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h i g h l i g h t s

• Synchronous behaviors of weakly coupled canard cycles change at the maximal canard.
• This unveils a key role of the maximal canard directly related to the period function.
• We showcase this phenomenon in coupled van der Pol and reduced Hodgkin–Huxley systems.
• We follow canard cycles and associated adjoints using numerical continuation in AUTO.
• Stronger coupling leads to the appearance of non-trivial canard-mediated states.
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a b s t r a c t

Synchronization has been studied extensively in the context of weakly coupled oscillators using the
so-called phase response curve (PRC)whichmeasures howa change of the phase of an oscillator is affected
by a small perturbation. This approach was based upon the work of Malkin, and it has been extended
to relaxation oscillators. Namely, synchronization conditions were established under the weak coupling
assumption, leading to a criterion for the existence of synchronous solutions of weakly coupled relaxation
oscillators. Previous analysis relies on the fact that the slow nullcline does not intersect the fast nullcline
near one of its fold points, where canard solutions can arise. In the present study we use numerical
continuation techniques to solve the adjoint equations and we show that synchronization properties
of canard cycles are different than those of classical relaxation cycles. In particular, we highlight a new
special role of the maximal canard in separating two distinct synchronization regimes: the Hopf regime
and the relaxation regime. Phase plane analysis of slow–fast oscillators undergoing a canard explosion
provides an explanation for this change of synchronization properties across the maximal canard.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Synchronization is a research topic of its own, which has pro-
duced a large body of knowledge, in particular for so-calledweakly
coupled oscillators [1–6]. A classical object of interest in this con-
text is the (infinitesimal) phase response curve or (i)PRC which en-
codes how a small perturbation affects the phase of an oscillator
when applied all along the associated stable limit cycle solution.
The derivation of the PRC relies on the linearization of the sys-
tem along the unperturbed (i.e. uncoupled) cycle and corresponds
to the solution of the adjoint variational equation. Solutions to
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the adjoint problem and PRCs give insights on the synchroniza-
tion properties of coupled oscillating systems [3,5] when the cou-
pling strength is small enough. Such studies are gathered under
the name ‘‘weakly coupled oscillator theory’’ [4]. This theory has
been linked with earlier studies from Malkin [7,8] by Izhikevich
and Hoppensteadt in [4]; an explicit proof was given in [9] based
on the work of Roseau [10,11].

Weakly coupled oscillator theory has been used in many stud-
ies, especially to investigate the effects of slowly-varying parame-
ters, underlying bifurcations and coupling strengths on collective
dynamics. In one of the pioneering papers on this topic [2], out-
of-phase (OP) synchronization (intermediate modes between in-
phase (IP) and anti-phase (AP) solutions) was shown to emerge
from a pitchfork bifurcation in the phase difference as a function
of the coupling parameter. A similar bifurcation structure has been
found in type-I spiking neuron models, see e.g. [12–14]. Another
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recent study related to type-Imembranes [15] focused on the tran-
sition from IP to OP synchronous states in chains of Wang–Buszaki
models coupled by gap junctions. This transition was investigated
both analytically and numerically as a function of intrinsic system
properties by using phase models and interaction function. In the
framework of type-II neuron models, the impact of the Hopf bi-
furcation on the possible synchronization patterns has been stud-
ied, e.g., in [16–20]. Furthermore, variations of the PRC across a
Hopf bifurcation were analyzed in cortical excitatory neuronmod-
els in [21]. Qualitative changes in the behavior of the PRCwere also
looked at directly from experimental data in [22,23] where the in-
teraction functions were analyzed during the transition from Hopf
and relaxation oscillators. The existence of different synchroniza-
tion modes and of bistable regions in weakly coupled slow–fast
systems interacting via gap junctions has been underlined in [24–
28,13,29–32]. Synchronization has also been studied in the context
of coupled piecewise linear models, in particular in [33,34].

Slow–fast oscillators are an important source of complicated
dynamics, and particularly in relation to the canard phenomenon
[35,36]. The term canard cycle refers to a class of periodic solutions
of slow–fast systems which follow for a long time interval a
repelling slow manifold. Canards occur in slow–fast systems near
regions of the critical manifold (fast nullsurface) where the key
assumption of normal hyperbolicity fails. Themost commonpoints
of this kind in systems with one slow and one fast variables
are generically fold points, so-called canard points. A canard
solution flows from an attracting slow manifold to a repelling
slow-manifold by passing close to such a canard point. In planar
systems, canard cycles exist in a very narrow range of bifurcation
parameters, an interval that is exponentially small in the time scale
separation parameter ε (0 < ε ≪ 1). These sharp transitions upon
parameter variation through the canard regime are called canard
explosions [37]. Combinations of advanced theoretical techniques,
such as blow-up methods [38], and numerical methods [39]
have introduced a new understanding of canard-induced complex
oscillations in systems with multiple time scales (in Rn, n ≥

3), in particular mixed-mode oscillations (MMOs) [40] and
bursting oscillations [41,42], and extended their applications to
neuroscience [43–45]. In (weakly) coupled slow–fast systems, the
effect of canard solutions has been considered in several aspects
such as the formation of clusters, synchrony, phase and amplitude
dynamics [46–50]. Recently, canard-mediated variability has been
investigated in coupled phantom bursting systems addressing
issues on synchronization and desynchronization [51].

In thisworkwe extend previous results on adjoint solutions and
weakly coupled slow–fast oscillators to the case of canard cycles.
Analytical formulations of adjoints and interaction functions were
studied in [52], which also provides a review of the behavior near
bifurcation points. In the framework of relaxation cycles, an ex-
pression for the adjoints could be obtained in [53] by taking the
singular limit approximation, considering the attracting branches
of the critical manifold in place of the slow segments of relaxation
cycles, and instantaneous jumps in place of the fast flow. The con-
sequence of using this setup is that the canard regime has not been
dealt with. In the present study, we propose an alternative numeri-
cal strategy, based on numerical continuation, for the computation
of solutions to the adjoint variational equation associatedwith pla-
nar slow–fast systems along a canard explosion.

In parameter space, canards organize the transition between
the Hopf regime and the relaxation regime. Therefore we may
expect to link the synchronous behavior between these two
families [22,23] by computing adjoints for canard solutions. When
performing such computations, we observe a qualitative change in
the sign and shape of the adjoint (or equivalently, of the iPRC) near
themaximal canard (the cycle with the longest repelling segment).
This phenomenonoccurs in both canard-explosive systems thatwe
consider here, namely the van der Pol (VDP) oscillator and a two-
dimensional (2D) reduction of the Hodgkin–Huxley (HH) model.
We propose an explanation to this qualitative change through the
period function of the canard family which has a non-monotonic
behavior across the explosion from the Hopf bifurcation point to
the relaxation regime, namely, it increases during the headless-
canard regime and it decreases during the canard-with-head
regime. This remarkable property of canard explosions singles
out the maximal (period) canard, for which we highlight a key
role in synchronization, which to the best of our knowledge
was not reported in previous studies. Similar dependence of the
frequency upon a bifurcation parameter has been studied in [54]
in the context of ‘‘escape-release’’ mechanisms of central patterns
generators. The authors of [55] have then linked this dependence
to transitions in PRCs andphase-locking properties occurring in the
low-frequency region.

In the second half of this work, we explore the dependence of
the phase difference between the two weakly coupled identical
VDP systems on system parameters. By investigating the effect of
the main parameter displaying the canard explosion, we observe
that the transition in synchronization properties occurring at the
maximal canard of the coupled system manifests itself as the AP
synchronization state changing its stability through a pitchfork
bifurcation in the phase difference. Furthermore, we reveal the
presence of 2nT -periodic synchronous states in the maximal
canard neighborhood appearing via multiple period-doubling (PD)
bifurcations. Finally,we consider the effect of the coupling strength
on the synchronous states of the oscillators in the maximal canard
regime.We give numerical evidence of the presence of PD cascades
not predicted by the theory of weakly coupled oscillators (which is
valid for moderate coupling strengths in various systems [14,56])
but that can be justified using phase plane analysis of the single
canard oscillators under scrutiny. We also propose in an analytical
formula to compute adjoints associated with limit cycles of
slow–fast systems in Liénard systems, which gives satisfactory yet
improvable results.

This paper is organized as follows. In Section 2, we introduce
the main objects required to compute adjoint solutions along a
limit cycle and we present our numerical strategy to do so along
families of canard cycles. In Section 3, we analyze numerically the
effect of the main parameter controlling the canard explosion on
the synchronous states of the coupled VDP system and report a
qualitative change occurring near themaximal canard solution.We
then explain this change by invoking the properties of the period
function associated with such a canard-explosive branch of limit
cycles. In Section 4, we focus on the effect of the coupling strength
parameter on the synchronous structure in the coupled VDP
system near a maximal canard. After concluding and proposing a
few perspectives to this work, we present an analytical formula
to compute adjoint solutions for the type of systems we have
investigated and test this formula numerically in the Appendix.

2. Computations of adjoint solutions along a family of cycles

2.1. Phase response curve and adjoints

PRCs describe the phase shifts along a stable limit cycle of
a dynamical system in response to a stimulus. Weakly coupled
oscillator theory [1,57,4] is used to predict the phase-locking
properties of coupled oscillating system with a ‘‘small enough’’
coupling strength. This theory, which reduces the dynamics of
oscillators to a phase variable, implies that coupling has small
effects that can accumulate over time and lead to phase-locking
behaviors. IPRCs correspond to PRCs in the limit of infinitesimal
stimulus. One way to compute iPRCs is by means of non-trivial
solutions to the adjoint variational equation associated to the
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stable limit cycle under consideration; there are numerous other
approaches, see e.g. [3,5].

We now recall the main elements necessary to introduce ad-
joint solutions associated with a limit cycles. Consider a dynamical
system in Rn

dX
dt

= F(X) (1)

that possesses a T -periodic asymptotically stable limit cycle γ . A
phase variable φ ∈ [0, T ) is defined along the limit cycle γ pa-
rameterized by time and it is typically normalized to 1 or to 2π . It
can be associated with points on the cycle by writing φ = Θ(x)
for x ∈ γ . Then, perturbing a point x on the limit cycle with corre-
sponding phase φ = Θ(x) (which we can also write as x = X(φ))
by a small quantity y ∈ Rn leads to a delay or an advance of the
phase. The new phase φ′ is given by

φ′
= φ + ∇XΘ(x).y + O(∥y∥2)

and the difference between the old and new phases for small per-
turbations is expressed as

φ′
− φ = ∇XΘ(x).y.

The vector function Z defined by Z(φ) = ∇XΘ(X(φ)) is the gra-
dient of the phase map describing how infinitesimal perturbations
on any system variable along the limit cycle change its phase. The
function Z (which depends on φ or equivalently on t ∈ [0, T ]) is
the solution of the adjoint variational equation

dZ(t)
dt

+ A(t)TZ(t) = 0 (2)

which satisfies the normalization condition

Z(t)
dX0(t)
dt

= 1, (3)

where

A(t) = DXF(X)|γ

is the linearization of system (1) around the limit cycle γ . The ad-
joint equation should be integrated backwards in time to elimi-
nate all the transient components except the periodic one, which
gives the solution. An algorithm to compute solutions to adjoint
equations, based on backward integration, is embedded in soft-
ware package xppaut [58], or can be coded inmatlab [59], in addi-
tion to a continuation-based approach inMatCont [60].

Canard explosions occur in slow–fast systems in a very narrow
parameter rangewhich is exponentially small in the timescale sep-
aration parameter 0 < ε ≪ 1. Naturally, this parameter range
gets narrower as ε tends to 0, and limits the usage of classical
tools to compute family of canard orbits and their adjoints. This
limit has been acknowledged by Govaerts and Sautois who have
introduced a direct numerical approach in the continuation pack-
age MatCont [60]. In addition to existing methods, we propose
an alternative and simpler continuation-based strategy using the
software package auto [61]. We formulate a periodic continuation
problem which allows us to compute rapidly and reliably a family
of cycleswith associated non-trivial periodic solution of the adjoint
equation. Note that a boundary-value problem (BVP) approach has
been proposed in [62], outside of a continuation setup given that
the system was with reset. Here, for simplicity, we avoid dealing
specifically with boundary conditions and opt for the most nat-
ural periodic setting of this numerical problem. An extension of
the analytic approach for solving adjoint variational equations in
slow–fast systems is given in the Appendix.
2.2. Numerical continuation alternative for adjoints

The numerical continuation approach proposed in the present
work allows us to compute limit cycles and associated adjoint
solutions along a canard-explosive branch. One of the main
advantages of the continuation is the possibility to find solutions
in the limit ε → 0. We extend the continuation setting of the
original system (1), solved in order to find limit cycles, by including
Eq. (2) (once written in first-order form) to find periodic solutions
of the adjoint problem along these cycles. In order to compute a
limit cycle γ together with a periodic solution of the associated
adjoint problem along γ , one needs to solve the following system
of equations

Ẋ = F(X),

Ż = −DXF(X)T
|γ Z .

(4)

Our numerical continuation strategy requires two steps: first,
to find a non-trivial solution of the adjoint problem along the
(initial) cycle γ , and second, to follow the extended system (4)
(as a periodic continuation problem) in a bifurcation parameter in
order to find a branch of such solutions. In the following section
we describe these steps by considering two examples of coupled
slow–fast systems in the canard regime, namely, the VDP system
and a two-dimensional reduction of the HH model for action
potential generation whose slow–fast structure and associated
canard dynamics were analyzed in [63].

2.2.1. Adjoint solutions of the VDP system
In the case of the VDP system, the extended continuation

setting (4) reads

x′
= y − f (x)

y′
= ε(c − x)

z ′

1 = f ′(γ1(t))z1 + εz2
z ′

2 = −z1,

(5)

with f (x) = x3/3−x, 0 < ε ≪ 1 and c is the bifurcation parameter
displaying the canard explosion. The system given in (5) merges
the original VDP system with the adjoint equation. As hinted at
above, the continuation procedure is divided into two steps.
In the first step, we initialize system (5) with the limit cycle γ for
the first two equations, and the trivial solution for the remaining
two (which is trivially periodic). We need to obtain a non-trivial
periodic solution of the adjoint equation which can be found by
continuing system (5) in an extra parameter. Indeed, given that
the trivial solution to the adjoint equation exists for all values of
parameters c and ε, by continuing in any of these we can only
hope to find a branch point and switch at this bifurcation to the
non-trivial solution branch. An alternative is to introduce a dummy
parameter µ, such that system (5) becomes

x′
= y − f (x)

y′
= ε(c − x)

z ′

1 = f ′(γ1(t))z1 + εz2
z ′

2 = −z1 + µ,

(6)

and to continue the starting solution in µ along a very small
interval, as small as possible. It turns out that we can compute a
branch in µ and stop at µ = 10−8, which is indeed very small but
sufficient to find a non-trivial solution of the extended problem (6).

Given that µ is very small, we can, in the second step, impose
back µ = 0 and run a simple Newton iteration so as to converge
to a non-trivial solution of the original extended problem (5). The
advantage of using numerical continuation to compute a non-
trivial solution to the adjoint equation along a canard cycle is that
we can then continue the extended problem (5) in parameter c and
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Fig. 1. Top left panel: Canard orbits of the VDP system in the phase plane, for ε = 0.1. Panels 1–7: time profile of the first component of the adjoint solution associated
with each canard cycle shown in the phase plane (together with the critical manifold S0 := {y = f (x)}), keeping the same color coding. A qualitative change in the adjoint
solution occurs in between Orbit 4 and Orbit 5, corresponding to the passage through the maximal canard cycle. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
follow both the cycle and the associated periodic solution of the
adjoint equation along the entire canard explosion.

Finally, the normalization condition (3) is required to close to
the linear problem corresponding to the adjoint equation. Imple-
menting this condition as part of our numerical continuation pro-
cedure can be a little delicate for small values of ε, therefore we
decided to use a periodic continuation in auto and apply the scal-
ing that corresponds to (3) as a post-processing step. Note that
we refrain from computing the Floquet bundle to obtain the non-
trivial solution of the adjoint equation for this numerical problem
sincewe only need any non-trivial solution to the adjoint equation,
which we can then normalize appropriately.

Starting from the Hopf bifurcation and continuing all the way
to the relaxation regime, we can therefore follow the canard cycles
by varying c together with their associated adjoint solutions. Fig. 1
shows some of the orbits lying in the headless canard and in the
canard with head regimes. We observe a qualitative change in
the adjoint solution, where max(x(t)) point on the periodic orbit
corresponds to the zero phase φ = 0, as the limit cycle γ passes
through the maximal canard.

In order to see whether or not the transitions that we observe
in coupled VDP oscillators are systemdependent, we next compute
adjoints solutions associated with canards in a planar reduction of
the HH model.

2.2.2. Adjoints of canard cycles in a reduced Hodgkin–Huxley model
A reduction of the classical HH model to two variables was

analyzed from the viewpoint of canard dynamics in [63]; the planar
system has the form

CV̇ = I − ḡNa[m∞(V )]3(0.8 − n)(V − VNa)

− ḡKn4(V − VK ) − gL(V − VL)
ṅ = αn(V )(1 − n) − βn(V )n,

(7)
whereαn(V ) = (0.01(V+55))/(1−exp[−(V+55)/10]), βn(V ) =

0.125 exp[−(V + 65)/80], m∞(V ) = αm/(αm + βm) with αm =

(0.1(V + 40))/(1 − exp[−(V + 40)/10]), βm = 0.4 exp[−(V +

65)/18]. Moehlis has shown in [63] that system (7) displays a
canard explosion when parameter I is varied, for the following
fixed values of the other parameters: ḡNa = 120, ḡK = 36,
ḡL = 0.3, VNa = 50, VK = −77, VL = −54.4, C = 1. After
verifying numerically that the dynamics of V are much faster than
the dynamics of n and, hence, that the system effectively displays
slow–fast dynamics, a formal asymptotic analysis was performed
in ε which appeared in the rescaled form of the slow equation
(ṅ = ε(αn(V )(1 − n) − βn(V )n)) in [63]. Following the treatment
of ε as a small parameter in asymptotic analysis and obtaining an
ε-expansion of the I-value at which the canard explosion occurs,
ε = 1 was plugged in the final formula.

Despite the instability of part of the canard branch in system (7),
the continuation strategy allows to find solutions to adjoint equa-
tions. Since we are interested in the shape of the adjoints of the
canard cycles lying on different sides of the repelling slow mani-
fold, we can ignore the stability issue. Following the same contin-
uation procedure described above, we compute adjoints of the 2D
reduced HH system. Canard cycles and corresponding adjoint so-
lutions are visualized in Fig. 2. As in the VDP system, the transition
from headless canards to canards with head changes qualitatively
the adjoint solution.

2.3. Consequences of a non-monotonic period function on the iPRC

As shown in Fig. 3, the period function is non-monotonic along
the canard explosion. It increases in the headless canard regime,
reaches its maximum at the maximal canard and then decreases

Jodie
Highlight
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Fig. 2. Top left panel: Canard orbits of the reduced HH system in the phase plane. Panels 1–7: time profile of the first component of the adjoint solution associated with
each canard cycle shown in the phase plane (together with the critical manifold S0 := {V̇ = 0}), keeping the same color coding. A qualitative change in the adjoint solution
occurs in between Orbit 4 and Orbit 5, corresponding to the passage through the maximal canard cycle. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 3. (a) Period of limit cycles along the canard explosion in the VDP system for ε = 0.1; the parameter that varies is c . The period is increasing along the headless canard
part of the branch, it reaches its maximum at the maximal canard and then decreases along the canard-with-head cycles. (b) Three headless canard cycles and their periods
marked on the period curve. Smaller cycles have smaller periods. (c) Three cycles in the neighborhood of the maximal canard, together with their periods marked on the
period curve. Canards with head and headless canards have very close periods in this vicinity. (d) Three canards with head and their periods marked on the period curve.
Larger cycles have smaller periods. Also shown on panels (b) to (d) is the critical manifold S0 , on which solid (resp. dashed) parts represent stable (resp. unstable) branches.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. (a1, b1) Transient effect (dashed curves) of a small perturbation of the canard cycles (red solid curves) in the positive x-direction. (a2)–(b2) time profile of the first
component of the adjoint solution associated with the red canard cycles and (inset) (x(t), y(t)) during one cycle. Perturbing a headless canard (resp. a canard with head)
away from the attracting slow manifold (yellow asterisk) delays (resp. advances) its phase by driving it to a larger yet slower (resp. faster) yellow dashed cycle. Perturbing
a headless canard (resp. a canard with head) towards the repelling slow manifold (blue asterisk) advances (resp. delays) its phase by driving it to a smaller yet faster (resp.
slower) blue dashed cycle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
in the canard-with-head regime. The non-monotonicity of the
period function along the explosive branch of canard cycles is
one key aspect of the canard phenomenon in VDP-type systems,
and the maximum of the period function can be used to detect
numerically the maximal canard [64]. The shape of this period
function is sufficient to understand the effect of a perturbation
of a canard cycle close enough to the lower fold of the critical
manifold S0. Indeed, O(1) away from this fold point, a sufficiently
small perturbation from the slow manifold takes the perturbed
trajectory back to it very rapidly and therefore the effect of this
perturbation is largely attenuated. This justifies that the solution
to the adjoint equation along a canard cycle is close to zero for
most of the cycle apart from the time interval corresponding to
when the cycle is close to the lower fold (where the canard point
is). On the other hand, near the lower fold of the critical manifold,
the attraction to the slowmanifold associated to the chosen canard
cycle is weaker and the effect of the perturbation becomes large;
see Fig. 4(a2), (b2) for an illustration of this point. This effect can be
understood by invoking the period function of the branch of canard
cycles.

First, consider headless canard cycles as represented in Fig. 3(b).
If we denote the period of the red cycle by Tred, then smaller
canard cycles than the red one, like the blue cycle, have smaller
periods whereas larger headless canard cycles, like the yellow one,
have greater periods. Hence we have: Tblue < Tred < Tyellow.
Therefore, an infinitesimal kick in the positive x direction applied
on the slow attracting segment of the red headless canard cycle
near the fold (yellow dot in Fig. 4(a1)) has the effect that the
perturbed trajectory follows transiently a larger headless canard
cycle (like the yellow one) before converging back to the red cycle.
Given that the yellow cycle has a larger period, the perturbed
trajectory’s phase is delayed compared to the unperturbed one.
Applying such a kick on the slow repelling side of the red headless
canard (blue dot in Fig. 4(a1)) has the opposite effect given that
in this case the perturbed trajectory first follows a smaller canard
and, hence, has an advanced phase compared to the unperturbed
one. Consequently, this qualitative argument justifies the sign of
the adjoint solution along a headless canard cycle as shown in
Fig. 4(a2). As it can be observed from the (x(t), y(t)) flow shown
in the inset of Fig. 4(a2), the negative part of the first component
of the adjoint Z1(t), which indicates phase delay, corresponds to
the flow towards the fold. The sign of Z1(t) changes at the fold
(x = 1) and then becomes positive as (x(t), y(t)) continue along
the repelling branch. The situation for canardswith head is entirely
reversed: the period function is decreasing along the family of
canards-with-head, hence three canards-with-head as shown in
Fig. 3(d) (blue, red, and yellow) have their periods satisfying the
inequalities Tblue > Tred > Tyellow. Consequently, a similar phase
plane argument as given above justifies that an infinitesimal kick
on a canard with head on its slow attracting segment near the fold
leads to a phase advance of the perturbed trajectory, whereas on
the slow repelling segment it leads to a phase delay. This agrees
with the adjoint solution computed along a canard with head and
plotted in Fig. 4(b2). Solution (x(t), y(t)) given the inner panel of
Fig. 4(b2) confirms that, indeed, Z1(t) takes positive values along
the flow towards the fold, changes its sign at the fold (x = 1), then
becomes negative as the solution (x(t), y(t))moves away from the
fold region. Note that invoking the period function to explain a
change of shape and sign of the adjoint solution has been used
in [55] in the context of so-called escape-release mechanism for
the synchronization of half-center oscillators. Here we show that
it also applies in the context of coupled canard oscillators.
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Fig. 5. Interaction functions H in the maximal canard neighborhood given in Fig. 3(c) for FF (panel (a)) and FS (panel (b)) coupling functions. The properties of H reflect
what is found for the solutions of the adjoint equation, i.e. the transition occurs in the neighborhood of the maximal canard.
3. Synchronization properties of weakly coupled canard oscil-
lators

The behavior of the adjoint solutions (or equivalently, of the
iPRCs) provides predictions on the collective behavior in the
weak coupling regime via the interaction function which is the
convolution of adjoint solutions and the coupling function [57,7,8,
5,4]. In coupled identical systems the interaction function of each
oscillator reads:

H(φj − φi) =
1
T

 T

0
Z(t)Uj(γ (t), γ (t + φj − φi))dt (8)

whereφj−φi (i = {1, 2}, j = 3− i) is the phase difference between
the two oscillators and U is the coupling function. The dynamics of
the phase difference, φ = φj − φi, is described by the following
equation

dφ
dt

= α[H(−φ) − H(φ)] = αG(φ) (9)

where 1 ≫ α > 0 is the coupling strength. Eq. (9) has a stable
solution at φ∗ if G′(φ∗) < 0, meaning that the two oscillators
will synchronize with a phase difference φ∗. The solution φ∗

= 0
corresponds to IP synchronization, φ∗

= π (or equivalently φ∗
=

0.5 if the phase is rescaled to [0,1]) to AP synchronization, and any
other values of φ∗ corresponds to OP synchronization of coupled
oscillators. In the case of coupled identical oscillators, that both IP
and AP solutions are guaranteed to exist [65].

IP synchronization of two identical relaxation cycles (coming
from oscillators with cubic-shaped fast nullclines) that are weakly
coupled via fast to fast (FF) connections has been shown in [66,29,
53,30,67,27], outside the canard regime. In addition to FF coupling
– which is the coupling function generally considered since it acts
as a prototype for the electrical interaction between neuronal sys-
tems – we consider fast to slow (FS) coupling, which is not phys-
iologically realistic but provides insight into understanding the
interactions between perturbation and canards. The FF-coupled
VDP oscillators read:

εẋi = yi + xi −
x3i
3

+ α(xj − xi),
ẏi = (c − xi),

(10)
and the FS-coupled system is given by

εẋi = yi + xi −
x3i
3

,

ẏi = c − xi + α(xi − xj).
(11)

The effect of a small perturbation on the canard cycles in the
neighborhood of the lower fold of the critical manifold S0, is
different for canards with head than for headless canard cycles,
as revealed by the corresponding adjoint solutions; see Fig. 1.
This qualitative change occurs at the maximal canard. Fig. 5
shows the interaction functions H associated with the cycles in
the neighborhood of the maximal canard (shown in Fig. 3(c))
interacting via FF (panel (a)) and FS (panel (b)) connections.
Given that a headless canard cycle resembles more the maximal
canard (themaximal canard being amaximal headless canard), the
amplitude of the corresponding function H decreases while the
number of zeros, that is, solutions to H(φ∗) = 0, and the sign of
H ′(φ∗) remain the same. The sign ofH ′(φ∗) changeswhen the cycle
moves to the canard-with-head regime, while the number of zeros
φ∗ is preserved.

The function G (see Fig. 6) is computed for the cycles (whose
adjoints are presented in Fig. 1) interacting via FF coupling. The
location of the zeros φ∗ of G, and the sign of its derivative at such
points, determine the type and stability of synchronized state of
the coupled system. The IP synchronized solution which exists for
the Hopf cycles (not shown on this figure) loses stability along
the canard explosion (due to the high sensitivity to perturbation
resulting from the passage near the fold of the critical manifold
S0) and a stable OP solution appears for the headless canard
cycles (orbits 1–4). The phase difference of the stable OP solution
increases as the cycle approaches themaximal canard (Panels 1–4).
Bistability appears for the canards-with-head (orbits 5–7), where
IP and AP solutions are the stable synchronous solutions and the
OP is the unstable solution (Panels 5–7).

The information obtained with the function G about synchro-
nized states of the weakly coupled VDP system with FF coupling,
can be confirmedby anumerical bifurcation analysis of the coupled
system in question.We have performed this analysis by continuing
synchronous states of system (10) (including the ones which are
not visualized in Fig. 6) in parameter c. The result is presented in
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Fig. 6. Selection of canard cycles of the VDP oscillator in the phase plane (x, y) (top left panel) together with the corresponding G functions (panels 1–7; the phase φ is
rescaled to [0,1]).
Fig. 7where the chosen solutionmeasure is the difference between
the x-component of each oscillator at time t = 0, x2(0) − x1(0),
regardless of its varying amplitude as a function of c. That mea-
sure has the same interpretation as the phase difference for these
simple orbits and it is often used in the analysis of weakly cou-
pled oscillators [2]. Panels (b) to (d) are successive zooms of panel
(a) in the region corresponding to maximal canards for each oscil-
lator. The properties of the synchronized states of the FF-coupled
cycles are tracked starting from the double Hopf bifurcation point
at c = cHopf = 1down to the relaxation regimenear c ≈ 0.615.We
consider a fixed coupling strength α = 10−5 for which the weakly
coupled oscillators theory is expected to be valid; a detailed dis-
cussion on the effect of α is presented in Section 4. One stable and
two (symmetric) unstable branches, which correspond to IP andAP
solutions, respectively, appear at c = cHopf . The IP solution under-
goes a pitchfork bifurcation through which it loses its stability as a
stableOP solution appears (Panel (b)). TheOPbranches becomeun-
stable at a PD bifurcation which is followed by a PD cascade corre-
sponding to 2nT -periodic stable synchronous solutions (Panel (d)),
where the interaction function analysis is not valid. The T -periodic
OP branches become stable again via a second PD bifurcation. It
changes its stability two times via a couple of fold bifurcations be-
fore connecting to the second pitchfork bifurcation point on the IP
branch that restabilizes the IP state.

The unstable AP branch that appears at cHopf becomes stable
at the maximal canard of the coupled system through a pitchfork
bifurcation (Panel (c)). The stable AP and OP solution related to this
pitchfork bifurcation coexist with stable IP solutions for a some
range of c in the neighborhood of the maximal canard. For smaller
values of c , IP and AP remain stable, while OP states are unstable.

The bistability regions (illustrated in Fig. 8) already hinted at
with the investigation of the functionG, arewell identified through
the continuation analysis, in particular the coexisting stable IP
and stable AP states (canards with head and relaxation cycles)
born near the maximal canard solutions. This intricate bifurcation
structure unveils a main connection between the stable IP and
the AP states through the double Hopf point at c = cHopf , which
gives rise to both the IP stable state and a branch of unstable
AP states. Decreasing c further, additional bifurcations occur, in
particular pitchfork bifurcation points (black dots in Fig. 7(a) to
(c)) which correspond to events where the synchronous state
loses some symmetry. Indeed, on both the IP and the AP branches
these bifurcations lead to additional solution branches alongwhich
the two canard oscillators do not follow identical cycles; in each
case, the synchronous state becomes identical again through fold
bifurcations. Note that these non-identical branches emanating
from both the IP and the AP states come close to each other
(near a second pair of fold bifurcations) forming a structure that
seems to be a broken transcritical bifurcation. This perturbed
bifurcation is only conjectured here; a more detailed analysis of
the ε-dependence of the synchronous states goes beyond the scope
of this paper and will be a question for future work. We simply
remark that this structure seems to perturb from an additional
connection between the stable IP and stable AP coupled canard
states. Finally we note the presence of several sequences of PD
bifurcations (colored dots in Fig. 7(d)) which are likely to indicate
small zones of chaotic dynamics in this region of parameter space.

One striking element about the bifurcation diagram described
above is the fact that most of the connecting branches between the
IP and the AP synchronous states are organized near solutions that
correspond tomaximal canards. It is therefore natural to ask about
the effect of the coupling strength α on such synchronous states
containing maximal canard segments; we focus on this aspect in
the next section.
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Fig. 7. Bifurcation diagram of system (10) with respect to variations of c for α = 10−5 , from the Hopf regime to the relaxation regime. The output solution measure is the
difference between the first components of each oscillator at time t = 0. The region of the maximal canard is enlarged from left to right and top to bottom panels. Black
dots in panels (a) to (c) denote pitchfork bifurcation points; the black star in panel (b) corresponds to the double Hopf point that initiates the periodic regime in this coupled
system; colored dots in panel (d) denote PD bifurcation points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 8. Coexisting stable IP (a), AP (b) OP (c) solutions for c = 0.986267 from Fig. 7(c). Stable T -periodic solution for c = 0.98631587277 (d), 2T -periodic solution for
c = 0.9863137635 (e), and 4T -periodic solution for c = 0.98631334783 (f), from Fig. 7(d).
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Fig. 9. Continuation in α for the FF-coupled VDP system for a c value in the vicinity
of the maximal canard. Inset panels (a) and (b) are zoomed view of different parts
of the main panel. Bifurcation points (mainly PD bifurcations) are indicated by
red dots. T-periodic (black), 2T -periodic (green) and 4T -periodic (blue) branches
coexist with stable (solid) and unstable (dashed) solutions. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

4. Effect of the coupling strength α

The interaction function analysis reveals the existence and
stability of synchronous states for weakly coupled oscillators,
although how ‘‘weak’’ the coupling should be in order that the
theory applies is questionable. For instance, it was shown in [14]
that for leaky integrate-and-fire type of oscillators the H-function
analysis is valid for moderate coupling strengths, whereas other
papers (see e.g. [68,69]) have mentioned a loss of 1:1 phase
locking estimated by the interaction function analysis. In the
case of coupled canard-explosive systems where the properties of
the underlying oscillators vary brutally in parameter ranges that
are exponentially small in time-scale parameter ε, the notion of
weak coupling can be even more vague. For instance the region
with cascades of PD bifurcations, highlighted in Fig. 7(d) and
corresponding to cycles that are close to the maximal canard
regime (under weak coupling of strength α = 10−5), gives a
good numerical evidence that canard orbits are very sensitive
to perturbations and that the validity of the interaction function
analysis is limited in such cases.

In order to investigate this aspect further, we next consider the
phase difference dynamics of two coupled identical headless ca-
nard cycles for a c-value in the neighborhood of the maximal ca-
nard, as a function of the coupling strength α > 0. This numerical
continuation study will focus both FF and FS interactions. The aim
is to identify what range of the perturbation strength can give rise
to interesting canard-mediated dynamics that are not predicted by
the interaction function analysis but whose existence can be justi-
fied using slow–fast arguments.
Fast-to-Fast (FF) coupling. The bifurcation structure inα for this case
is presented in Figs. 9 and 10 (zoomed views); associated solution
profiles are shown in Figs. 11 and 12. A stable OP synchronous
state with a phase difference φ∗

= 0.34 is predicted by the
interaction function analysis for the case of two headless canard
cycles with FF-coupling, that is, for system (10); see Fig. 5(a) and
Fig. 6 panel 4. Using the bifurcation diagram presented in Fig. 9, we
can conclude that this OP regime persists for α ∈ (0, 6.63371 ×

10−5
]. It loses its stability at α ≈ 6.63371 × 10−5 via a PD

bifurcation where the interaction function result is violated, and
consequently, not valid for greater coupling strengths. Switching
branch at this PD point reveals the presence of a PD cascade, for
which we compute only a few subsequent branches. Among the
stable part of these branches of period-2nT synchronous solutions
(near which chaotic orbits surely exist too), that is, for a coupling
strength α ∈ (6.63371 × 10−5, 0.0083195], there exists a family
of solutions displaying what we call ‘‘spike suppression’’. This
scenario corresponds to when one of the oscillators spikes by
following a canard with head while the other always remains in
the headless canard regime. Regarding the IP solution branch, it
becomes stable at α ≈ 0.0085633416545 and coexists, for α ∈

[0.0085633416545, 0.289498], with the 2nT -periodic headless
canard solution branch.
Fast-to-Slow (FS) coupling. The bifurcation structure in α for this
case is presented in Fig. 13; associated solution profiles are
shown in Fig. 14. The stable IP synchronization state predicted
by the interaction function analysis for the FS-coupling (Fig. 5(b))
becomes unstable at α ≈ 0.007498445 (Fig. 13(a)) via a subcritical
PD bifurcation that introduces an unstable 2T -periodic branch
which becomes stable at α ≈ 8.74785268 × 10−5, where the
interaction function analysis loses its validity. Continuing that
branch leads to the detection of further PD bifurcations organized
in a cascade, which we compute only the beginning of; see
Fig. 13(b). These nT -periodic branches correspond to families of
solutions displaying what we call ‘‘spike alternation’’, that is, a
scenario forwhich both oscillators of the FS-coupled system follow
subsequently a headless canard segment and then a canard-with-
head segment, hence performing an MMO [40]; see Fig. 14 for an
illustration of suchMMO cycles with period T , 2T and 4T on (a), (b)
and (c) panels, respectively. Depending on the value of the coupling
strength α, the oscillators may follow the same or different canard
trajectories.

On both FF- and FS-coupled canard systems, we have observed
using a numerical bifurcation analysis the proximity of several
stable solution branches with complicated oscillatory patterns
mixing passages along headless canards and along canards with
head. In the context of neuronal systems, these solutions alternate
subthreshold oscillations and spikes. These solutions are not
predicted by the interaction function analysis typically employed
inweakly coupled oscillator studies. However, one can justify their
existence by invoking the presence in such systems of repelling
(Fenichel) slow manifolds, which are known to be exponentially
close to each other (in the timescale separation parameter ε).
Therefore, the presence of these manifolds near the middle branch
of the critical manifold S0 of each individual slow–fast oscillator
can allow to explain why, for values of the coupling strength α
that are larger that exponentially small quantities, synchronized
states of the coupled system may follow these manifolds on one
side (subthreshold regime) or the other (spiking regime) while
staying very close to the boundary (well approximated bymaximal
canards). In other words, when two identical slow–fast systems
are weakly coupled, the existence of a repelling slow manifold
and of an associated maximal canard trajectory in the uncoupled
system can give rise to solutions to the full (coupled) system for
which each node follows this maximal canard on opposite sides,
hence, separate after an O(1) time. This can happen as soon as
the coupling is stronger than an exponentially small function of
ε and can therefore be responsible for the presence of canard-
induced states in the coupled system; see [51] for an example of
this phenomenon in weakly coupled folded-singularity systems.

5. Discussion

In this paper, we have extended previous results on weakly
coupled slow–fast oscillators to the canard regime, both from
theoretical and numerical perspectives. Our main finding is that
the behavior of adjoint solutions (or equivalently, of iPRCs) changes
qualitatively when the canard cycle under consideration is moving
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Fig. 10. Continuation in α for the FF-coupled VDP system in the maximal canard regime: zoomed view from Fig. 9 in the region of PD cascades (most of the computed PD
bifurcation points being highlighted by colored dots). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 11. Period 2T (top panels) and period 4T (bottom panels) non-identical OP synchronous states for the FF-coupled system in the maximal canard regime, illustrating
the spike suppression scenario. Values of the coupling strength α are 2.86959 × 10−4 in panels (a1)–(a2) and 2.85359 × 10−4 in panels (b1)–(b2).
(as the canard parameter is varied) along the associated explosive
branch. Indeed, the sign and shape of the adjoint solutions flip
as the underlying canard cycle goes from the headless canard
regime to the canard-with-head regime, the transition taking
place at the maximal canard cycle, which in particular sheds new
light onto the previously unnoticed role played by this special
canard in the context of coupled slow–fast oscillators, deeply
connected to the fact that it corresponds to a critical point of
the period function [64]. This change of behavior of adjoints of
canard cycles upon infinitesimal perturbations can be explained by
the peculiar known property of the period function of a canard-
explosive branch, which can be summarized as follows: larger
headless canards have greater periods, whereas larger canards-
with-head have smaller periods. As explained in Section 3, this
argument is fully applicable when the perturbation is applied
near the fold point of the critical manifold corresponding to the
canard point, and its validity is weakened as the perturbation is
applied further away from this fold point, where the contraction
towards the unperturbed cycle rapidly annihilates the effect of the
perturbation. This justifies that adjoints computed along canard
cycles are very close to zero during most of the cycle except
along a time interval corresponding to when the canard cycle
passes near the fold (canard) point of the critical manifold S0.
Nevertheless, the explanation that we provide is valid for the most
informative part of the adjoint solutions and bears consequences
on the synchronized solutions of coupled canard systems.

We have shown this mechanism for a prototypical canard
oscillator, namely the VDP system, but it is clearly applicable to all
excitable systems of this form, in particular, to slow–fast type-II
neuron models such as the reduced HH model studied in [63].
This opens the way to a renewed understanding of iPRCs in such
neuron models, from the Hopf cycles (whose adjoint solutions
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Fig. 12. Period T (top panels, identical), period 2T (middle panels, non-identical) and period 4T (bottom panels, non-identical) stable OP synchronous states of the
FF-coupled VDP system in the maximal canard regime. The phase differences for these states are coherent with the interaction function analysis. Values of the coupling
strength α are 6.63371× 10−5 in panels (a1)–(a2), 7.04717× 10−5 in panels (b1)–(b2) and 7.13322× 10−5 in panels (c1)–(c2). Left panels: Trajectories projected onto the
(xi, yi) planes. Right panels: Time series of the xi coordinates.
Fig. 13. Continuation in α for the FS-coupled VDP system. Bifurcation points (PD bifurcations) are indicated by red dots. Both stable (solid) and unstable (dashed) parts of
T -periodic (black), 2T -periodic (red), 4T -periodic (green) and 8T -periodic (blue) branches are shown. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
will qualitatively look like those associated with small headless
canard cycles) to the spiking cycles (whose adjoint solutions will
qualitatively look like those associated with canards with head). In
particular, our findings can be related to recentwork on isochrones
since PRC analysis originates in the study of phase models and
isochrones [70]. Recently the isochrones of canard cycles were
investigated numerically in [71,72] where evidence was given
that their properties change in the vicinity of the maximal canard
neighborhood; this is likely to be closely linked with the results
presented here. While a full comparison of these two aspects
of canard cycles’ phase properties goes beyond the scope of the
present work, it is certainly an interesting topic for future work.

While studying adjoint solutions along canard cycles, we have
also proposed a numerical strategy based on numerical continu-
ation in auto to compute these objects as a system parameter is
varied, that is, to reliably compute a family of limit cycles and at
the same time a family periodic solutions to the associated ad-
joint problem. Making use of the boundary-value solver of auto,
we could easily identify the flip in the solution to the adjoint prob-
lem as the cycle goes through the maximal canard. Our strategy
with a one-step homotopy approach to compute a non-trivial so-
lution to the adjoint equation associated with a given limit cycle,
and then continue both this solution and the limit cycle as an ex-
tended periodic continuation problem ismore elementary than the
one developed by Govaerts and Sautois in [60] for MatCont, as it
simply relies on a periodic continuation, yet giving access to the ob-
jects of interest. Moreover, the simplicity of our approach makes it
easily adaptable to other systems andwe believe that it is an inter-
esting computation for the community of auto users.

In Section 3, we looked at the bifurcation structure of the
synchronous states of the weakly coupled identical VDP systems
when varying the main system parameter, which in this case
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Fig. 14. Period T (top panels), 2T (middle panels) and 4T (bottom panels) stable non-identical OP synchronous states displaying spike alternation for the FS-coupled
system near the maximal canard regime. Values of the coupling strength α are 2.8502655978 × 10−3 in panels (a1)–(a2), 2.8939484985 × 10−3 in panels (b1)–(b2) and
2.9039987077 × 10−3 in panels (c1)–(c2). Left panels: Trajectories projected onto the (xi, yi) planes. Right panels: Time series of the xi coordinates.
controls the position of the slow nullcline but would likely be an
applied current in the neuronal context. We found an intricate
structure of solution branches of IP, AP and OP states, connected
through both PD and pitchfork bifurcations, which are organized
around the maximal canard solution. While the synchronization
properties of relaxation cycles were already known, we believe
that the bifurcation structure of the weakly coupled canard regime
is by-and-large novel, in particular the role of the maximal canard
as an organizing center for the IP, AP and OP families.

In Section 4, we focused on the bifurcation structure of
synchronous states of coupled identical VDP systems in the
maximal canard regime, depending on coupling strength α. PD
bifurcations and chaotic trajectories in VDP-like systems under
periodic perturbation have been studied in e.g. [73,16,74]. In
the present study, we unveiled a complex web of period-2nT
branches suggestive of the presence of nearby chaotic attractors,
which we chose not to investigate. Instead, we highlighted these
further synchronous states, all existing close to maximal canard
solutions but not all predicted by standard interaction function
analysis. Being close to a maximal canard, hence to threshold,
these solutions may contain both passages near headless canards
and near canards-with-head, therefore an alternation between
subthreshold oscillations and spikes. Even when the classical
weakly coupled theory may not apply, the slow–fast phase plane
structure of the underlying single canard oscillator enables one
to understand why such mixed-mode oscillatory synchronous
states can arise for small to moderate coupling strength, owing
to the geometry and proximity between families of repelling slow
manifolds. As a question for futurework, we plan to investigate the
relevance of these complicated synchronous states in the context
of neuronmodels, where canards-with-headmay be considered as
not so rare events but rather as spikes with a slow activation.

Control aspects of canard cycles have been studied in [75]
where the authors have obtained MMOs, cascades of PD bifurca-
tions and chaotic behavior in a FHN-type relaxation oscillator de-
pending on the control setup. Developing control strategies for
reaching desired spiking behavior in coupled systems can be a fu-
ture direction of our study.
Finally, as Appendix, we also provided an analytical formula
for the adjoint solutions associated with limit cycles of Liénard
systems, which gives reasonable numerical results for headless
canard cycles.

This work is only a first step towards extending canard stud-
ies to the realm of weakly coupled oscillators and, more gener-
ally, to weakly connected networks. It is not rigorous yet but we
have identified the main geometrical structures that play a piv-
otal role in shaping the main family of synchronous solutions to
coupled planar slow–fast systems in the canard regime. Moreover,
we have highlighted the central role of the maximal canard in or-
ganizing the synchronization properties of such systems. Maximal
canards have been identified as the spiking threshold in excitable
neuron models [76,77]. Our study on weakly coupled planar
systems, which are reduced models for excitable neurons, has un-
derlined the relation between synchronization, excitability and
maximal canard by relating it to the properties of the period func-
tion of the canard explosion. The interaction between the slow–fast
structure and the weak coupling has given quite rich dynamics in
these simple planar systems having already a two slow/two fast
structure under coupling. Similar possible links between synchro-
nization, excitability and maximal canards certainly deserve fur-
ther attention in coupled slow–fast systems of higher dimensions
aswell as in larger networks. Beyond the effect of canard-explosive
dynamics on synchronization, we plan in the near future to inves-
tigate similar effects in (at least three-dimensional) systems with
canards organized by folded singularities [78] as well as in systems
with slowly varying quantities, such as bursting systems where
spike-adding canard explosionswill be likely to have a dramatic ef-
fect on the synchronization properties of coupled bursters [79,41].

Appendix. Analytical expression for adjoints of canard cycles

Here we use classical results from the theory of linear differen-
tial equations [80] as well as unpublished results by Schecter [81]
in order to derive an expression for the periodic solution of the ad-
joint problemassociatedwith a limit cycle of a Liénard system. This
extends the approach taken by Izhikevich in [53], who considered
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the case of relaxation cycles by taking the limit ε = 0. Izhikevich’s
formulation is not applicable to canard cycles due to the presence
of the folds of the critical manifold S0 which gives rise to canard
dynamics and requires to have ε ≠ 0 in the computation of the
adjoints.

We consider the following VDP type slow–fast system written
in Liénard form

x′
= y − f (x) := F(x, y) (A.1)

y′
= ε(c − x) := εG(x, y),

where f (x) = x3/3 − x is a cubic function and the prime denotes
differentiationwith respect to the fast time t .We consider a canard
cycle solution of system (A.1), that is, a periodic solution γ (t) =

(x(εt), y(εt)).
The linearized system associated with (A.1) along γ is given by

v′
= −f ′(γ1(t))v + w

w′
= −εv,

(A.2)

which we can recast as a second-order linear differential equation

v′′(t) + f ′(γ1(t))v′(t) + (f ′′(γ1(t)) + ε)v(t) = 0. (A.3)

An obvious solution of (A.3) is (γ ′

1(t), γ
′

2(t)). Recall that if one
knows a particular solution y∗ of the second-order linear differen-
tial

y′′(t) + p(t)y′(t) + q(t)y(t) = 0,

then one can obtain another solution y#, non-proportional to the
first one – hence forming a basis of the space of solutions together
with the first one – using a variation of constant type formula, that
is,

y#(t) = u(t)y∗(t),

with u given in general integral form by

u(t) =

 t

0

exp

−

 s
0 p(σ )dσ


y2(s)

ds. (A.4)

Therefore, knowing the solution (γ ′

1(t), γ
′

2(t)) of the linearized
system written as a second-order Eq. (A.3), a non-proportional so-
lution is given by (v(t), w(t)) with

v(t) = u(t)γ ′

1(t)

= γ ′

1(t)
 t

0

exp

−

 s
0 f ′(γ1(σ ))dσ


γ ′

1
2
(s)

ds

w(t) = v′(t) + f ′(γ1(t))v(t).

(A.5)

Hence we have

w(t) = u′(t)γ ′

1(t) + u(t)

γ ′′

1 (t) + f ′(γ1(t))γ ′

1(t)


=

exp

−

 t
0 f ′(γ1(s))ds


γ ′

1(t)
+ u(t)γ ′

2(t). (A.6)

The adjoint equation associated with system (A.1) along the limit
cycle γ is given by

Ż = −J(γ (t))TZ, (A.7)

where Z is a two-dimensional real vector and J(γ (t)) is the Jacobian
matrix evaluated along the solution γ . Following [81], wewrite the
solution to Eq. (A.7) in the form

ZT (t) = exp
 t

0
f ′(γ1(s))ds

 
−s2 s1


, (A.8)

where s = (s1, s2) is a solution to the linearized equation (A.3).
We apply this formula to the two solutions (γ ′

1(t), γ
′

2(t)) and
(v(t), w(t)) of the linearized equation, which gives us two solu-
tions of the adjoint equation. What we wish to get is a periodic
solution of the adjoint; to get it, we will find a suitable linear com-
bination of the two solutions obtained using Schecter’s strategy,
imposing periodicity. Namely, we will find scalars α and β such
that

αZγ ′(T ) + βZs(T ) = αZγ ′(0) + βZs(0), (A.9)

where α and β are reals, Zγ ′ and Zs being obtained using for-
mula (A.8) from the linearization of the limit cycle γ and the
solution (v(t), w(t)) described above, respectively. Therefore,
focusing on the second component only, the periodicity condi-
tion (A.9) becomes

α exp
 T

0
f ′(γ1(s))ds


γ ′

1(T ) + · · · (A.10)

β exp
 T

0
f ′(γ1(s))ds


γ ′

1(T )

×

 T

0

exp

−

 s
0 f ′(γ1(σ ))dσ


γ ′

1
2
(s)

ds = αγ ′

1(0).

Given that γ ′ is itself periodic, we can simplify the above equality
and obtain α as a function of β:

α =

−β exp
 T

0 f ′(γ1(s))ds
  T

0
exp(−

 s
0 f ′(γ1(σ ))dσ)
γ ′
1
2
(s)

ds

exp
 T

0 p(s)ds


− 1
. (A.11)

Condition (A.11) gives a one-parameter family of suitable linear
combinations, one can apply a normalization to obtain a uniquely
defined periodic solution to the adjoint equation.
Simulations of the analytical results from Appendix. In order to
compute the solutions of the adjoint equation given by (A.8) with
the two different solutions to the linearized equation (A.2), namely
γ ′ and (v, w), we need to evaluate numerically the function u given
by the integral formula (A.4), and we also need to evaluate the
prefactor

Pf (t) = exp
 t

0
f ′(γ1(s))ds


. (A.12)

To do so, a simple way is to write u as the solution of a second-
order differential equation, and Pf as the solution of a first-order
differential equation, and solve these equations numerically with,
e.g., an Euler scheme. More precisely, we have

u′(t) =

exp

−

 t
0 f ′(γ1(s))ds


γ ′

1(t)2
:= h(t) (A.13)

h′(t) = −


f ′(γ1(t)) + 2

γ ′′

1 (t)
γ ′

1(t)


h(t). (A.14)

Similarly, we have

P ′

f (t) = f ′(γ1(t))Pf (t). (A.15)

Solutions to the adjoint equations computed for the headless
canard cycles (Orbits 1–4 in the top left panel of Fig. 1) visualized
in Fig. A.15 share the same qualitative behavior with the ones
obtained via numerical continuation (Fig. 1 panels 1–4), where
the amplitudes of the solutions vary non-monotonically but with
different magnitudes. Indeed, the numerical treatment of (A.13)–
(A.15) is quite sensitive as highlighted in Fig. A.15 panel 4 where
spurious fast oscillations appear near the maximum of the Z2
curve. One can get rid of these spurious oscillations by decreasing
the step size of the ODE solver, however it yields inaccuracy in
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Fig. A.15. Adjoint solutions for the headless canard cycles shown in Fig. 1 computed analytically using formula (A.8). Blue curve: Z1 . Red curve: Z2 . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
the amplitudes of all solutions. In that aspect, robustness and
optimality of the numerical techniques require improvements.
Limits of the formula. The strategy we proposed overcomes the
singularities due to the presence of folds on the critical manifold,
however it has limitations. First, the approximation of adjoint
solutions of canard cycles with this formula can be considered
as successful for headless canards (see Fig. A.15), yet a lot of
care in the numerical simulations used is required. However,
even with such care we have been unable to compute adjoints
associated with large canards using this formula. The reason
for this can be understood by looking the expression in (A.13)
which is singular when γ ′

1(t) = 0, that is, at extrema of γ1.
We can try to integrate these equations by splitting the solution
into two branches excluding the extrema. With this strategy, our
formula can be used to compute adjoints for all canard cycles
and, hence, extend Izhikevich’s approach. The second drawback
of formula (A.8) is that it assumes a Liénard form for the system
under consideration. Hence, it is not directly applicable to more
general planar slow–fast systems, in particular, to biophysical
neuron models such as the 2D reduction of the HH system that we
considered in Section 2.2.2.
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