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We analyze the dynamics of a large network of coupled quadratic integrate-and-fire neurons, which represent
the canonical model for class I neurons near the spiking threshold. The network is heterogeneous in that it
includes both inherently spiking and excitable neurons. The coupling is global via synapses that take into account
the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz,
we derive a closed system of equations for the neuron’s firing rate and the mean membrane potential, which
are exact in the infinite-size limit. The bifurcation analysis of the reduced equations reveals a rich scenario of
asymptotic behavior, the most interesting of which is the macroscopic limit-cycle oscillations. It is shown that
the finite width of synaptic pulses is a necessary condition for the existence of such oscillations. The robustness
of the oscillations against aging damage, which transforms spiking neurons into nonspiking neurons, is analyzed.
The validity of the reduced equations is confirmed by comparing their solutions with the solutions of microscopic
equations for the finite-size networks.
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I. INTRODUCTION

Complex systems composed of a large number of inter-
acting nonlinear dynamical elements are ubiquitous in nature.
Synchronization and other collective effects in such systems
is a pervasive topic in physics, chemistry, biology, social
networks, and technological applications [1–4]. Example
systems include Josephson junction arrays [5], power grids [6],
cardiac pacemaker cells [7], and neurons in human brain [8],
among others.

The pioneering theoretical work on the collective behavior
of limit-cycle oscillators was done by Winfree [9]. Using
a mean-field model of coupled phase oscillators with dis-
tributed natural frequencies, he discovered that collective
synchronization is a threshold phenomenon analogous to
a phase transition. The theory was further advanced by
Kuramoto [10], who proposed an analytically tractable model
of phase oscillators with an all-to-all sinusoidal coupling.
The Kuramoto model and various of its modifications were
extensively studied during the past two decades [2–4]. A
major breakthrough in these studies was achieved by Ott
and Antonsen [11] a few years ago. They showed that, in
the infinite-size (thermodynamic) limit, the Kuramoto-type
models display low-dimensional dynamics and derived an
explicit finite set of nonlinear ordinary differential equations
for the macroscopic evolution of the system. Later this idea
was elaborated on in various modifications of phase oscillator
networks [12–17] and adopted for globally coupled networks
of theta neurons [18–20], networks of theta neurons with
spatially dependent coupling [21], networks incorporating gap
junctions [22], and a pulse-coupled Winfree model [23].

Recently, Montbrió, Pazó, and Roxin [24] proposed an
alternative approach to reduce a set of microscopic equations
for a particular class of neuronal systems. They consid-
ered a heterogeneous network of all-to-all pulselike coupled
quadratic integrate-and-fire (QIF) neurons with some part
of them being in a spiking regime and another part in an
excitable (nonspiking) regime. The authors found out that

in the thermodynamic limit the continuity equation can be
solved by the Lorentzian ansatz (LA). As a result, they derived
the closed system of two ordinary differential equations for
biophysically relevant macroscopic quantities: the firing rate
and the mean membrane potential. They also demonstrated the
relation of the LA with the Ott-Antonsen ansatz [11].

In Ref. [24], the consideration was restricted to a relatively
simple model of neuronal interaction. It was assumed that
at each moment when a particular neuron fires, an interaction
current generated in postsynaptic neurons can be approximated
by the Dirac δ function. Here we consider a more realistic
synaptic coupling between QIF neurons that takes into account
the finite width of synaptic pulses and other peculiarities of a
realistic synapse. We show that the LA theory is suitable for
this more complicated case as well and derive the reduced
equations that result in a much richer scenario of dynamical
behavior as compared to that of Ref. [24]. We have found out
that the finite width of synaptic pulses is a crucial factor for
the emergence of macroscopic self-sustained oscillations of
the firing rate and mean membrane potential.

In this paper, we also analyze the robustness of the macro-
scopic self-oscillations against local damage that transforms
spiking neurons into nonspiking neurons. When the proportion
of the inactive elements in a network exceeds some threshold
value, the macroscopic oscillations stop and this may cause
a loss of a physiological function of the network. Such a
phenomenon is called an aging transition [25]. The analysis of
the aging transition [26–31] is important to get more insight
into the properties and functions of real populations composed
of active and inactive units such as mammalian circadian
clocks [32,33] and also be useful in developing a biological
pacemaker for heart beat by means of converting excitable
heart cells into pacemaker cells by gene transfer [34,35].
Here we use the advantage of the reduced equations for the
QIF neurons in order to analyze the dependence of the aging
transition on the coupling strength and the width of synaptic
pulses.
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The paper is organized as follows. In Sec. II, we formulate
the problem and describe our model. The reduced equations for
the firing rate and mean membrane potential are derived in the
thermodynamic limit in Sec. III. Section IV is devoted to the bi-
furcation analysis of the reduced macroscopic equations. The
results are compared with the direct numerical simulations of
the microscopic equations. Then, in Sec. V, the robustness
of the macroscopic oscillations against the deterioration of
the spiking neurons is investigated. Finally, in Sec. VI, we
conclude this paper by discussing our results.

II. PROBLEM FORMULATION
AND MODEL DESCRIPTION

We consider a heterogeneous population of N all-to-all
synaptically coupled quadratic integrate-and-fire neurons. The
microscopic state of the system is defined by neurons’
membrane potentials {Vj }j=1,...,N , which satisfy the following
set of equations [8]:

V̇j = V 2
j + ηj + I

syn
j . (1)

Here the constants ηj specify the behavior of individual
neurons, while I

syn
j stands for the synaptic current. Each

moment the membrane potential Vj reaches the peak value
Vpeak its voltage is reset to the value Vreset. To treat the system
analytically, we assume Vpeak = −Vreset → ∞.

The isolated (I syn
j = 0) QIF neuron is the canonical model

for the class I neurons near the spiking threshold. The spiking
instability in such neurons appears through a saddle-node
bifurcation on an invariant curve (SNIC), in which a pair of
fixed points on a closed curve coalesce to disappear, converting
the curve to a periodic orbit. A remarkable feature of a system
following this scenario is that it exhibits excitability before the
bifurcation. In the QIF neuron, this scenario is provided by
the bifurcation parameter ηj . For ηj < 0, the neuron is in an
excitable regime and for ηj > 0 it is in the spiking regime. We
assume that the system (1) contains both excitable (ηj < 0)
and spiking neurons (ηj > 0). Generally, we suppose that the
values of the parameters ηj are distributed according to some
defined density function g(η).

Now we discuss the term I
syn
j responsible for synaptic

coupling of neurons. The simplest theoretical model of the
synaptic coupling is based on the assumption that the spikes
generated by neurons are very short and can be modeled by
the Dirac δ function, i.e., the synaptic current can be presented
by a sum of δ functions coming from neurons that reached
the peak voltage. With such an assumption, the system (1)
has been recently analyzed by Montbrió et al. [24]. In the
thermodynamic limit of a large number of neurons N → ∞,
the authors developed a theory based on the Lorentzian ansatz,
which allowed them to reduce the system (1) to only two
ordinary differential equations for the firing rate and mean
membrane potential of the neuronal population. Here we use
the LA theory for a more realistic model of synaptic coupling
and derive reduced equations that at certain values of the
parameters exhibit macroscopic oscillations, which do not
exist in the model of Ref. [24]. We also show that our reduced
model is suitable for the prediction of aging transition that
appears in the system when the proportion of spiking neurons
is decreased.

We start our consideration from the standard expression for
the synaptic current [8,36]

I
syn
j = −(Vj − Vs)

gs

N

N∑
i=1

wjisi, (2)

where Vs is the reversal potential of synapse, gs is the maximal
conductance of postsynaptic receptors, and the factor wji is
the measure of the efficacy of the synaptic connection from
neuron i to neuron j . An action potential results in an opening
of the ion gates in the postsynaptic membrane. The fraction of
channels in open state si is governed by the equation

ṡi = α�[(Vi − Vth)/σ ](1 − si) − βsi, (3)

where α, β, σ , and Vth are the characteristic parameters of the
synapse and �(V ) = [1 + exp(−V )]−1 is a sigmoid function.
We make the following simplifications. We assume that
synaptic dynamics are fast (α,β � 1) so the time derivative in
Eq. (3) can be neglected and si can be expressed through Vi as
si = α�[(Vi − Vth)/σ ]/{α�[(Vi − Vth)/σ ] + β}. In addition
we suppose that the parameter σ > 0 is small and the
sigmoid function can be approximated by the Heaviside
step function �[(Vi − Vth)/σ ] ≈ H (Vi − Vth), which satisfies
H (Vi − Vth) = 0 for Vi � Vth and H (Vi − Vth) = 1 for Vi >

Vth. Then, assuming all-to-all coupling with the coefficients
wji = 1, we arrive at the following expression for the synaptic
current:

I
syn
j = −K(Vj − Vs)S, (4)

where

S = 1

N

N∑
i=1

H (Vi − Vth), (5)

is a synaptic variable that characterizes the mean conductivity
of the synapse and K = gsα/(α + β) is the parameter defining
the coupling strength. According to Eq. (5), the contribution to
the mean conductivity comes only from those neurons whose
membrane potential exceeds the threshold value Vth. Finally,
the microscopic equations of our model reads as follows:

V̇j = V 2
j + ηj − K(Vj − Vs)

1

N

N∑
i=1

H (Vi − Vth). (6)

III. THERMODYNAMIC LIMIT N → ∞
To derive macroscopic equations for the ensemble of

synaptically coupled neurons (6), we refer to the LA theory
developed in Ref. [24]. In the thermodynamic limit N →
∞, we can describe the system by a continuous density
function ρ(V |η,t), where the product ρ(V |η,t)dV defines the
fraction of neurons with membrane potential between V and
V + dV and parameter η at time t . This function satisfies the
normalization condition∫ +∞

−∞

∫ +∞

−∞
ρ(V |η,t)g(η)dV dη = 1. (7)

Since oscillators are conserved, the density ρ(V |η,t) obeys the
continuity equation

∂

∂t
ρ = − ∂

∂V
[ρ{V 2 + η − K(V − Vs)S}]. (8)
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A remarkable feature of this equation is that its stationary
solution satisfies the Lorentzian function, i.e., ρ0(V |η) ∝
[(V − KS/2)2 + η + KVsS − (KS/2)2]−1. Based on this ob-
servation, the authors of Ref. [24] assumed that solutions of
Eq. (8) generically (for any initial conditions) converge to a
Lorentzian-shaped function,

ρ(V |η,t) = 1

π

x(η,t)

[V − y(η,t)]2 + x(η,t)2
, (9)

with two time-dependent parameters, x(η,t) and y(η,t), which
define the half-width and the center of the distribution. These
two parameters characterize all relevant dynamics of the
system in a reduced subspace. The validity of this assumption
is confirmed [24] by its relation with Ott-Antonsen ansatz [11].

The parameters x(η,t) and y(η,t) of the Lorentzian function
have clear physical meanings. For a fixed η, the neurons firing
rate is related to the Lorentzian half-width by

x(η,t) = πr(η,t). (10)

This relation is obtained by estimating the probability flux
at V → +∞, which by definition is the firing rate: r(η,t) =
ρ(V → ∞|η,t)V̇ (V → ∞|η,t). The total firing rate r(t) is
obtained via integration of the product r(η,t)g(η) over η:

r(t) = 1

π

∫ +∞

−∞
x(η,t)g(η)dη. (11)

Furthermore, by defining the integral

y(η,t) = p.v.
∫ +∞

−∞
ρ(V |η,t)V dV (12)

as the Cauchy principal value [p.v.
∫ +∞
−∞ f (x)dx = limR→∞∫ +R

−R
f (x)dx], we can see that the mean membrane potential is

equal to

v(t) =
∫ +∞

−∞
y(η,t)g(η)dη. (13)

In the thermodynamic limit, the sum in the definition (5) of the
synaptic variable S = S(t) should be replaced by the integral

S(t) =
∫ +∞

−∞
g(η)

∫ +∞

−∞
ρ(V |η,t)H (V − Vth)dV dη. (14)

The integration over the V variable can be performed analyti-
cally and we get

S(t) = 1

π

∫ +∞

−∞

{
π

2
− arctan

[
Vth − y(η,t)

x(η,t)

]}
g(η)dη. (15)

Substituting the LA (9) into the continuity equation (8), one
can derive a system of two differential equations for x(η,t) and
y(η,t),

ẋ(η,t) = 2x(η,t)y(η,t) − Kx(η,t)S(t), (16a)

ẏ(η,t) = η − x2(η,t) + y2(η,t) − KS(t)[y(η,t) − Vs],

(16b)

which for the complex variable w(η,t) ≡ x(η,t) + iy(η,t) can
be written as

ẇ(η,t) = i[η − w2(η,t) + K(iw(η,t) + Vs)S(t)]. (17)

0 5 10 15 20
0

0.1

0.2

0.3

t

S
(t

)

FIG. 1. Comparison of dynamics of the synaptic variable S(t)
estimated from the microscopic model (5) and (6) (blue solid
curve) and the reduced system (20) and (21) (green dashed curve).
Parameters are N = 10 000, � = 1, η̄ = 0, Vth = 50, Vs = 75, and
K = 20.

Further simplification can be gained by choosing the density
distribution of the η parameter in the Lorentzian function form

g(η) = 1

π

�

(η − η̄)2 + �2
, (18)

where � and η̄ define the width and the center of the
distribution, respectively. The form (18) allows us to solve the
η integrals in Eqs. (11), (13), and (15). This is done by making
an analytical continuation of w(η,t) from real η into complex
η plane and closing the integration contour in the lower half
plane [24]. The values of these integrals are determined by the
pole η = η̄ − i� of g(η) in the lower half η plane and thus
we obtain an explicit relation of the firing rate and the mean
membrane potential with the complex variable w,

πr(t) + iv(t) = w(η̄ − i�,t), (19)

as well as an explicit expression for the integral (15),

S(t) = 1

π

{
π

2
− arctan

[
Vth − v(t)

πr(t)

]}
. (20)

Putting these results into Eq. (17), i.e., setting η = η̄ − i� and
using the relation (19) when separating the real and imaginary
parts of Eq. (17), we finally derive the equations for the firing
rate and the mean membrane potential,

ṙ = �/π + 2rv − KrS(t), (21a)

v̇ = η̄ + v2 − π2r2 − K(v − Vs)S(t). (21b)

These equations together with Eq. (20) form the closed
macroscopic model for the network of QIF neurons (6)
connected via a realistic synaptic coupling.

The potential of the reduced model (21) to predict the
behavior of a large scale network of coupled QIF neurons
is demonstrated in Fig. 1. For a fixed values of the parameters
� = 1, η̄ = 0, Vth = 50, Vs = 75, and K = 20, we compare
the dynamics of the synaptic variable S(t) derived from
the macroscopic model (20) with that obtained from the
microscopic model (6) consisting of N = 10 000 neurons.
We see that both solutions are in excellent agreement. This
confirms the validity of the above analytical treatment, i.e., the
LA theory is valid for the case of more complicated synaptic
coupling, as has been considered in Ref. [24]. Remarkably,
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here we observe a regime of self-sustained macroscopic
oscillations that do not exist in Ref. [24].

Finally, we remark on numerical analysis of the microscopic
model. Direct numerical integration of Eqs. (6) is problematic
because the membrane potential of the QIF neuron tends to
infinity at the moment when the neuron fires. To avoid this
problem, we change the variables Vj = tan(θj /2) to transform
the QIF neurons into the theta neurons and then perform the
numerical analysis (see Appendix A for details).

IV. BIFURCATION ANALYSIS
OF MACROSCOPIC EQUATIONS

The macroscopic model (21) consists of two ordinary
differential equations and contains five parameters: �, η̄, K ,
Vth, and Vs . Without loss of generality, we can set � = 1 as
this parameter can be omitted by an appropriate rescaling of
the variables r , v, and t . To further reduce the number of pa-
rameters, we consider the limit Vs → ∞ and K → 0 with the
product KVs remaining finite. Then Eqs. (21) can be written as

ṙ = 1/π + 2rv ≡ f (r,v), (22a)

v̇ = η̄ + v2 − π2r2 + JVthS(t) ≡ g(r,v), (22b)

where a new parameter J = KVs/Vth defines the strength of
synaptic coupling in the simplified model. As a result, we
remain with only three independent parameters η̄, J , and Vth.
The microscopic Eqs. (6) in this case simplify to

V̇j = V 2
j + ηj + J

Vth

N

N∑
i=1

H (Vi − Vth) (23)

and Eqs. (16) for x(η,t) and y(η,t) read

ẋ(η,t) = 2x(η,t)y(η,t), (24a)

ẏ(η,t) = η − x2(η,t) + y2(η,t) + JVthS(t). (24b)

An expression for the synaptic current as described by
Eq. (23), which neglects the linear dependence on the
membrane potential defined by the factor Vj − Vs , is often
used in simplified synaptic models. It is a good approximation
for small excitatory synapses on a large compartment [37].
In that case, the depolarization of the membrane is small and
the difference Vj − Vs is little changed during the excitatory
postsynaptic potential. However, if the synapse is located on
a thin dendrite, the local membrane potential Vj changes
considerably when the synapse is activated. In that case, the
original model (6) seems more appropriate.

Below we mainly concentrate on the simplified model (22)
as it facilitates the bifurcation analysis of the system. It allows
us to derive analytical expressions for bifurcation curves.
Remarkably, in Appendix B, we show that the bifurcation
diagrams of the simplified system (22) and the original
model (21) are qualitatively similar. Another advantage of
the simplified model is that both the macroscopic (22) and
microscopic (23) equations transform to the corresponding
equations of Ref. [24] in the limit Vth → ∞.

Indeed, in this limit, the term VthS(t) in Eq. (22b) transforms
to the firing rate r(t) and the term VthH [Vi(t) − Vth] in

Eq. (23) tends to the Dirac δ function δ(t − t si ), where t si
is the moment when the ith neuron fires, i.e., its membrane
potential approaches infinity. When the threshold voltage Vth

is finite, the neurons interact via pulses of finite width �t .
For large Vth, there is a simple relation between the pulse
width and the threshold voltage. Close to the firing moment
t si of the ith neuron, its dynamics can be approximated by the
differential equation V̇i = V 2

i . The solution of this equation
is Vi(t) = (t si − t)−1 and thus the term VthH [Vi(t) − Vth]
generates a rectangular pulse located at the left-hand side of
the point t si . The width of the pulse is �t = 1/Vth and its height
is Vth so the area under the pulse is equal to unity for any large
Vth. Thus we can analyze how the dynamical properties of
the model [24] change when one takes into account the finite
width of synaptic pulses. We emphasize that for large Vth an
area under synaptic pulses generated by the term VthS(t) is
independent of Vth. This is why we introduced the factor Vth

in the expression of synaptic current in Eqs. (22b) and (23).
In Fig. 2, we show the bifurcation diagram of the macro-

scopic model (22) in the plane of the parameters (η̄,J ) for the
fixed threshold voltage Vth = 50. There are six regions in the
(η̄,J ) plane with different characteristic behavior of the system
illustrated by the phase portraits shown in the right-hand side
of the figure. In regions (I), (III), and (IV), the system has a
single fixed point. In region (I), there is a stable node, while in
region (IV) there is a stable focus. Region (III) is characterized
by the presence of an unstable focus and a stable limit cycle
that produces macroscopic oscillations of the firing rate and
the mean membrane potential. The remaining regions (II),
(V), and (VI) are characterized by the presence of three fixed
points. In region (II), only one fixed point is stable, while the
region (V) is characterized by bistability—there are a stable
node and a stable focus separated by a saddle fixed point.
Region (VI) is also characterized by bistability, but here we
have coexisting a stable fixed point and a stable limit cycle,
which are again separated by a saddle fixed point. Comparing
this bifurcation diagram with that presented in Fig. 1 of
Ref. [24], we see that the finite width of synaptic pulses has
produced three additional regions in the bifurcation diagram:
(II), (III), and (VI). They are related with the appearance of
the macroscopic limit-cycle oscillations, which do not exist
in the case of synaptic coupling described by zero width
pulses.

Note that macroscopic limit-cycle oscillations have been
observed in a model of theta neurons coupled via pulses of
finite width in Ref. [18]. However, the form of the coupling
term in that model is not physically motivated. It is a
purely mathematical assumption that does not reflect the main
properties of the synaptic coupling even qualitatively, e.g.,
according to the model, the neurons in a post-reset state give
a contribution into synaptic current.

Below we discuss bifurcations that appear in the plane of
parameters (η̄,J ) in more detail and verify their existence by
numerical simulations of the microscopic model (23). First,
we consider the local bifurcations, which can be analyzed
entirely through changes in the local stability properties of
fixed points. The coordinates (re,ve) of the fixed points in
the plane of variables (r,v) are obtained by solution of the
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FIG. 2. Two-parameter bifurcation diagram of the macroscopic model (22). The bifurcation in the parameter space (η̄,J ) for the fixed
parameter Vth = 50. The blue solid curve shows the saddle-node bifurcation, the red dashed curve the Andronov-Hopf bifurcation, and the
green connected points the homoclinic bifurcation. The dotted magenta curve separates the regions with a stable node and a stable focus. The
points BT and CP denote the Bogdanov-Takens and the cusp bifurcations, respectively. The regions marked by Roman numerals correspond
to the following set of fixed points and invariant curves: (I) a stable node; (II) a saddle, an unstable focus, and an stable node; (III) an unstable
focus and a stable limit cycle; (IV) a stable focus; (V) a stable node, a stable focus, and a saddle; and (VI) a stable node, a saddle, an unstable
focus, and a stable limit cycle. Typical phase portraits of the system in the marked regions are depicted in the right-hand side of the figure.

transcendental equations

f (re,ve) = 0, (25a)

g(re,ve) = 0. (25b)

Generally, the closed-form solutions of these equations are
not available, but the local bifurcation curves in the plane of
parameters (η̄,J ) can be derived analytically in a parametric
form.

A. Saddle-node bifurcation

Saddle-node (SN) bifurcation occurs when two fixed points
of a dynamical system collide and annihilate each other. This
bifurcation is defined by the condition

det[A(re,ve)] = 0, (26)

where A(re,ve) is the Jacobian of the system (22) evaluated
at a fixed point. Combining Eqs. (25) and (26), the following
parametric equations for the SN bifurcation curve in the (η̄,J )
plane can be derived as follows:

JSN = 2
(
v2

e + r2
e π2

)[
(Vth − ve)2 + r2

e π2
]

Vthre(Vth − 2ve)
, (27a)

η̄SN = π2r2
e − v2

e − JSNVthS, (27b)

where ve = −1/(2πre) and the varying parameter is re. The
variable S is defined by Eq. (20) in which r and v have to be
substituted by re and ve, respectively. For the fixed Vth = 50,
the SN bifurcation is depicted in Fig. 2 by a blue solid curve.
The curve has two branches. The point where these branches
coalesce corresponds to the cusp (CP) bifurcation. Here the
both eigenvalues of the Jacobian matrix vanish.

B. Andronov-Hopf bifurcation

For the two-dimensional system (22), the Andronov-Hopf
(AH) bifurcation is defined by two conditions:

tr[A(re,ve)] = 0, (28a)

det[A(re,ve)] > 0. (28b)

Combining Eqs. (25) with (28a) and taking into account
condition (28b), we can again derive parametric expressions
for the AH bifurcation curve in the (η̄,J ) parameter plane:

JH = −4ve[(Vth − ve)2 + (πre)2]

Vthre

, (29a)

η̄H = π2r2
e − v2

e − JH VthS, (29b)

with ve = −1/(2πre) and re being the varying parameter. The
variable S is defined in the same way as in Eq. (27b). In Fig. 2,
the AH bifurcation at Vth = 50 is presented by a red dashed
curve. This curve joins with the SN curve at the Bogdanov-
Takens (BT) bifurcation point.

The region above the AH curve is characterized by the
presence of the limit cycle. Since for Vth → ∞ the model (22)
transforms into the model of Ref. [24] that does not possess
self-oscillations, it is interesting to analyze how the limit-cycle
oscillations disappear with the increase of Vth. To this end, in
Fig. 3 we plot a family of AH curves for different values of
the parameter Vth. We see that these curves rise in the (η̄,J )
plane when the parameter Vth is increased. This means that
the threshold value of the coupling strength J that provides
self-oscillations increases with the increase of Vth and the self-
oscillations become impossible for any finite J and η̄ when
Vth → ∞.
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FIG. 3. An evolution of the Androv-Hopf bifurcation curve in the
(η̄,J ) plane with the increase of the threshold voltage Vth.

C. Homoclinic bifurcation

The homoclinic bifurcation (HB) is a global bifurcation
and in this case it cannot be specified analytically. The curve
representing the homoclinic bifurcation is shown in Fig. 2
by green connected points. It was estimated numerically by
using the shooting method [38]. The HB curve starts from the
Bogdanov-Takens point and then approaches the right-hand-
side branch of the SN curve.

D. Comparison of bifurcations in the macroscopic
and microscopic models

In order to verify how well the macroscopic model (22)
predicts the above bifurcations in the microscopic system (23),
in Fig. 4 we plot the asymptotic values of the synaptic
variable S (multiplied by Vth) as a function of the parameter
η̄ computed from both the macroscopic and microscopic
models. These diagrams are presented for the fixed value of the
threshold voltage Vth = 50 and different values of the coupling
strength J . The curves represent the results derived from the
macroscopic model by the continuation method, while the
symbols show the results obtained by numerical simulation
of the microscopic equations. In all cases a good agreement
between both results is observed.

The saddle-node bifurcation appears in Figs. 4(a) and 4(c) at
those values of η̄ where the red solid curve representing a stable
fixed point merges with the blue dashed curve that corresponds
to an unstable fixed point. In Fig. 4(b), the SN bifurcation
appears as a collision and annihilation of two unstable fixed
points. The Andronov-Hopf bifurcation occurs in Figs. 4(a)
and 4(c) where the red solid curve branches into three curves:
a blue dashed curve and two solid green (light) curves. The
latter two curves indicate the maximal and minimal values of
the oscillating variable S(t)Vth. The homoclinic bifurcation is
seen in Fig. 4(b). For large η̄, the only attractor in the system
is the limit cycle. When the parameter η̄ is decreased, the limit
cycle collides with an unstable fixed point and the oscillations
suddenly disappear. Then the only stable steady-state solution
with low synaptic activity remains in the system. Note that in
Figs. 4(a) and 4(c), there are bistabilities at certain intervals of
the parameter η̄. In Fig. 4(a) a stable limit cycle coexists with
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th
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FIG. 4. Asymptotic values of the synaptic variable S multiplied
by Vth as a function of the parameter η̄. The red solid curve represents
the stable fixed points, the blue dashed curve shows unstable fixed
points, and the green (light) solid curve denote the minimal and
maximal values of the periodically oscillating variable S(t)Vth. The
curves are derived from the macroscopic model (22), while the
symbols show the results obtained from numerical simulations of
QIF neurons. Squares denote the averaged stationary values of SVth,
while the asterisks the averaged minimal and maximal values of the
oscillating variable S(t)Vth. Parameters are N = 10 000, Vth = 50,
(a) J = 25, (b) J = 20, and (c) J = 15.

a stable fixed point, while in Fig. 4(c) two stable fixed points
coexist.

V. AGING TRANSITION

One of the most important problems about a large popula-
tion of coupled neurons is how robust its macroscopic activity
is against various types of local damage or deterioration such
that some neurons become nonspiking. When the proportion
p of the inactive neurons is progressively increased, the
amplitude of global oscillations decreases and vanishes at
some critical value pc. This phenomenon is termed the aging
transition. The parameter pc varies in the interval [0,1] and
serves as a measure for the robustness against aging. The larger
the pc the more robust the system is to neurons’ inactivation
damage.

Here we analyze the aging effects in a model described
by microscopic Eqs. (23) and macroscopic Eqs. (22). We are
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FIG. 5. Dynamics of the firing rate r (top graphics in each panel) and the phases θj presented by colors (bottom graphics in each
panel) of N = 1000 synaptically coupled QIF neurons. Parameters are Vth = 50, J = 15, (a) p = 0.01 (η̄ = 31.82), (b) p = 0.05 (η̄ = 6.31),
(c) p = 0.3 (η̄ = 0.73), and (d) p = 0.92 (η̄ = −3.89).

particularly interested in how the aging transition depends on
the coupling strength and the width of synaptic pulses. In our
network, the bifurcation parameter that subdivides the free
neurons into active and inactive ones is η. The neurons with
η < 0 are inactive; for J = 0 they are in an excitable regime.
The neurons with η > 0 are active; for J = 0 they generate
periodical spikes. If the parameter η satisfies the Lorentzian
distribution (18), then the proportion of inactive neurons is

p = 1

2
− 1

π
arctan(η̄). (30)

Recall that the width of the Lorentzian is assumed to be � = 1.
Thus the value of p is uniquely defined by the center η̄ of the
Lorentzian distribution. The proportion p of inactive neurons
is monotonically decreased from 1 to 0 when η̄ is increased
from −∞ to +∞. When η̄ = 0 the parameter p is equal to 1/2.

In Fig. 5, we show how the aging transition manifests itself
for the QIF neurons on both the microscopic and macroscopic
levels. In each panel of this figure, the curves show the
macroscopic dynamics of the firing rate (top graphics), while
the colored (bottom) graphics represent the dynamics of the
phases θj of particular neurons. The phases θj are related
with the voltages Vj as Vj = tan(θj /2). At the spike moment
of the j th neuron, its voltage approaches infinity, Vj → ∞,
which corresponds to the phase θj → π . In all panels, we
fix the coupling strength and the threshold voltage and vary
only the parameter p by changing η̄. In Fig. 5(a), almost
all neurons are active; the proportion of inactive neurons is
only p = 0.01. Due to synaptic coupling, most active neurons
synchronize and produce large-amplitude oscillations of the
firing rate. In Figs. 5(b) and 5(c), the proportion of inactive
neurons is increased to p = 0.05 and p = 0.3, respectively.
The coherence of neurons decreases and this causes the
decrease of the firing rate oscillation amplitude. Finally, when
the parameter p exceeds some critical value, the firing rate
ceases to oscillate. This is demonstrated in Fig. 5(d) for
p = 0.92. Here, almost all neurons are quenched into the

excitable state and the small amount of incoherently spiking
neurons cannot force the inactive neurons to produce spikes.

Note that the macroscopic oscillations of the firing rate
occur only when almost all neurons, including those that
are inactive without coupling, produce spikes. Thus, it is
interesting to analyze how the coupling influences the pro-
portion P of inactive neurons. We denote the proportion of
inactive neurons in the coupled network by the capital letter
P in order to distinguish it from the proportion p of inactive
neurons in the absence of coupling. Obviously, for J = 0 these
definitions coincide, P = p. When there are no macroscopic
oscillations, the value P can be estimated analytically. In this
case, the synaptic variable S(t) = S as well as the density
ρ(V |η,t) = ρ(V |η) are independent of time and the proportion
of spiking neurons R = 1 − P can be found from the integral

R =
∫ +∞

−∞

∫ +∞

ηc

ρ(V |η)g(η)dηdV. (31)

Here ηc = −JVthS is the critical value of the parameter η that
subdivides the interacting neurons into spiking (η > ηc) and
nonspiking (η < ηc) ones.

In order to estimate the stationary density ρ(V |η), we need
to find the stationary solutions of Eqs. (24) and substitute them
into Eq. (9). The stationary solution of Eqs. (24) for spiking
neurons that satisfy the inequality η > −JVthS is y(η,t) =
0 and x(η,t) = √

JVthS + η. Thus the stationary density for
η > ηc reads

ρ(V |η) = 1

π

√
JVthS + η

V 2 + JVthS + η
. (32)

Substituting Eqs. (18) and (32) into Eq. (31) and solving the
integrals, we obtain the following expression for P = 1 − R:

P = 1

2
− 1

π
arctan(JVthS + η̄). (33)

The parametric dependence of P on J can be obtained by
expressing J from the equilibrium conditions (25) of the
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FIG. 6. (a) The proportion P of inactive neurons in the coupled
network as a function of the coupling strength J for different values
of the parameter η̄. Solid curves represent analytical results obtained
from Eqs. (33) and (34), while the symbols show the results of
numerical simulation of the microscopic model with N = 10 000
neurons. The squares and asterisks for η̄ = −5 correspond to the
increase and decrease of the coupling strength, respectively. The
vertical dotted lines indicate the onset of macroscopic oscillations.
They correspond to the following values of the coupling strength:
J (1)

c = 12.67 (η̄ = 5), J (2)
c = 14.68 (η̄ = 0), and J (3)

c = 17.22 (η̄ =
−5). The threshold voltage is Vth = 50. (b) The proportion P of
inactive neurons in the coupled network as a function of the proportion
p of inactive neurons in the absence of coupling for different values
of the coupling strength J . Solid curves show analytical results
obtained from Eqs. (33) and (34), while the symbols correspond
to numerical simulation of the microscopic model. The vertical
dotted lines indicate the critical values pc at which the oscillations
cease to exist: p(1)

c = 0.006 (J = 5), p(2)
c = 0.71 (J = 15), and

p(3)
c = 0.94 (J = 25).

reduced system (22),

J = − η̄ + v2
e − π2r2

e

VthS
. (34)

The desired dependence is defined by Eqs. (33) and (34), where
ve = −1/(2πre) and the varying parameter is re. The variable
S is defined by Eq. (20) in which r and v have to be substituted
by re and ve, respectively. In Fig. 6(a), this dependence is
plotted by solid curves for the fixed Vth and different values
of η̄. The dependence is in good agreement with the results
of direct numerical simulation of the microscopic Eqs. (23)
shown in the figure by symbols. We see that the increase of
the coupling strength leads to the decrease of the proportion
of inactive neurons and the macroscopic oscillations appear
when almost all neurons become active. The critical values
of the coupling Jc at which the macroscopic oscillations
appear through Hopf bifurcation are numerically estimated
from Fig. 2 and marked in the figure by vertical dotted lines.

When the initial proportion p of inactive neurons is large
(for η̄ = −5), then there is a bistability in a certain interval of
the coupling strength J , where the macroscopic oscillations
coexist with the stationary state. Numerical simulation of the

J

p
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0.8

1

20 22 24
0.94

0.96

p
c

FIG. 7. Bifurcation diagram in the (J,p) plane. The colored
region corresponds to macroscopic oscillations of the firing rate and
the mean membrane potential. The border of this region depicted by
the red solid curve defines the dependence of the robustness parameter
pc on the coupling strength J . The inset shows an enlarged region of
the main figure. The threshold voltage is Vth = 50.

microscopic Eqs. (22) in this case shows a hysteresis when
gradually increasing and decreasing the coupling strength.

In Fig. 6(b), we show how the proportion P of inactive
neurons in the coupled network changes when varying the
parameter η̄ that governs the proportion p of inactive neurons
in the absence of coupling. The parametric dependence of P

on p is defined by Eqs. (30) and (33) in which the parameter η̄

has to be extracted from the equilibrium conditions (25) of the
system (22), η̄ = π2r2

e − v2
e − JVthS. Again, the dependence

of P on p obtained by direct numerical simulations of the
microscopic Eqs. (22) shows a good agreement with the results
derived from Eqs. (30) and (33). We see that for sufficiently
large values of the coupling strength J , the increase of the
proportion p of inactive neurons in an uncoupled network
almost does not influence the proportion P of inactive neurons
in the coupled network. The proportion P remains small even
for sufficiently large values of p. Thus, the robustness of
the system against aging is provided by the fact that most
of the coupled neurons remain active with the increase of p.
The critical values pc at which the oscillations cease to exist are
numerically estimated from the bifurcation diagram in Fig. 2
in a way similar to the critical values Jc. They are marked in
Fig. 6 by the vertical dotted lines. We see that for J = 15 and
J = 25 the oscillations maintain when p is increased up to the
values pc = 0.71 and pc = 0.94, respectively.

The dependence of the robustness criterion pc on the
coupling strength J is shown in Fig. 7. The colored region in
the plane of the parameters (J,p) corresponds to the presence
of macroscopic oscillations of the firing rate and the mean
membrane potential. The border of this region depicted by the
red solid curve defines the dependence of the robustness pc on
the coupling strength J . When the coupling strength exceeds
some defined value (for the given values of the parameters it is
J ≈ 15), the system becomes very robust against aging with
the parameter pc close to 1. The high level of the robustness
remains almost unchanged with the further increase of the
coupling strength.

The complex dependence of the robustness in the interval
20 < J < 24 is related to the bistability. This region is
enlarged in the inset. In the upper narrow part of this region, the
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red solid curves define the dependence of the parameter pc on the
threshold voltage Vth.

system may either demonstrate macroscopic oscillations or be
in the stable stationary state. Interestingly, here the system may
show a counterintuitive response to the variation of parameter
p. Suppose that the parameters are taken from the upper narrow
part of the diagram and the initial conditions are chosen such
that the system demonstrates macroscopic oscillations. Then
the decrease of p, i.e., the increase of the proportion of spiking
neurons, will lead to a sudden cease of oscillations.

Finally, in Fig. 8, we show the dependence of the robustness
pc on the threshold voltage Vth, which is inversely proportional
to the width of synaptic pulses. The colored regions in the plain
of the parameters (Vth,p) again correspond to the presence of
macroscopic oscillations and the border curves represent the
robustness pc. As seen from the figure, the system is robust
against aging when the value of Vth lies in a certain interval. The
larger the coupling strength J the wider the interval. Remark-
ably, the robustness pc is close to 1 and is almost independent
of the specific value of Vth (and thus of the specific width of
synaptic pulses) provided it is chosen from the given interval.

Generalizing the results presented in Figs. 7 and 8, one can
conclude that the macroscopic oscillations in the heteroge-
neous network of synaptically coupled QIF neurons are highly
robust against aging damage provided the coupling strength
and the width of synaptic pulses are sufficiently large. The
global synchronous oscillations are preserved even when the
most part of spiking neurons transforms into excitable neurons.

VI. DISCUSSION

We have analyzed a heterogeneous network of all-to-all
coupled quadratic integrate-and-fire neurons with a synaptic
interaction that takes into account the finite width of synaptic
pulses. The network contains a mixture of at-rest but excitable
neurons as well as spontaneously spiking neurons. Applying

a recently developed reduction technique based on the
Lorentzian ansatz [24], we have derived the closed system of
macroscopic equations for the neuron’s firing rate and mean
membrane potential, which are exact in the thermodynamic
limit. The bifurcation analysis of these equations revealed
a rich scenario of the asymptotic behavior, including two
stable equilibrium states with low and high time-independent
spiking rate and the periodic limit-cycle oscillations of the
firing rate and the mean membrane potential. The system
may also demonstrate bistabilities that coexist with either
two stable equilibrium states or a stable limit cycle and
a stable equilibrium state. We have found that the finite
width of synaptic pulses is a necessary ingredient for the
appearance of macroscopic self-oscillations. In the simplified
model [24], where synaptic pulses are approximated by the
Dirac δ function, such oscillations do not exist.

The reduced system of macroscopic equations is useful to
analyze an aging transition in the network, i.e., the robust-
ness of the macroscopic self-oscillation against damage that
increases the proportion of inactive neurons in the network.
By investigating the dependence of the aging transition on
the strength of synaptic coupling and the width of synaptic
pulses, we have established that the network is highly robust
against aging damage provided the latter two parameters are
sufficiently large. The macroscopic self-oscillations persist
even when most of the inherently spiking neurons turn into
excitable neurons.

The results obtained from the reduced equations, including
the analytically determined bifurcation curves, are in excellent
agreement with the results of direct numerical simulations of
the microscopic equations, when the total number of neurons
in the network is about 10 000; a good agreement is obtained
even for networks composed of only 1000 neurons. Thus
the reduced model predicts well the behavior of finite-size
networks and allows us to better understand the properties,
functions, and robustness of real networks composed of active
and inactive units like neurons in the brain or heart cells.
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APPENDIX A: NUMERICAL SIMULATIONS

Direct numerical integration of microscopic model Eq. (6)
or Eq. (23) is problematic because the membrane potential
of the QIF neuron tends to infinity at the moment when the
neuron fires. This problem can be avoided by the change of
variables

Vj = tan(θj /2) (A1)

that transforms the QIF neurons into theta neurons, where θj

is the phase of the j th neuron. Then the model (6) in the theta
representation reads:

θ̇j = (1 − cos θj ) + (1 + cos θj )[ηj + KVsS(t)]

−K sin(θj )S(t). (A2)

The synaptic variable S(t) is defined by Eq. (5) and the
substitution (A1). When the QIF neuron fires, its membrane
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potential approaches infinity, Vj → ∞, and then its value is
reset to minus infinity, Vj → −∞. In the theta representation,
this means that the phase θj simply crosses the value π . The
system (23) in the theta representation reads:

θ̇j = (1 − cos θj ) + (1 + cos θj )[ηj + JVthS(t)]. (A3)

Thus, instead of simulating Eqs. (6) and (23) for the
QIF neurons, we performed numerical simulations of the
equivalent systems of Eqs. (A2) and (A3), respectively, for
the theta neurons. The latter equations were integrated by
the Euler method with time step dt = 10−4. The popula-
tion of N theta neurons with the Lorentzian distribution
Eq. (18) were deterministically generated using ηj = η̄ +
� tan [(π/2)(2j − N − 1)/(N + 1)], where j = 1, . . . ,N and
� = 1. Such a numeration of neurons means that the
free neurons with the index j < jc = (N + 1)/2 − (2N +
1) arctan(η̄)/π are excitable and the neurons with the index
j > jc are spiking.

At each step of integration of Eqs. (A2) or (A3), the synaptic
variable (5) was estimated as S(t) = dNs/N , where dNs is
the number of neurons whose phases are in the interval θ ∈
[2 arctan(Vth),π ]. Similarly, the firing rate of Eqs. (A2) was
estimated as r = dNr/(Ndt), where dNr is the number of
neurons whose phases are in the interval θ ∈ (π − 2dt,π ).
This estimation is based on the assumption that the time step dt

is small and thus the phase speed of neurons close to the firing
phase θ = π can be approximated as θ̇j ≈ 2. Since the quantity
dNr fluctuates in time, the firing rate varies nonsmoothly. In
Fig. 5 this function is smoothed by using a moving average
with a time window of the size δt = 10−2.

The initial conditions for the reduced systems Eqs. (21)
and (22) were derived from the initial conditions of the theta
neurons Eqs. (A2) and (A3) by computing the Kuramoto order
parameter

Z = 1

N

N∑
j=1

exp(iθj ) (A4)

and using the relation between Z and the firing rate quantity
W ≡ πr + iv:

W = 1 − Z∗

1 + Z∗ , (A5)

where Z∗ means complex conjugate of Z (cf. Ref. [24] for
more details). Thus the initial values of the firing rate r and the
mean membrane potential v can be extracted from the initial
distribution of the phases θj using Eqs. (A4) and (A5).

APPENDIX B: BIFURCATION DIAGRAM AND THE
AGING TRANSITION FOR THE ORIGINAL MODEL

Here we present the bifurcation diagram for the original
macroscopic model Eqs. (21), which describes the network
of QIF neurons Eqs. (6) with a synaptic coupling that takes
into account the finite value of the reversal potential Vs .
Unlike the simplified coupling case defined by macroscopic
Eqs. (22), here an analytical treatment is impossible. Numer-
ically obtained bifurcation diagram for Eqs. (21) is presented
in Fig. 9. The curves of the saddle-node and Andronov-
Hopf bifurcations were computed with the help of MatCont
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FIG. 9. Two-parameter bifurcation diagram of the macroscopic
model (21). The bifurcation in the parameter space (η̄,K) for the
fixed parameters Vth = 50 and Vs = 75. All denotations are the same
as in Fig. 2.

package [39], while the curve of the homoclinic bifurcation
was estimated by the shooting method [38]. Comparing the
bifurcation diagrams presented in Figs. 9 and 2 one can
conclude that they are qualitatively similar. Thus the simplified
model (22) captures well the main features of the original
model (21).

In addition, in Fig. 10 we show the aging behavior of the
original system (21). Comparing this figure with Fig. 7 we see
that the qualitative equivalence of the simplified model (22)
and the original model (21) is conserved for the aging transition
as well. The only difference is here the characteristic curve
defining the robustness is shifted to larger values of the
coupling strength J .
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FIG. 10. Bifurcation diagram of the macroscopic model (21) in
the (K,p) plane. The upper axis shows the values of the rescaled
coupling strength J = KVs/Vth in order to compare the results
with those presented in Fig. 7. The colored region corresponds to
macroscopic oscillations of the firing rate and the mean membrane
potential. The border of this region depicted by the red solid curve
defines the dependence of the robustness parameter pc on the coupling
strength K . All parameters are the same as in Fig. 9.
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