic orbits.17,18

Figure 6 illustrates the geometric idea behind the proof of the
existence of chaos near the saddle-focus loop. We consider the three-
dimensional case where the saddle-focus has eigenvalues λ ± iω and
γ such that ω 6= 0 and λ < 0 < γ ; therefore, the stable manifold
of the saddle-focus is two-dimensional and the unstable manifold
is one-dimensional. Let λ + γ > 0. Here, as in the case of a homo-
clinic loop to a saddle (see Fig. 3), the dynamics are determined by
the first-return map T of a two-dimensional cross section 5+

0 trans-
verse to the loop 00. Due to the complex eigenvalues, the image
T(5+

0 ) has a spiraling shape, see Fig. 6; therefore, the pre-image
T−1(5+

0 ) ∩ 5+
0 is a sequence of disjoint strips σk accumulating on

Ws
loc(O) ∩ 5+

0 . The positivity of the saddle value λ + γ implies that
the snake T(5+

0 ) is large enough so that for each k, the image T(σk)

intersects σk and T acts as the Smale horseshoe map on σk. More-
over, T(σk) intersects other strips too. As Shilnikov proved,16 this

FIG. 6. Shilnikov saddle-focus loop in 3D phase space: a homoclinic orbit00 to a
saddle-focus equilibrium O with a two-dimensional stable manifold and a one-
dimensional unstable manifold. When the saddle value is positive, there are
infinitely many Smale horseshoes in the return map on a cross section 5+

transverse to the local stable manifoldW s
loc(O).

creates an infinite Markov chain whose structure is controlled by
the value of ρ = λ/γ . The latter result became a model for the the-
ory of homoclinic tangencies. It also directly implies the sensitive
parameter dependence of the fine structure of the Shilnikov chaos,
which, in fact, results in the utmost complexity of its dynamics and
bifurcations (see Sec. V).

The stunning discovery of chaos near a homoclinic to a saddle-
focus was a defining moment in Shilnikov’s scientific career and
the starting point of his life-long quest for homoclinic structures
underlying the many faces of dynamical chaos. His works gained a
recognition in the West after a series of papers by Arneodo et al.19–21

who emphasized the importance of the Shilnikov homoclinic loop
for the chaos theory. Starting with the late 1970s, the spiral chaos

FIG. 7. Formation of the Shilnikov whirlpool near a saddle-focus equilibrium
O with the two-dimensional unstable manifold W u precedes the homoclinic
bifurcation.
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due to the Shilnikov saddle-focus has been discovered as the most
prominent dynamical regime in various models from hydrodynam-
ics, electronics, optics, astrophysics, chemistry, biology, mechanics,
neuroscience, etc.22,23

This explosive development took Shilnikov by surprise: why
the spiral chaos occurs in so many diverse models, regardless of
their nature? As an answer, he proposed a universal scenario of
spiral chaos formation24 along the following lines. It is common
that the system, at some parameter values, operates at a stationary
regime (a globally stable equilibrium), but a change in parame-
ters makes the dynamics chaotic. The transition to chaos requires
the loss of stability of the equilibrium state, and this usually hap-
pens via the Andronov–Hopf bifurcation where a pair of complex-
conjugate eigenvalues of the linearized system crosses the imag-
inary axis. Shilnikov emphasized that the equilibrium becomes a
saddle-focus after this bifurcation. As parameters change further,
the two-dimensional unstable manifold of the saddle-focus can form
the so-called Shilnikov whirlpool (Fig. 7), which bounds the basin
of a developing attractor. After that, with homoclinic loops of the
Shilnikov saddle-focus being formed, the later morphs into the spiral
chaos.24

In the same paper,24 Shilnikov described several realizations of
this scenario: “safe,” related to a period-doubling cascade or to a
torus breakdown, and also “dangerous” ones, where the spiral chaos
emerges immediately after the subcritical Andronov–Hopf bifurca-
tions. He proposed several geometric models for them and detailed
phenomenological principles of the onset of other types of chaotic
attractors, as was further developed in Refs. 25 and 26. In an unpub-
lished manuscript, he built a theory of the emergence of hyperbolic
attractors through saddle-focus homoclinic bifurcations.

IV. HOMOCLINIC CHAOS

One of the most fundamental results of the theory of dynami-
cal chaos is the Shilnikov-Smale theorem about the dynamics near a
Poincaré homoclinic orbit. Such orbit belongs to the intersection of
the stable and unstable invariant manifolds Ws and Wu of a saddle
periodic orbit, i.e., it tends to the same periodic orbit both in forward

and backward time. A homoclinic orbit 00 is called transverse when
Ws and Wu cross transversely along 00; see Fig. 8.

The possibility of the existence of transverse homoclinic orbits
was established by Poincaré in 1889.27 This moment is universally
accepted as the beginning of dynamical chaos history. Poincaré
was awestruck by the complexity of the homoclinic tangles [see
Fig. 8(a)] and stressed a special role of the transverse homoclinic as
the universal mechanism of non-integrability. However, a more or
less detailed picture of the orbit behavior near the Poincaré homo-
clinic had remained unknown until the mid-1960s (the only partial
result was obtained by Birkhoff in 1934 who showed the existence of
infinitely many periodic orbits for the special case where the map is
two-dimensional and area-preserving28).

In 1965, Smale29 established the existence of a nontrivial hyper-
bolic set (the Smale horseshoe) near the transverse homoclinic
[Fig. 8(b)]. In 1967, Shilnikov closed the problem by providing the
complete description of the structure of the set N of orbits entirely
lying in a small neighborhood of a transverse Poincaré homoclinic
orbit. He proved13 that

• the set N is hyperbolic and is in one-to-one correspondence with the
set of infinite sequences of two symbols [see Fig. 8(c)].

We stress that Shilnikov was the first to pose and solve the
problem of a complete description of the dynamics near a trans-
verse homoclinic orbit, thus demystifying the Poincaré homoclinic
tangles. He himself considered this result as fundamentally impor-
tant and never tired of re-emphasizing that the Poincaré homoclinic
orbit is “an elementary building block” of chaos; see his survey.30

One should also note that Smale’s proof of the existence of the
horseshoe was only done for a model case where the system near
the saddle is assumed to be linear. However, this assumption cannot
always be justified; e.g., it is not true for resonant saddles. Shilnikov’s
approach was free of this drawback.

To get rid of the linearization assumption, he had to over-
come significant technical difficulties. Shilnikov had created a new
mathematical technique for constructing solutions near saddle equi-
librium states and periodic orbits, using the so-called method of
boundary value problem (this method is described in detail in his

FIG. 8. (a) Poincaré homoclinic tangles. (b) Smale horseshoe due to a transverse homoclinic intersection. (c) The Shilnikov method allows one to account for all orbits in a
small neighborhood (the orange boxes) of the transverse homoclinic orbit 00. Each of these orbits is uniquely coded by a sequence of 0s and 1s: the symbol “0” corresponds
to an iteration in a small neighborhood of the periodic orbit and “1” corresponds to an excursion along the homoclinic.
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original papers13,31 and book32). He systematically applied this pow-
erful method to the analysis of various homoclinic phenomena.
He described homoclinic structures associated with invariant tori33

and, together with Lerman, the dynamics near homoclinic orbits
in infinitely dimensional34 and general non-autonomous systems.35

These works were far ahead of their time. We refer the reader to the
recently published collection of selected Shilnikov’s papers.36

After these breakthrough results, Shilnikov launched a new
research program of the systematic study of plausible scenarios of
transition to chaos. Since the early 1970s, a vastly growing team
of students and like-minded colleagues started getting centered
around L. P. Shilnikov. His first students were N. K. Gavrilov,
V. S. Afraimovich, L. M. Lerman, A. D. Morozov, V. Z. Grines,
L. A. Belyakov, and V. V. Bykov, who themselves later became
the world-known researchers. With time, the teams were further
extended with V. I. Lukyanov, Ya. L. Umanskii, N. V. Roschin,
A. N. Bautin, S. V. Gonchenko, M. I. Malkin, I. M. Ovsyannikov,
A. L. Shilnikov, V. S. Biragov, D. V. Turaev, M. V. Shashkov, O.
V. Stenkin, I. V. Belykh, V. S. Gonchenko, and others, all from
Nizhny Novgorod. The rapidly growing activity of the Shilnikov
scientific school ultimately led to the creation of a new branch
in dynamical systems theory—the theory of global bifurcations of
high-dimensional systems.

The key challenge of this new theory was to identify and inves-
tigate the typical scenarios of the emergence of Poincaré homoclinic
orbits and, hence, chaotic dynamics. We have already discussed the
transition to spiral chaos in Sec. III. Below, we review the following
major scenarios where Shilnikov made decisive contributions:

1. transition to chaos via a homoclinic tangency (a non-transverse
Poincaré homoclinic orbit; see Sec. V);

2. the breakdown of an invariant torus (transition from quasiperi-
odic motions to chaos; see Sec. VI);

3. the onset of the Lorenz attractor (see Sec. VII).

V. HOMOCLINIC TANGENCIES

It is well known that the main property of chaotic dynamics
is its structural instability (non-hyperbolicity): a typical chaotic sys-
tem usually changes its behavior with arbitrarily small changes of
parameters. A homoclinic tangency (a non-transverse intersection
of invariant manifolds of a saddle periodic orbit) is a primary object
in the theory of nonhyperbolic chaotic systems; see the book.37

The systematic study of homoclinic tangencies was started by
N. K. Gavrilov and L. P. Shilnikov in two papers.38,39 First of all,
they classified different types of quadratic homoclinic tangencies
and described the structure of non-uniformly hyperbolic sets entirely
lying in a small neighborhood of the orbit of a homoclinic tangency.
They also studied main bifurcations accompanying the splitting of
the tangency in a generic one-parameter family and discovered that
stable periodic orbits, coexisting with hyperbolic sets, can emerge at
these bifurcations.

Let us illustrate the Gavrilov–Shilnikov theory for the case of
two-dimensional diffeomorphisms. Let a saddle fixed point O have
multipliers λ, γ , such that 0 < |λ| < 1 < |γ | and σ ≡ |λγ | < 1. Let
there exist a homoclinic orbit 00 associated with a quadratic tan-
gency of the stable and unstable manifolds Ws(O) and Wu(O). To

FIG. 9. Various types of homoclinic tangencies in 2D diffeomorphisms.

be specific, assume λ > 0, γ > 0 (the cases with λ and/or γ nega-
tive were also considered in Refs. 38 and 39). Then, there are four
different types of homoclinic tangencies; see Fig. 9.

Systems with homoclinic tangencies from below [Figs. 9(a) and
9(b)] belong to the first class. In this case, Gavrilov and Shilnikov
proved that the set N0 of all orbits that lie entirely in a small neigh-
borhood U of O ∪ 00 is trivial: N0 = {O, 00}. They also showed
that

• systems with homoclinic tangencies of the first class can form
the boundary between the systems with simple dynamics (the
Morse–Smale systems) and systems with chaotic dynamics.

Thus, bifurcations of homoclinic tangencies of the first class
(along with the bifurcation of a saddle–saddle with several homo-
clinic loops11) became the very first examples of what is known
today as the homoclinic �-explosion, when chaos (due to transverse
homoclinics) emerge instantaneously; see more in Refs. 40–43.

In this connection, we also mention the review44 by Shilnikov,
where he described key bifurcations that make Morse–Smale sys-
tems transition to chaos. One type of these bifurcations corresponds
to an �-explosion, as described above; saddle-node bifurcations that
lead to the destruction of a two-dimensional invariant torus45,46 are
another example of the �-explosion; see Sec. VI. L. P. Shilnikov also
described boundaries of the second kind that could be reached only
through an infinite sequence (cascade) of bifurcations–for example,
he mentioned the period-doubling cascade that became famous after
the work of M. Feigenbaum.47

Systems with homoclinic tangencies from above [Figs. 9(c)
and 9(d)] belong either to the second or to the third class. A
homoclinic tangency of the second class is shown in Fig. 9(c). In
this case, Gavrilov and Shilnikov gave a complete description of
N0: it is a nontrivial non-uniformly hyperbolic set in one-to-one
correspondence with the Bernoulli shift on three symbols 0,1,2
where the two homoclinic orbits (. . . , 0, . . . , 0, 1, 0, . . . , 0, . . .) and
(. . . , 0, . . . , 0, 2, 0, . . . , 0, . . .) are glued together. They also showed
that

• systems with homoclinic tangencies of the second class can form
a boundary of the set of structurally stable systems with nontrivial
uniformly hyperbolic dynamics.

The partition of quadratic homoclinic tangencies into classes
was of great importance for the formation of the bifurcation the-
ory of chaotic dynamical systems. Depending on the tangency class,
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the global phase space transformations associated with the split-
ting of the tangency can lead to a drastic change in the system
behavior–from regular to chaotic or from structurally stable to
non-hyperbolic.

The tangency shown in Fig. 9(d) is of the third class. Here, the
set N0 has a much more complicated structure than in the previ-
ous two cases. Gavrilov and Shilnikov described a large hyperbolic
subset of N0 and showed that

• the structure of the set N0 depends essentially on the value of

θ = −
ln |λ|

ln |γ |
,

and, as a consequence, bifurcations of periodic orbits happen
densely in the set of systems with homoclinic tangencies of the
third class; see also Refs. 48 and 49.

It was later shown by Gonchenko and Shilnikov50–52 that the
Gavrilov–Shilnikov parameter θ is an invariant (“modulus”) of the
�-equivalence (the topological equivalence on the non-wandering
set) for systems with homoclinic tangencies of the third class (for
other classes, θ is not an �-modulus, but, as follows from the results
of Palis on heteroclinic tangencies,53 it is an invariant of topological
equivalence). Further research revealed

• the existence of infinitely many independent �-moduli for tan-
gencies of the third class.54–56

Informally, this means that one needs infinitely many inde-
pendent parameters to describe the dynamics of any given system
with a homoclinic tangency of the third class. Therefore, for any
finite-parameter family of systems that has a homoclinic tangency at
some parameter value, a complete description of the dynamics and
bifurcations is not possible!

Another fundamental discovery in this theory was the paradox-
ical, at first glance, fact37,54,55 that bifurcations of any system with a
quadratic homoclinic tangency create homoclinic tangencies of arbi-
trarily high orders. This means that the traditional logic of canceling
the degeneracy of a bifurcation by means of unfolding it within
a parametric family of general position that depends on a suffi-
cient (finite) number of parameters is not applicable to the study
of non-hyperbolic chaos.

The following is a direct quote from Shilnikov:30,57

• This discouraging result is even more important due to the dense-
ness of the systems with homoclinic tangencies of the third class in
the Newhouse regions, that is we have the whole regions in the space
of smooth dynamical systems for which a complete description of
dynamics . . . can never be achieved. When we realized all this, I
remembered the words of E.A. Leontovich concerning the discovery
of chaos near a homoclinic loop to a saddle-focus: It just cannot be!
In his report on Poincaré’s memoir K. Weierstraß wrote that the
results of that paper eliminated many illusions in the theory of
Hamiltonian systems. In essence, this was the starting point for
the development of now qualitative methods which represent the
essence of nonlinear dynamics. Today we see that the illusion of the
possibility of a complete qualitative analysis of dynamical systems
should also be abandoned. And in both cases, the cause of the crisis
were Poincaré homoclinic curves.

Since a complete description of non-hyperbolic chaos is beyond
reach, one should concentrate on its most interesting properties.
Such most general property is the coexistence of periodic orbits of
different stability types. This fact, the emergence of the so-called
‘windows of stability within chaos, is well known to anyone who per-
formed numerical experiments with systems with strange attractors.
The very first result about this belongs to Gavrilov and Shilnikov:39

• in the case σ < 1, for a generic one-parameter unfolding Xµ of
a two-dimensional map with a quadratic homoclinic tangency,
there exists a converging to µ = 0 infinite sequence of non-
intersecting intervals δk of the values of the parameter µ such that
Xµ has a stable orbit of period-k.

A few years later, Newhouse showed58,59 that there are open
regions in the space of dynamical systems where systems with homo-
clinic tangencies are dense and a generic system from the Newhouse
region with σ < 1 has infinitely many stable periodic orbits whose
closure contains a non-trivial hyperbolic set.

Shilnikov knew well that the bifurcation of a homoclinic tan-
gency was one of the most fundamental results to occur in chaotic
systems. Therefore, the coexistence of hyperbolic sets with stable
periodic orbits of sufficiently long periods is almost unavoidable
for non-hyperbolic chaos in general. This fact, along with his ear-
lier work on the Lorenz model,60–62 led him to the concept of a
quasiattractor,63 which we will discuss in Sec. VII.

Next, we would like to draw the attention to another theory
rooted in this research. Specifically, replacing the condition σ < 1
with σ > 1 for a two-dimensional diffeomorphism f is equivalent
to replacing f with its inverse, f−1. Therefore, Gavrilov–Shilnikov’s
result on periodic sinks near a homoclinic tangency transforms to
the problem on the existence of periodic sources (unstable periodic
orbits with all multipliers greater than 1 in the absolute value). As
discovered by Gonchenko, Shilnikov, and Turaev,64 there exist open
regions in the space of two-dimensional diffeomorphisms, the so-
called absolute Newhouse regions, where systems with homoclinic
tangencies are dense with both σ < 1 and σ > 1. This implies that

• a generic diffeomorphism from an absolute Newhouse region
has infinitely many periodic sinks, sources and saddles, and the
closure of the set of sinks has a non-empty intersection (which
contains a non-trivial hyperbolic set) with the closure of the set of
sources.

The intervals of parameter values that belong to the absolute
Newhouse regions exist64 in any generic one-parameter unfolding
of a two-dimensional diffeomorphism with a non-transverse hete-
roclinic cycle, which contains at least one saddle periodic orbit with
the Jacobian (of the return map) greater than 1 and one saddle peri-
odic orbit with the Jacobian less than 1 [Fig. 10(a)]. Therefore, a
non-hyperbolic chaotic map can fall into the absolute Newhouse
domain whenever there are regions where the map expands areas
and the regions where the map contracts areas and these regions are
not dynamically separated.

Such situation is, in fact, quite common for reversible maps and
for maps on closed surfaces. There are several competing definitions
of what is “an attractor of a dynamical system.” However, in any such
definition, the attractor must contain all periodic sinks. Similarly, all
periodic sources must belong to the repeller. Thus,64
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FIG. 10. (a) A sketch of a 2D diffeomorphism f0 with a non-transverse heteroclinic
cycle containing two saddle fixed pointsO1 andO2 and two heteroclinic orbits012

and 021 such that 0 < J(O1) < 1 < J(O2), andW
u(O1) andW

s(O2) intersect
transversely at the points of the orbit 012, while W u(O2) and W s(O1) have a
quadratic tangency at the points of the orbit 021. (b) Celtic stone model70 pro-
duces the mixed dynamics: an attractor (red points) co-existing with a repeller
(blue points)—their intersection makes the picture to appear purple.

• for systems from the absolute Newhouse domain, the attractor
and the repeller are inseparable in a persistent way.

For generalizations, e.g., to higher dimensions, see Refs. 65–69.
Importantly, the robust intersection of the numerically observed
attractor and repeller has been detected for many examples.70–78 This
phenomenon was called mixed dynamics in Ref. 66 and can, in addi-
tion to the classical conservative and dissipative chaos, be considered
a new type of chaotic dynamics.79

VI. MATHEMATICAL THEORY OF SYNCHRONIZATION

AND CHAOS THROUGH TORUS BREAKDOWN

The classical theory of synchronization studies the effect of an
external periodic forcing on a self-oscillatory system or the inter-
action of two self-oscillating systems. The goal of the theory is to
identify synchronization regions in the parameter space correspond-
ing to the existence of asymptotically stable periodic orbits and
to describe dynamical phenomena occurring on synchronization
boundaries.

The interest in this problem was originally motivated by appli-
cations, starting with the experimental studies by Van der Pol and
Van der Mark80 and by theoretical works by Andronov and Vitt.81

Mathematical models that appear in synchronization problems are
multidimensional and can exhibit nontrivial dynamics and chaos, as
was, for the first time, discovered by Cartwright and Littlewood.82–84

Modern mathematical theory of synchronization started off in the
fundamental works by Afraimovich and Shilnikov45,46,63,85 who pro-
posed and developed new universal mechanisms of transitions from
synchronized states to chaos. Prior to their work, it was mostly
believed that the exit out of the synchronization region should nec-
essarily lead to a quasiperiodic regime, i.e., to the appearance of
a smooth two-dimensional invariant torus (by analogy with sys-
tems in a plane, where the disappearance of a homoclinic saddle-
node results in the emergence of a stable limit cycle). Their papers
destroyed the dogma by showing that the resonant torus could be
non-smooth, and its breakdown could result in the onset of a chaotic
invariant set.45,46,63,85

FIG. 11. Synchronization regions in the (ω,µ)-parameter plane.

When a dissipative self-oscillatory system is perturbed by an
external signal of a small amplitude, then the initial limit cycle
transforms into a two-dimensional asymptotically stable, smooth
invariant torus τ in the extended phase space. The behavior of orbits
on the torus can be studied using a two-parameter family Tµω of
Poincaré maps of some cross section S transverse to the torus. Here,
parameters µ and ω are the amplitude and frequency of the external
forcing, respectively.

The structure of the bifurcation set of the map Tµω for small
µ is the following:86,87 for each rational p/q, there is the point
(ω = p/q, µ = 0) on the µ-axis, which is a tip of the synchroniza-
tion region Ap/q in the (ω, µ)-parameter plane, as shown in Fig. 11;
it is also called the Arnold tongue. For sufficiently small µ (µ < µ∗

in Fig. 11), different synchronization regions do not intersect, and
for (µ, ω) ∈ Ap/q, the diffeomorphism Tµω has a rational rotation
number p/q. Thus, at least two periodic orbits exist on the invari-
ant torus τ . For simplicity, let there be exactly two such orbits. In
the intersection with the cross section S, they correspond to a pair
of period q orbits on the invariant curve lµ = τ ∩ S—one stable (Ps)
and one saddle (Pu). The boundaries of the region Ap/q consist of two
bifurcation curves L+1

p/q and L+2
p/q, which correspond to the existence

of a saddle-node orbit of period q, formed as a result of the merger
of Ps and Pu; see Fig. 11.

To explain the Afraimovich–Shilnikov’s discovery, we illustrate
an evolution of the resonant circle lµ in Fig. 12 (for simplicity, we
depict Ps and Pu as fixed points). Note that the invariant curve lµ is
the closure of the unstable manifold of Pu; i.e., lµ = Wu(Pu).

For small µ, the invariant curve lµ remains smooth: both the
unstable separatrices of saddles Pu enter Ps smoothly as depicted in
Fig. 12(a1). However, as µ increases, the separatrices of Pu can begin
to oscillate and enter Ps non-smoothly, as shown in Fig. 12(b1). On
the boundary of the synchronization region, the points Ps and Pu

merge into a saddle-node O. If the invariant curve lµ is smooth at this
moment, see Fig. 12(a2), the disappearance of the saddle-node does
not break the invariant curve and dynamics remain quasiperiodic
or periodic. However, if the unstable manifold of O returns to it in
a non-smooth way, see Fig. 12(b2), then the exit from the synchro-
nization region can be accompanied by the emergence of chaotic
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FIG. 12. The behavior of the unstable invariant manifoldW u of the saddle pointPu

is shown in the figures in the upper row; the manifoldW u(O) for the saddle-node
O is shown in the figures in the lower row. Parameter values are chosen from
the corresponding regions in the bifurcation diagram of Fig. 11; e.g., the upper
row corresponds to the inside of the synchronization region and the lower row
corresponds to its boundary.

dynamics. This is the main discovery of the pioneering works,45,46,85

along with the very fact that the resonant torus can be non-smooth.
If the non-smoothness is strong enough, i.e., the so-called big

loop condition is satisfied,24,45,85,88 then chaos exists for all parame-
ter values near the boundary outward of the synchronization region.
When the non-smoothness is “small” and the big loop condition is
not fulfilled, then intervals with chaotic and simple dynamics can
alternate as the synchronization boundary is crossed over.89,90

Another related bifurcation where the unstable manifold of a
saddle-node has a transverse intersection with its strongly stable
manifold [Fig. 12(d2)] was studied by Lukyanov and Shilnikov.91

This paper provided a theoretical foundation for the phenomenon
of the alternation between regular and chaotic oscillations, which
was later named the intermittency.92

FIG. 13. Illustration to the mechanism of the blue-sky catastrophe from Ref. 32.
The squeezing unstable manifoldW u(L) returns to the saddle-node periodic orbit
L from its node region so that the circles of its intersection with the cross section
S shrink more and more with each subsequent iteration.

FIG. 14. Shown in a dark blue color is the long bursting orbit transitioning from
a spiking activity through blue-sky catastrophes in the 3D phase space of the
neural model as soon as the saddle-node limit cycle (in light blue) vanishes in the
slow-motion manifold MLC; from Refs. 103 and 104.

In the following papers,14,93 Shilnikov and Turaev presented
a new type of homoclinic saddle-node bifurcations known as the
“blue-sky catastrophe,” which is illustrated in Fig. 13. This bifur-
cation produces a stable periodic orbit of an unbounded length.
This was an example of a new stability boundary for periodic
orbits, which was significantly different from the other eight known
ones.32,94,95 Most probably, there are no more such boundaries of
codimension-1; therefore, the discovery of the blue-sky catastro-
phe completed the classical problem of the stability boundaries
for periodic regimes. It was also shown96 that blue-sky catastro-
phes offer new scenarios of the transition to chaos; e.g., some of
them can lead to an instant formation of nontrivial hyperbolic
attractors.

In further works, it was established that the blue-sky catastro-
phe is a natural phenomenon in slow–fast systems,97 especially those
related to neuronal models.98–100 This bifurcation is responsible for
the transition from a regime of fast oscillations to the so-called burst-
ing regimes when a series of fast oscillations (bursts) follow one after
another, alternated after slow quiescent transients,101,102 as illustrated
in Fig. 14. It is also interesting that the homoclinic saddle-node
bifurcation considered by Lukyanov and Shilnikov91 turned out to
be typical for many models of neurons, where it gives rise to com-
plex bursting dynamics, as well as to the coexistence of fast spike and
slow burst activity.103,104 The Afraimovich–Shilnikov torus bifurca-
tions leading to complex dynamic activity have, too, happened to
be universal phenomena for various low- and high-order models of
neurons; see Refs. 105 and 106.
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VII. LORENZ ATTRACTOR AND BEYOND

In the late 1970s, deterministic chaos became a hot topic
in nonlinear science. The question of to what degree the chaos
discovered by mathematicians is relevant to natural sciences was
widely discussed, and L.P. Shilnikov took an active part in the
conversation.24,44,107–110

The turning point—the de facto proof that dynamical chaos
is a fundamentally natural phenomenon—was the discovery of a
strange attractor in the Lorenz system.111 By that time, the only
chaotic attractors known in the theory of dynamical systems were
abstract examples of hyperbolic strange attractors. However, as these
were not observed in applications, nonlinear scientists treated them
merely as purely mathematical constructs. Once he learned about
the Lorenz’s work, Shilnikov realized right away the importance of
the Lorenz model and that its study should lead to a new view on
multidimensional dynamics. It was clear to Shilnikov that in his
previous research on homoclinic bifurcations, he already created all
necessary machinery for studying Lorenz-type systems. He commis-
sioned V. S. Afraimovich and V. V. Bykov to start the team work on
the Lorenz attractor that resulted in a remarkable series of deep and
influential publications.

To rigorously study chaos in the Lorenz model, they introduced
the so-called geometric model—a two-dimensional piecewise-
smooth map whose derivatives satisfy certain specific inequalities.
This is the Poincaré map on a cross section 5 that intersects the sta-
ble manifold of a saddle equilibrium state O; the map is discontinu-
ous at the intersection line 50; see Fig. 15. Near the intersection line,
the conditions on the derivatives are the same as for the Poincaré
map near a homoclinic loop to a saddle with a positive saddle value
and a non-zero separatrix value;9 see Sec. II. Globally, these con-
ditions have a form similar to the “annulus principle” proposed in
Shilnikov’s earlier papers45,46 with Afraimovich (on the breakdown
of invariant tori, see Sec. VI). In essence, these are hyperbolicity
conditions—they express the contraction in the direction parallel to
the discontinuity line 50 and expansion in the transverse direction.
Importantly, the Afraimovich–Bykov–Shilnikov hyperbolicity con-
ditions are explicitly verifiable. They were, first, numerically checked
for the Lorenz model (at one value of parameters) by Sinai and
Vul,112 as well as by Bykov and Shilnikov113 who determined compu-
tationally the region of the existence of the Lorenz attractor. At the
classical Lorenz parameters (σ = 10, b = 8/3, r = 28), the hyper-
bolicity conditions were verified by Tucker114 who used interval
arithmetics to evaluate the numerical precision rigorously.

Using the geometric model, Afraimovich, Bykov, and Shilnikov
obtained a detailed description of the structure of the Lorenz attrac-
tor (see, e.g., Theorems in Ref. 62). They showed that the attractor
is a (singularly) hyperbolic set and that in its neighborhood, there
exists a strongly contracting invariant foliation, which makes the
dynamics of the Poincaré map effectively one-dimensional (i.e., it
can be described by a piecewise expanding map of an interval115,116).
They also established that the attracting limit set consists of a two-
dimensional transitive component where saddle periodic orbits are
dense, and, when the expansion is weak, it may also contain a
one-dimensional component where the dynamics is described by
a Markov chain. The latter case corresponds to the emergence of
lacunas inside the attractor where the one-dimensional component
resides. It was also shown in Ref. 62 that the Lorenz attractor is

FIG. 15. (a) Return map T generated by trajectories of the
Afraimovich–Bykov–Shilnikov geometric model. The map T has a disconti-
nuity line associated with the stable manifold of the saddle equilibrium O. It
maps the cross section 5 into a pair of triangles. (b) The strong-stable invariant
foliation on 5 due to horizontal expansion and vertical contraction.

structurally unstable: the attractor itself persists, but homoclinic
loops of the saddle O appear and disappear as parameters vary. Key
bifurcations that lead to the formation of the Lorenz attractor, to the
emergence of lacunas, and to the destruction of the attractor were
also described.60,117

The summary60 of their findings was first published in 1977,
which was followed by the detailed paper62 containing the rigor-
ous theory with complete proofs that came out 5 years (!) after its
submission, due to bizarre circumstances, which had nothing to do
with science. A groundbreaking survey117 of the results was prepared
by L. P. Shilnikov specifically to disseminate mathematical findings
about the strange attractor and its bifurcations in the Lorenz model
for the Russian-speaking nonlinear community.

Almost simultaneously and independently, a large num-
ber of publications on the Lorenz attractor appeared in the
West;118–124 see also the collection of papers.125 Nevertheless, the
Afraimovich–Bykov–Shilnikov theory remains the most complete
and convenient for practical analysis of Lorenz-like attractors in
various systems.

Shilnikov was very proud of these results, and the theme of
the Lorenz attractor remained his priority until the end of his
life.127–129 First and foremost, Shilnikov was interested in finding
plausible bifurcation mechanisms leading to Lorenz-like attrac-
tors. He described a set of particular bifurcations of homoclinic
loops,130 which warrant existence of the Lorenz attractor for an
open set of parameter values nearby, without the need for veri-
fying the hyperbolicity conditions of the geometric model. These
criteria were subsequently used to examine the Lorenz attractor
in the Shimizu–Morioka model131–134 and in other systems.135,136 In
the following paper,137 the criteria were extended and new mecha-
nisms of the onset of the Lorenz attractor at local bifurcations were
proposed.

The Lorenz attractor is perfectly chaotic: every orbit in it
is unstable. However, during the work on the Lorenz attractor
papers,60,62 it had become clear to Shilnikov that this property does
not always hold. In the Lorenz model itself, the change of param-
eters keeps the dynamics chaotic, but, eventually, stable periodic
orbits start emerging in the attractor, as was first reported in Ref. 61.
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FIG. 16. (a) The “hooks” at the tips of T(5+) and T(5−) lead to homoclinic tan-
gencies and, hence, to stable periodic orbits. (b) The heteroclinic cycle connecting
a saddle and two symmetric saddle-foci (in the Shimizu–Morioka model126).

Shilnikov related this to the loss of the hyperbolicity due to the
so-called hooks in the Poincaré map [see Fig. 16(a)]; the bound-
ary in the parameter space of the Lorenz model where the hooks
are formed was later found numerically in Ref. 113. It was noted
in Ref. 61 that the formation of the hooks and the birth of stable
periodic orbits are connected with the emergence of a symmetric
heteroclinic cycle containing the saddle O and a pair of saddle-
foci [Fig. 16(b)]. The study of the bifurcations of the heteroclinic
cycles involving equilibria with different dimensions of the unstable
manifolds was done by Bykov138–140 in his Ph.D. thesis.

The fact61 that by passing the “Bykov point” the strange attrac-
tor in the Lorenz model could lose its hyperbolicity property and
gain stable periodic orbits served as an impetus for proposing the
concept of a quasiattractor—an attracting invariant set, which, along
with nontrivial hyperbolic subsets, can also contain long stable peri-
odic orbits.108 These orbits emerged (via a homoclinic tangency, see
Sec. V) in almost any scenario of the development of chaos. There-
fore, Shilnikov argued that the notion of the quasiattractors provides
the most adequate mathematical description of dynamical chaos
observed in most computational models.

The need to explore this paradigm stipulated the particular
focus of many works by Shilnikov and his research group on the
study of global bifurcations that produce hyperbolic sets accompa-
nied by stable periodic orbits. Thus, for multidimensional systems
with homoclinic loops to a saddle-focus, Ovsyannikov and Shilnikov
established17,18 the conditions for the appearance of stable periodic
orbits near the homoclinic loop, as well as the specific criteria for
their absence (both for the system itself and any system close to
it). The latter result led, subsequently, to the discovery of wild spi-
ral attractors141 in systems with the dimension four and higher.
Such attractor is obtained from the Lorenz one when the saddle at
the origin is replaced with a saddle-focus. Like the Lorenz attrac-
tor, the wild spiral attractor does not contain stable periodic orbits
(due to a globalized version of the Ovsyannikov–Shilnikov criteria);
moreover, all its orbits are unstable and remain such for any small
perturbation of the system. Figure 17 shows the wild spiral attractor
in a four-dimensional extension of the Lorenz system.142

Homoclinic tangencies occurring in the wild spiral attrac-
tor make a complete description of its structure and bifurcations
impossible (see Sec. V). Still, the main fact—the robust instability
of every orbit in the attractor—has been established based on its

FIG. 17. (a) (x, y, z)-phase space and (b) the (x, z,w)-phase space pro-
jections of the strange attractor in the following 4D Lorenz-like system
{ẋ = σ(y − x), ẏ = x(r − z) − y, ż = xy − bz + µy, ẇ = −bw − µz} at
σ = 10, b = 8/3, r = 25, and µ = 7; from Ref. 142.

pseudohyperbolicity property. The concept and the theory of pseu-
dohyperbolic strange attractors were proposed and developed127,141

by Shilnikov and Turaev.
Shilnikov proposed to apply this theory to the proof of

chaoticity and the further investigation of coupled and periodically
perturbed Lorenz-like systems.127 A particular example of pseudo-
hyperbolic attractors that appear in this setting is given by discrete
Lorenz attractors.143 They look very similar to the classical Lorenz
attractor but, as the name suggests, occur in systems with discrete
time (i.e., diffeomorphisms). Such attractors have been detected in
a broad class of applications.70,143,144 Universal bifurcation scenarios
that explain why the discrete analogs of the Lorenz attractor are nat-
ural for diffeomorphisms in dimension 3 and higher are described
in Ref. 25.

VIII. CONTENT OF THE FOCUS ISSUE

This Focus Issue contains 22 articles devoted to a variety of top-
ical problems in the theory of dynamical systems and deterministic
chaos.

The papers (Refs. 145–148) are focused on spiral chaos.
Xing, Pusuluri, and Shilnikov145 reveal an intricate order of

homoclinic bifurcations near the primary figure-8 connection of
the Shilnikov saddle-focus in systems with central symmetry and
reveal admissible shapes of the corresponding bifurcation curves in
parameter space of such systems. They illustrate their theory using a
newly developed symbolic toolbox to disclose the fine organization
and self-similarity of bifurcation unfoldings in two model symmetric
systems.

A. Gonchenko, M. Gonchenko, Kozlov, and Samylina146 pro-
pose and investigate scenarios of the birth of discrete homoclinic
attractors in three-dimensional non-orientable maps. These scenar-
ios include the emergence of discrete spiral figure-8 attractors and
Shilnikov attractors.

Karatetskaia, Shykhmamedov, and Kazakov147 study in detail
discrete Shilnikov homoclinic attractors for three-dimensional
nonorientable Hénon-like maps of the form x̄ = y, ȳ = z, z̄ = Bx
+ Cy + Az − y2.
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Sataev and Stankevich148 reveal scenarios of the hyperchaos
formation in the modified Anishchenko–Astakhov generator. It is
shown that these scenarios include bifurcation cascades leading to
the emergence of discrete spiral Shilnikov attractors.

The following three papers (Refs. 149–151) focus on Lorenz-
like attractors.

Malkin and Safonov149 consider a two-parameter family of
Lorenz-like maps of the interval. They have found the regions
in the parameter plane where the topological entropy depends
monotonically on the parameters, as well as the regions where the
monotonicity is broken.

V. Belykh, Barabash, and I. Belykh,150 study homoclinic bifur-
cations in a piecewise-smooth Lorenz-type system. They analytically
construct the Poincaré return map and use it to establish the pres-
ence of sliding motions and, thereby, rigorously characterize sliding
homoclinic bifurcations that destroy a chaotic Lorenz-type attractor.

S. Gonchenko, A. Gonchenko, Kazakov, and Samylina151

review geometrical and dynamical properties of discrete Lorenz-
like attractors and propose new types of discrete pseudohyperbolic
attractors.

The four papers (Refs. 152–155) are devoted to hyperbolic
attractors.

Kuznetsov, Kruglov, and Sataev152 provide analytical and
numerical evidence for the existence of a uniformly hyperbolic
attractor of a Smale–Williams type in a simple self-oscillating system
with complex variables.

In the paper by Kuptsov and Kuznetsov,153 a slowly modulated
self-oscillator system subject to a nonlinear delay is studied. It is
shown that the system operates as two coupled hyperbolic chaotic
subsystems and the transition to hyperbolic hyperchaos can occur.

Barinova, Grines, Pochinka, and Yu154 establish the existence
of energy functions for three-dimensional diffeomorphisms with a
hyperbolic attractor and a hyperbolic repeller.

Grines and Mints155 describe restrictions on possible types of
trivial and nontrivial hyperbolic basic sets of A-diffeomorphisms of
surfaces.

The following four papers (Refs. 156–159) discuss synchroniza-
tion and transition to chaos.

Garashchuk and Sinelshchikov156 study the process of destruc-
tion of synchronous oscillations in a model of two interacting
microbubble contrast agents exposed to an external ultrasound field.

Kashchenko157 considers the effect of two types of unidirec-
tional advective coupling in a ring chain of a large number of
coupled Van der Pol equations. The local near-equilibrium dynam-
ics are studied, and the asymptotic behavior of the solutions is
described.

Deng and Li158 propose a simple chaotic memristor-based cir-
cuit with an external stimulation and demonstrate its dynamical
properties.

Munyaev, Khorkin, Bolotov, Smirnov, and Osipov159 investi-
gate chains of locally coupled identical pendulums with a constant
torque. They show that chaos and hyperchaos appear as a result of
changes in the individual properties of elements and the properties
of the entire ensemble under consideration.

The four papers (Refs. 78 and 160–162) study reversible and
Hamiltonian systems and the new type of dynamical chaos—the
mixed dynamics.

Turaev160 gives criteria for non-conservative dynamics in
reversible maps with transverse and non-transverse homoclinic
orbits.

Emelianova and Nekorkin78 describe the emergence of mixed
dynamics in a system of two adaptively coupled phase oscillators
under the action of a harmonic external force. They show that the
mixed dynamics prevent the forced synchronization of the chaotic
regime, and, if an external force is applied to a reversible core, its
fractal dimension decreases.

Lerman and Trifonov161 study homoclinic and heteroclinic
bifurcations in reversible Hamiltonian systems with a saddle-center
equilibrium and a saddle periodic orbit.

Bizyaev, Bolotin, and Mamaev162 investigate the dynamics of
non-holonomic systems (the Chaplygin sleigh and the Suslov sys-
tem) with periodically varying mass distributions.

The three papers (Refs. 163–165) are devoted to systems with
simple dynamics, as well as the dynamics of foliations.

Iljashenko163 investigates the structure of the bifurcation dia-
grams of the families of vector fields in the plane. Among
other results, he constructs a countable number of pairwise non-
equivalent germs of two-parameter bifurcation diagrams.

Bazaikin, Galaev, and Zhukova165 formulate the theory of the
Cartan foliations and its relation to chaotic dynamics.

Malyshev, Morozov, and Pochinka164 propose a new approach
to the classification of Morse–Smale diffeomorphisms on two-
dimensional surfaces, which allows for developing effective algo-
rithms that can compute the topological class of a Morse–Smale
diffeomorphism in polynomial time (as a function of the number
of periodic points).
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