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Abstract
Neural mass models (NMMs) are designed to reproduce the collective dynamics of neuronal populations. A common frame-
work for NMMs assumes heuristically that the output firing rate of a neural population can be described by a static nonlinear
transfer function (NMM1). However, a recent exact mean-field theory for quadratic integrate-and-fire (QIF) neurons chal-
lenges this view by showing that the mean firing rate is not a static function of the neuronal state but follows two coupled
nonlinear differential equations (NMM2). Here we analyze and compare these two descriptions in the presence of second-
order synaptic dynamics. First, we derive the mathematical equivalence between the two models in the infinitely slow synapse
limit, i.e., we show that NMM1 is an approximation of NMM2 in this regime. Next, we evaluate the applicability of this limit
in the context of realistic physiological parameter values by analyzing the dynamics of models with inhibitory or excitatory
synapses. We show that NMM1 fails to reproduce important dynamical features of the exact model, such as the self-sustained
oscillations of an inhibitory interneuron QIF network. Furthermore, in the exact model but not in the limit one, stimulation
of a pyramidal cell population induces resonant oscillatory activity whose peak frequency and amplitude increase with the
self-coupling gain and the external excitatory input. This may play a role in the enhanced response of densely connected
networks to weak uniform inputs, such as the electric fields produced by noninvasive brain stimulation.

1 Introduction

Neural mass models (NMMs) provide a physiologically
grounded description of the average synaptic activity and
firing rate of neural populations (Wilson and Cowan 1972;
Lopes da Silva et al. 1974, 1976; Jansen et al. 1993; Jansen
and Rit 1995; Wendling et al. 2002). First developed in the
1970s, these models are increasingly used for both local
and whole-brain modeling in, e.g., epilepsy (Wendling et al.
2002; Wendling and Chauvel 2008; Jedynak et al. 2017)
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or Alzheimer’s disease (Pons et al. 2010; Stefanovski et al.
2019), and for understanding and optimizing the effects of
transcranial electrical stimulation (tES) (Molaee-Ardekani
et al. 2010; Merlet et al. 2013; Kunze et al. 2016; Ruffini
et al. 2018; Sanchez-Todo et al. 2018). However, they are
only partly derived from first principles. While the post-
synaptic potential dynamics are inferred from data and can
be grounded on diffusion physics (Destexhe et al. 1998; Pods
et al. 2013; Ermentrout and Terman 2010), the transfer func-
tion linking themeanpopulationmembranepotentialwith the
corresponding firing rate (Freeman’s “wave-to-pulse” sig-
moid function) rests on aweaker theoretical standing (Wilson
and Cowan 1972; Freeman 1975; Kay 2018; Eeckman and J
1991). This results in a limited understanding on the range
of applicability of the theory. For example, although models
for the effects of an electric field at the single neuron are now
available (Aberra et al. 2018; Galan 2021), it is unclear how
they should be used at the population-level representation.

In 2015, Montbrió, Pazó, and Roxin (MPR) (Montbrió
et al. 2015) derived an exact mean-field theory for net-
works of quadratic integrate-and-fire (QIF) neurons, thereby
connecting microscale neural mechanisms with mesoscopic
brain activity. Within this framework, the response of a neu-
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ral population is described by a low-dimensional system
representing the dynamics of the firing rate and mean mem-
brane potential. Therefore, the MPR equations can be seen
to replace the usual static transfer sigmoid function with
two differential equations grounded on the biophysics of
the single neurons. Since then, the theory has been applied
to cover increasingly complex formulations of the single-
neuron activity, including time delays (Pazó and Montbrió
2016; Devalle et al. 2018; Ratas and Pyragas 2018), dynamic
synapses (Montbrió et al. 2015; Ratas and Pyragas 2016;
Devalle et al. 2017; Dumont and Gutkin 2019; Coombes and
Byrne 2019; Byrne et al. 2020, 2022; Avitabile et al. 2022),
gap-junctions (Laing 2015; Pietras et al. 2019), stochastic
fluctuations (Ratas and Pyragas 2019; Goldobin et al. 2021;
Clusella and Montbrió 2022), asymmetric spikes (Montbrió
and Pazó 2020), sparse connectivity (di Volo and Torcini
2018; Bi et al. 2021), and short-term plasticity (Taher et al.
2020, 2022).

In the limit of very slow synapses, the firing rate of the
MPR formulation can be cast as a static function of the input
currents, in the form of a population-wide f -I curve (Devalle
et al. 2017). This function can be used to derive a NMM
with exponentially decaying synapses, which fails to repro-
duce the dynamical behavior of the exact mean-field theory,
highlighting the importance of the dynamical equations in
the MPR model (Devalle et al. 2017). In fact, empirical evi-
dence suggests that post-synaptic currents display rise and
a decay time scales (Lopes da Silva et al. 1974; Jang et al
2010). These types of synaptic dynamics can be modelled
through a second-order linear equation,which forms the basis
for many NMMs (see, e.g., Lopes da Silva et al. (1974);
Jansen et al. (1993); Wendling et al. (2002)). This has been
also noticed by other researchers, who have recently stud-
ied exact NMMs with second-order synapses (Coombes and
Byrne 2019; Byrne et al. 2020, 2022). However, a formal
comparison between the MPR formalism with second-order
synaptic dynamics and classical, heuristic NMMs has not yet
been established.

In this paper,we analyze theNMMthat results fromapply-
ing the mean-field theory to a population of QIF neurons
with second-order equations for the synaptic dynamics. The
resultingNMM,whichwe refer to asNMM2 inwhat follows,
contains two relevant time scales: one for the post-synaptic
activity and one for the membrane dynamics. These two time
scales naturally bridge theFreeman“wave-to-pulse” function
with the nonlinear dynamics of the firing rate. In particular,
following Devalle et al. (2017), we show that, in the limit of
very slow synapses and external inputs, the mean membrane
potential and firing rate dynamics become nearly station-
ary. This allows us to develop an analogous NMM with a
static transfer function, which we will refer to as NMM1 for
brevity. Next, we analyze the dynamics of the two models
using physiological parameter values for the time constants,

in order to assess the validity of the formal mapping. Bifur-
cation analysis of the two systems shows that the models are
not equivalent, with NMM2 presenting a richer dynamical
repertoire, including resonant responses to external stimula-
tion in a population of pyramidal neurons, and self-sustained
oscillatory states in inhibitory interneuron networks.

2 Models

2.1 NMMwith static transfer function

Semi-empirical “lumped” NMMs where first developed
in the early 1970s by Wilson and Cowan (Wilson and
Cowan 1972), Freeman (Freeman 1972, 1975), and Lopes da
Silva (Lopes da Silva et al. 1974). This framework is based
on two key conceptual elements. The first one consists of the
filtering effect of synaptic dynamics, which transforms the
incoming activity (quantified byfiring rate) into ameanmem-
brane potential perturbation in the receiving population. The
second element is a static transfer function that transduces
the sum of the membrane perturbations from synapses and
other sources into an output mean firing rate (see Grimbert
and Faugeras (2006) for a nice introduction to the Jansen-Rit
model). We next describe these two elements separately.

The synaptic filter is instantiated by a second-order linear
equation coupling the mean firing rate of arriving signals r
(in kHz) to the mean post-synaptic voltage perturbation u (in
mV) (Grimbert and Faugeras 2006; Ermentrout and Terman
2010):

τ 2s ü = Cγ r(t) − 2τs u̇ − u (1)

Here the parameter τs sets the delay time scale (ms), γ

characterizes the amplification factor in mV/kHz, and C is
dimensionless and quantifies the average number of synapses
per neuron in the receiving population. Upon inserting a sin-
gle Dirac-delta-like pulse rate at time t = 0, the solution
of (1) reads u(t) = Cγ τ−2

s te−t/τs for a system initially at
rest (u̇(0) = u(0) = 0). This model for PSPs activity is
a commonly used particular case of a more general formu-
lation that considers different rise and decay times for the
post-synaptic activity (Ermentrout and Terman 2010).

The synaptic transmission equation needs to be comple-
mented by a relationship between the level of excitation
of a neural population and its firing rate, namely a trans-
fer function, �. Through the transfer function, each neuron
population converts the sum of its input currents, I , to an out-
put firing rate r in a nonlinear manner, i.e., r(t) = �[I (t)].
Wilson and Cowan, and independently Freeman, proposed a
sigmoid function as a simple model to capture the response
of a neural mass to inputs, based on modeling insights and
empirical observations (Wilson and Cowan 1972; Freeman
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1975; Eeckman and J 1991). A common form for the sigmoid
function is

Sigm[I ] = 2e0
1 + eρ(I0−I )

, (2)

where e0 is the half-maximum firing rate of the neuronal
population, I0 is the threshold value of the input (when
the firing rate is e0), and ρ determines the slope of the
sigmoid at that threshold. Beyond this sigmoid, transfer
functions can be derived from specific neural models such
as the leaky integrate-and-fire or the exponential integrate-
and-fire, either analytically or numerically fitting simulation
data, see, e.g., Fourcaud-Trocmé et al. (2003); Brunel and
Hakim (2008); Pereira andBrunel (2018);Ostojic andBrunel
(2011); Carlu et al. (2020). In some studies, � is regarded
as a function of mean membrane potential instead of the
input current (Jansen and Rit 1995; Wendling et al. 2002).
Nonetheless, the relation between input current and mean
voltage perturbation is often assumed to be linear, see for
instance Ermentrout and Terman (2010). Therefore, the dif-
ference between both formulations might be relevant only in
the case where the transfer function has been experimentally
or numerically derived.

The form of the total input current in Eq. (2) will depend
on the specific neuronal populations being considered, and
on the interactions between them. In what follows, we focus
on a single population with recurrent feedback and external
stimulation. Hence, the total input current is given as the
contribution of three independent sources,

I (t) = κu(t) + p + IE (t) (3)

where κ is the recurrent conductance, p is a constant baseline
input current, and IE stands for the effect of an electric field.
Note that some previous studies do not use an explicit self-
connectivity as an argument of the transfer function (see,
e.g., Grimbert and Faugeras (2006); Wendling et al. (2002);
Lopez-Sola et al. (2022)). In the next section, we show that
the term κu(t) in (3) arises naturally in recurrent networks.

Finally, we rescale the postsynaptic voltage by defining
s = u/(Cγ ) and use the auxiliary variable z to write Eq. (1)
as a system of two first-order differential equations. With
those choices, the final closed formulation for the neural pop-
ulation dynamics reads

τs ṡ = z

τs ż = �[Ks(t) + p + IE (t)] − 2z − s
(4)

where K = Cγ κ . We refer to this model in what follows as
NMM1.

2.2 Quadratic integrate-and-fire neurons and NMM2

Consider a population of fully and uniformly connected QIF
neurons indexed by j = 1, ..., N . The membrane poten-
tial dynamics of a single neuron in the population, Uj , is
described by (Latham et al. (2000); Devalle et al. (2017))

cU̇ j = gL
(Uj −Ur )(Uj −Ut )

Ut −Ur
+ I j,total(t) , (5)

withUj being reset toUreset whenUj ≥ Uapex. In this equa-
tion, Ur and Ut > Ur represent the resting and threshold
potentials of the neuron (mV), I j,total the input current (μA),
c the membrane capacitance (μF), and gL is the leak conduc-
tance (mS). If unperturbed, the neuron membrane potential
tends to the resting state value Ur . In the presence of input
current, the membrane potential of the neuron Uj can grow
and surpass the threshold potential Ut , at which point the
neuron emits a spike. An action potential is produced when
Uj reaches a certain apex value Uapex > Ut , at which point
Uj is reset to Ureset.

The total input current of neuron j is

I j,total(t) = χ j (t) + κu(t) + ĨE (t) . (6)

The first term in this expression, χ j (t), corresponds to a
Cauchy white noise with median χ and half-width at half-
maximum� (see Clusella andMontbrió (2022)). The second
term, κu(t), represents the mean synaptic transmission from
other neurons u(t), with coupling strength κ . As in NMM1,
we assume that u(t) follows Eq. (1). However, in this case,
the firing rate is determined self-consistently from the popu-
lation dynamics as

r(t) = 1

N
lim

τr→0

N∑

j=1

1

τr

∑

k

∫ t

t−τr

δ(t ′ − t (k)j ) dt ′ (7)

where t (k)j is the time of the kth spike of neuron j , and the
spike duration time τr needs to assume small finite values
in numerical simulations. Finally, ĨE (t) can represent both a
common external current from other neural populations, or
the effect of an electric field. In the case of an electric field, the
current can be approximated by ĨE = P̃ · E , where P̃ is the
dipole conductance term in the spherical harmonic expan-
sion of the response of the neuron to an external, uniform
electric field (Galan 2021). This is a good approximation if
the neuron is in a subthreshold, linear regime and the field is
weak, and can be computed using realistic neuron compart-
ment models. We assume here for simplicity that all the QIF
neurons in the population are equally oriented with respect
to the electric field (this could be generalized to a statistical
dipole distribution).
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In order to analyze the dynamics of the model it is con-
venient to cast it in a reduced form. Following Devalle et al.
(2017), we define the new variables

Vj =
(
Uj − Ur +Ut

2

)
/(Ut −Ur ) , s = u

Cγ
(8)

and redefine the system parameters (all dimensionless except
for τm) as

τm = c/gL ,

J = κ
Cγ

c(Ut −Ur )
,

η = ζ

gL(Ut −Ur )
− 1

4
,

� = �

gL(Ut −Ur )
,

IE (t) = ĨE (t)

gL(Ut −Ur )
, and

ξ j (t) = χ j (t)

gL(Ut −Ur )
.

(9)

With these transformations, the QIF model can be written as

τmV̇ j = V 2
j + η + Jτms + ξ j + IE (t) . (10)

The synaptic dynamics are given by

τs ṡ = z

τs ż = r − 2z − s .
(11)

These transformations express the QIF variables and param-
eters with respect to reference values of time (c/gL ), voltage
(Ut−Ur ), and current (gL(Ut−Ur )). In the new formulation,
the only dimensional quantities have units of time (τm and
τs , in ms) or frequency (r and s, in kHz). It is important to
keep inmind these changes when dealingwithmultiple inter-
acting populations involving different parameters, and also
when using empirical measurements to determine specific
parameter values.

2.2.1 Exact mean-field equations with second order
synapses (NMM2)

Starting from Eq. (10), Montbrió et al. (2015) derived an
effective theory of fully connected QIF neurons in the large
N limit. Initially, the theory was restricted to determinis-
tic neurons with Lorentzian-distributed currents. Recently it
has also been shown to apply to neurons under the influence
of Cauchy white noise, a type of Lévy process that renders
the problem analytically tractable (Clusella and Montbrió
2022). In any case, the macroscopic activity of a popula-
tion of neurons given by Eq. (10) can be characterized by

the probability of finding a neuron with membrane poten-
tial V at time t , P(V , t). In the limit of infinite number of
neurons (N → ∞), the time evolution of such probabil-
ity density is given by a fractional Fokker-Planck equation
(FFPE). Assuming that the reset and threshold potentials for
single neurons are set to Vapex = −Vreset = ∞, the FFPE
can be solved by considering that P has a Lorentzian shape
in terms of a time-depending mean membrane potential v(t)
and mean firing rate r(t),

P(V , t) = τmr(t)

[V − v(t)]2 + (πr(t)τm)2
, (12)

with

τmṙ = �

πτm
+ 2rv

τm v̇ = η − (πrτm)2 + v2 + τm Js + IE (t) .

(13)

Together with the synaptic dynamics (11), these equations
describe an exact NMM, which we refer to as NMM2.

3 Slow and fast synapse dynamics limits

3.1 Slow synapse limit andmap to NMM1

Comparing the formulations of the semi-empirical model
NMM1 (4) and the exact mean-field model NMM2 (13) one
readily observes that the latter can be interpreted as an exten-
sion of the former. The synaptic dynamics are given by the
same equations in bothmodels, yet in NMM2 the firing rate r
is not a static function of the input currents, but a system vari-
able. Moreover, NMM2 includes the dynamical effect of the
mean membrane potential, v, which in the classical frame-
work is assumed to be directly related to the post-synaptic
potential.

Devalle et al. (2017) showed that in a model with expo-
nentially decaying (i.e., first-order) synapses, the firing rate
can be expressed as a transfer function in the limit of slowly
decaying synapses. Their work follows from previous results
showing that, in class 1 neurons, the slow synaptic limit
allows one to derive firing rate equations for the population
dynamics (Ermentrout 1994). Here we revisit the same steps
to show that NMM2 can be formally mapped to a NMM1
form. We perform such derivation in the absence of external
inputs (IE (t) = 0).

Let us rescale time in Eq. (13) to units of τs , and the rate
variables to units of 1/τm using

t̃ = t

τs
, s̃ = τms, z̃ = τmz, r̃ = τmr . (14)
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Additionally we define ε = τm/τs . Then, the NMM2 model
(Eqs. (11) and (13)) reads

ε
dr̃

dt̃
= �

π
+ 2r̃v

ε
dv

dt̃
= η + v2 − (π r̃)2 + J s̃

ds̃

dt̃
= z̃

d z̃

dt̃
= r̃ − 2z̃ − s̃ .

(15)

Taking now ε → 0 (τs → ∞), the equations for r̃ and v

become quasi-stationary in the slow time scale, i.e.,

0 ≈ �

π
+ 2r̃v

0 ≈ η + v2 − (π r̃)2 + J s̃ .

(16)

The solution of these equations is given by r̃ = �� (η + J s̃),
where

��(I ) = 1

π
√
2

√
I +

√
I 2 + �2 . (17)

This is the transfer function of the QIF model, which relates
input currents to the output firing rate. Thus, in the limit ε →
0 system (15) formally reduces to the NMM1 formulation,
Eq. (4).

In the following sections, we study to what extent this
equivalence remains valid for finite ratios of τm/τs . To that
end, it is convenient to recast the analogy between NMM1
and NMM2 in terms of the non-rescaled quantities, which
corresponds to using

� = τ−1
m ��, K = Jτm, and p = η, (18)

in Eq. (4).
In Fig. 1, we fit the parameters of the sigmoid function to

�� for � = 1. Despite the sudden sharp increase of both
functions, there is an important qualitative difference: the f -
I curve of the QIF model does not saturate for I → ∞.
Other transfer functions derived from neural models share a
similar non-boundedbehavior (Fourcaud-Trocmé et al. 2003;
Carlu et al. 2020). This reflects the continued increase of
firing activity with increase input, which has been reported
in experimental studies (Rauch et al. 2003).

3.2 Fast synapse limit

To explore the fast synapse limit, it is convenient to rescale
time as t = t/τm in the NMM2 equations. In this new frame,
and defining δ := τs/τm = 1/ε, the system reads

Fig. 1 Transfer function of the QIF network (17) with � = 1 and the
sigmoid (2) with parameters fitted to ��

dr̃

dt
= �

π
+ 2r̃v

dv

dt
= η + v2 − (π r̃)2 + J s̃

δ
ds̃

dt
= z̃

δ
dz̃

dt
= r̃ − 2z̃ − s̃ .

(19)

where r̃ , s̃ and z̃ are the rescaled variables defined in (14).
With the algebraic conditions in the fast synapse limit, δ → 0
(τs → 0), Eq. (19) is reduced to

dr̃

dt
= �

π
+ 2r̃v

dv

dt
= η + v2 − (π r̃)2 + J r̃ ,

(20)

where we have used that s̃ = r̃ as given by the synaptic equa-
tions. This is themodelwith instantaneous synapses analyzed
by Montbrió et al. (2015), who showed that the η–J phase
diagram has three qualitatively distinct regions in the pres-
ence of a constant input: a single stable node corresponding
to a low-activity state, a single stable focus (spiral) gener-
ally corresponding to a high-activity state, and a region of
bistability between a low activity steady state and a regime
of asynchronous persistent firing.
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Table 1 Values for the membrane time constants τm and postsynaptic
currents τs , for pyramidal neurons (Pyr), parvalbumin-positive (PV+),
and neurogliaform cells (NGFC) (Neske et al. 2015; Zaitsev et al. 2012;
Povysheva et al. 2007; Avermann et al. 2012; Oláh et al. 2007; Seay
et al. 2020; Karnani et al. 2016; Bacci et al. 2003; Deleuze et al. 2019).
Notice that, in general, the synaptic time-constant should depend on the
neurotransmitter, and the pre- and post-synaptic cells. Since we only
consider self-coupled populations, we do not specify time constants for
transmission across populations of different types

Neuron type Neurotransmitter τm (ms) τs (ms) τm/τs

Pyr Glutamate 15 10 1.5

PV+ GABA 7.5 2 3.75

NGFC GABA 11 20 0.55

4 System dynamics

In the previous section, we have shown that NMM2 can be
mapped toNMM1 in the limit of slow synapses (τm/τs → 0),
using the scaling relations (18). However, physiological val-
ues for the time constants might not be consistent with
this limit. Table 1 shows reference values for τm and τs
corresponding to different neuron types and their correspond-
ing neurotransmitters obtained from experimental studies.
Notice that, in practice, such values also depend on the elec-
trical and morphological properties of the neurons, and pre-
and post-neuron types. Such level of detail requires the use
of conductance-based compartmental models, a further step
in mathematical complexity that is out of the scope of this
paper. Therefore, we take the values in Table 1 as coarse-
grained quantities that properly reflect the time scales in point
neuron models such as the QIF (10) (for a more detailed dis-
cussion, see Sect. 5). In order to study to what extent these
non-vanishing values of τm/τs break down the equivalence
between the twomodels, in this section we analyze and com-
pare the dynamics of a single neural populationwith recurrent
connectivity described by bothNMM1 (Eq. (4)withEq. (18))
and NMM2 (Eqs. (11) and (13)).

The first step is to identify the steady states of the system.
Since we derived the transfer function (17) by assuming the
r and v variables of NMM2 to be nearly stationary, the fixed
points of both models coincide and are given by:

τmr0 = ��(η + τm Jr0),

v0 = − �

2τmπr0
,

s0 = r0,

z0 = 0.

(21)

Moreover, r0 and v0 are the equilibrium points of the two-
dimensional system analyzed by Montbrió et al. (2015).
Notice that the only relevant parameters for the determina-
tion of the fixed points are J , η, and �. The time constant

τm only acts as a multiplicative factor of r0 (and s0), and τs
does not enter into the expressions of the steady states.

Even though the steady states of the threemodels (NMM1,
NMM2, and the original system of Montbrió et al. (2015))
are the same, their stability properties might be different, as
we now attempt to elucidate. The eigenvalues controlling the
stability of the fixed points in NMM1 are:

λ± = τ−1
s

(
−1 ±

√
J� ′

�[η + Jτms0]
)

(22)

A similar closed expression for NMM2 is complicated to
obtain and, in any case, there are no explicit expressions for
the steady states. Thus, we use in what follows the numeri-
cal continuation software AUTO-07p (Doedel et al. 2007) to
obtain the corresponding bifurcation diagrams. We analyze
separately the dynamics of excitatory (J > 0) and inhibitory
(J < 0) neuron populations in the two NMM models.

4.1 Pyramidal neurons

We start by analyzing the dynamics of NMM1 in the case of
excitatory coupling (J > 0), by fixing � = 1 and varying η

and J . FollowingTable 1,we set τm = 15ms and τs = 10ms.
Since the NMM1 eigenvalues (22) are real for J > 0, the
fixed points do not display resonant behavior, i.e., they are
either stable or unstable nodes. For positive baseline input
η, only a single fixed point exists irrespective of the value
of the coupling J . In contrast, a large region of bistability
bounded by two saddle–node (SN) bifurcations emerges for
negative η. The green curves in Fig. 2a show the two SN
bifurcations, which merge in a cusp close to the origin of
parameter space. Within the region bounded by the curves
(green shaded region), a low-activity and a high-activity state
coexist, separated by a third unstable fixed point. Figure 2b
displays, for instance, the stationary firing rate as a function
of η for J = 40. The values of the time constants τm and τs do
not affect the bistability region.However, the noise amplitude
� does have an effect: as shown in Appendix A, NMM1
admits a parameter reduction that expresses all parameters
and variables as functions of �. Accordingly, the effects of
modifying� on the stability of the fixed points are analogous
to rescaling η → η/� and J → J/

√
� (see also Montbrió

et al. (2015)). Therefore, the bistable region shrinks in the
(η, J ) parameter space as the noise amplitude increases.

Since the fixed points of NMM1 and NMM2 coincide,
these two branches of SN bifurcations also exist in NMM2.
Moreover, no other bifurcations arise; thus, the diagrams
depicted in Fig. 2a,b also hold for the exact model. How-
ever, there is an important difference regarding the relaxation
dynamics towards the fixed points: While in NMM1 the
steady states are always nodes, inNMM2 trajectories near the
high-activity state might display transient oscillatory behav-
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Fig. 2 Dynamics of a population of pyramidal neurons described by
NMM1 and NMM2. a Saddle–node bifurcations SN1 and SN2 (green
curves) limiting the region of bistability (light-green region), and node-
focus boundary for three different values of τm/τs in NMM2 (solid,
dotted and dashed black lines). b Steady-state value of the firing rate as
a function η, for fixed J = 40, � = 1, τm = 15 ms, and τs = 10 ms.
The stable steady-state branches are colored in red, and the unstable

steady-state branch in grey. Dashed vertical lines indicate the SN1 and
SN2 bifurcation points (cf. panel a). c,dTime evolution of the firing rate
r c and synaptic variable s d for NMM1 (blue) and NMM2 (orange),
for η = 10, J = 10, � = 1, τm = 15ms, and τs = 10 ms. Initial
conditions are at steady state, and a 1-ms-long pulse of IE (t) = 10 is
applied at t = 100 ms

ior. Figure 2c,d display, for instance, time series obtained
from simulations ofNMM1 (blue) andNMM2 (orange) start-
ing at the fixed point, and receiving a small pulse applied
at t = 100 ms. Not only NMM2 displays an oscillatory
response, but also the effect of the perturbation in the firing
rate is much larger in NMM2 than in NMM1.

Such resonant behavior of NMM2 corresponds to the two
dominant eigenvalues of the high-activity fixed point (those
with largest real part) being complex conjugates of each
other. The black curves in Fig. 2a show the boundary line
at which those two eigenvalues change from real (below the
curves) to complex (above the curves). For physiological val-
ues of τm and τs (continuous black line), this node-focus line
remains very similar to that of the model with instantaneous
synapses studied inMontbrió et al. (2015). Reducing the ratio
τm/τs changes this situation. As shown by the dotted and
dashed curves in Fig. 2a, as we approach the slow synaptic
limit (τm/τs → 0) the resonant region (where the dominant
eigenvalues are complex) requires increasingly larger values
of η and�, vanishing for small enough ratio τm/τs . Hence, as
expected from the time scale analysis of Sect. 3, the dynam-
ics of NMM2 can be faithfully reproduced by NMM1 in this
limit. However, the equivalence cannot be extrapolated to
physiological parameter values.

4.2 Interneurons

Here we consider a population of GABAergic interneurons
with self-recurrent inhibitory coupling (J < 0). In partic-
ular, we focus on parvalbumin-positive (PV+) fast spiking
neurons, which play a major role in the generation of fast
collective brain oscillations (Bartos et al. 2002, 2007; Cardin
et al. 2009; Tiesinga and Sejnowski 2009). We thus set
τm = 7.5 and τs = 2 ms, following Table 1.

In this case, the NMM1 dynamics are rather simple: there
is a single fixed point that remains stable, with a pair of
complex conjugate eigenvalues (see Eq (22)). Therefore, the
transient dynamics do display resonant behavior upon exter-
nal perturbation. Nonetheless, no self-sustained oscillations
emerge.

In the NMM2, however, the unique fixed point might lose
stability for η > 0 through a supercritical Hopf bifurcation
(HB+, see blue curve in Fig. 3a). This transition gives rise to
a large region of fast oscillatory activity, corresponding to the
so-called interneuron-gamma (ING) oscillations (Whitting-
ton et al. 1995; Traub et al. 1998; Whittington et al. 2000;
Bartos et al. 2007; Buzsáki and Wang 2012). An example
of this regime is shown in Fig. 3b,c, using both NMM2
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and microscopic simulations of a QIF network as defined
by Eq. (10) .

According to the ING mechanism, oscillations emerge
due to a phase lag between two opposite influences: the
noisy excitatory driving (controlled by η and �) and the
strong inhibitory feedback from the recurrent connections
(controlled by J ). In NMM2, the dephasing between these
two forces stems from the implicit delay caused by the
synaptic dynamics. Hence, the ratio between membrane and
synaptic characteristic times, τm and τs , has a fundamental
role in the generation of ING oscillations. The blue region
depicted in Fig. 3a corresponds to time scales of PV+ neu-
rons, τm = 7.5 and τs = 2. In this case, the oscillation
frequency is in the gamma range (40-200Hz). However, by
decreasing the parameter ratio τm/τs the Hopf bifurcation
becomes elusive, as the oscillatory region shrinks, and oscil-
lations require stronger inhibitory feedback (see black dotted
curve in Fig. 3a). Similarly, by increasing τm/τs the ING
activity also fades, as larger inputs η are required to produce
oscillatory activity (see black dashed curve in Fig. 3a). As
showed in the previous section, the two limits of τm/τs coin-
cide with NMM1 and the model analyzed in Montbrió et al.
(2015). The results presented above show that the membrane
and synaptic dynamics are required to have comparable time
scales, in order to generate oscillatory activity in NMM2.

4.3 Network-enhanced resonance in excitatory
populations

The bifurcation analysis of Sect. 4.1 reveals that a single pop-
ulation of excitatory neurons does not display self-sustained
oscillations in neither NMM1 nor NMM2. This is expected,
as excitation alone is known to be usually insufficient for the
emergence of collective rhythms (VanVreeswijk et al. 1994).
However, inNMM2, the high-active steady state corresponds
to a stable focus in a large region of the parameter space. In
this section, we exploit this resonant behavior, inspired by the
oscillatory response of a population of pyramidal neurons
subject to tACS stimulation. We thus consider the NMM2
model with τm = 15 ms and τs = 10 ms injected with a
current

IE (t) = A sin(ωt) . (23)

We expect to induce oscillatory activity ifω is close to the res-
onant frequency of the system, given by ν := Im[λ], where
λ is the fixed point eigenvalue with largest real part.

Figure 4a,b displays heatmaps of the standard deviation
of the firing rate, σ , obtained by stimulating the stable focus
of NMM2 at different frequencies ω and amplitudes A. For
weak baseline input η (Fig. 4a), the amplitude of the system
displays a large tongue-shaped region, with a few additional
narrow tongues at smaller frequencies.

The main tongue is centered at the resonant frequency
ω � ν (see grey vertical dashed line) and corresponds
to entrainment at the driving rhythm, whereas secondary
tongues correspond to entrainment at higher harmonics.
Increasing the external input η (Fig. 4b) causes the system to
resonate at larger frequencies and shrinks the region of ampli-
fication of the applied stimulus. Despite the similitude with
the usual Arnold tongues that characterize driven oscillatory
systems, we recall that herewe are inducing oscillatory activ-
ity in an otherwise stationary system. Hence, even if small
in amplitude, there is always an oscillatory response at some
harmonic of the driving frequency.

Electric stimulation protocols usually achieve large effects
even when the amplitudes of the oscillatory input signal are
small. We thus investigate the effect of weak stimuli through
a perturbative analysis for 0 < A 	 1. Upon expanding
the NMM2 equations close to the fixed point and solving the
resulting linear system, we obtain the amplitude response as
a function of the driving frequency:

A(ω; λ, β) =
{[

(ω2 + μ2 − ν2)(νbi − μbr) − 2μν(νbr + μbi)
]2

+ ω2
[
2biμν + br(ω

2 + μ2 − ν2)
]2}1/2

×
[
(ω2 + μ2 − ν2)2 + 4μ2ν2

]−1

(24)

where λ = μ + iν is the fixed point eigenvalue with largest
real part, and b = br + ibi is the associated amplitude
component (see Appendix B): for the mathematical details).
These two complex quantities can be obtained by numer-
ically computing the eigenvalues and eigenvectors of the
system Jacobian. The black curves in Fig. 4d and e illus-
trate the validity of the analytical expression when compared
with numerical results (colored symbols). Overall, the per-
turbative analysis provides a good approximation for A < 1,
showing that, at this stage, ω = ν provides the maximal
amplification.

Finally, we use these results to investigate the effect of the
system parameters J and η to the amplitude response of the
neural mass. Figure 4b, c shows numerical (open circles) and
analytical (lines) results obtained using the optimal stimula-
tion protocol ω = ν with A = 0.1 for different values of J
and η. Overall, the oscillation amplitude of the system shows
a supralinear increase with J and a sublinear increase with
η. These results illustrate the importance of self-connectivity
in tACs stimulation and can potentially explain the effective-
ness of these protocols in spite of the weakness of the applied
electric field. Since we only considered driving of an excita-
tory population, the associated resonant frequencies can be
quite large (up to 400Hz for η = 50 and J = 50), which
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(a)

(b)

(d)

(c)

Fig. 3 Dynamics of a population of parvalbumin-positive interneurons
described by NMM2. a Supercritical Hopf bifurcation signaling the
onset of oscillatory activity for τm = 7.5 ms, τs = 2 ms (blue curve),
τm = 7.5 ms, τs = 20 ms (dotted black curve), and τm = 7.5 ms,
τs = 0.02 ms (dashed black curve). The blue-shaded region indicates
stable limit-cycle behavior for τm = 7.5 ms, τs = 2 ms. b Steady-state
values of the firing rate as a function of the input η, for fixed J = −20,
� = 1, τm = 7.5 ms, and τs = 2 ms. The red line represents the stable
steady state, the grey line the unstable steady state, and the blue lines the
maxima andminima of the stable limit-cycle. Dashed vertical lines indi-

cate the location of supercritical Hopf bifurcations (cf panel a). c Time
evolutionof thefiring rate r for an inhibitory population at the oscillatory
state (η = 20, J = −20,� = 1, τm = 7.5 ms, and τs = 2 ms) obtained
from integrating the a networkwith N = 1024QIF neurons (10) (black)
and from the NMM2 (13) (orange). d Raster plot of the spiking times
in the simulation of the QIF network corresponding to panel (c). Sim-
ulations of QIF network were performed with Vapex = −Vreset = 100
using Euler–Maruyama integration with dt = 10−3 ms. The firing rate
r is computed using Eq. (7) with τr = 10−2 ms

calls for future investigations to analyze the combined effect
of tACs in networks with excitation-inhibition balance.

5 Conclusions

For decades, NMMs have been built up on the basis of a sim-
ple framework that combines the linear dynamics of synaptic
activation with a nonlinear static transfer function linking
neural activity (firing rate) to excitability (Wilson and Cowan
1972; Freeman 1975; Lopes da Silva et al. 1974). This view
has been sustained by empirical observations and heuristic
assumptions underlying neural activity.Models based on this
framework have been used to explain themechanisms behind
neural oscillations (Lopes da Silva et al. 1974; Freeman
1987; Jansen and Rit 1995; Wendling et al. 2002), and, more
recently, to create large-scale brain models to address the
treatment of neuropathologies by means of electrical stimu-
lation (Kunze et al. 2016; Sanchez-Todo et al. 2018; Forrester
et al. 2020).

Further theoretical efforts have provided more sophisti-
cated tools to model the dynamics of neural populations,
by deriving transfer functions from specific single-cell mod-
els (Gerstner 1995; Brunel and Hakim 2008; Ostojic and
Brunel 2011; Carlu et al. 2020), add adaptation mecha-
nisms (Augustin et al. 2017), or finite size effects (Benayoun
et al. 2010; Buice et al. 2010). In this context, exact NMMs
(also known as next-generation NMMs) pave a new road
to directly relate single neuron dynamics with mesoscopic
activity (Montbrió et al. 2015). Understanding how this novel
framework relates to previous semi-empirical models should
allow us to validate the range of applicability of classical
NMMs.

Here we have studied a neural mass with second-order
synapses, similar to theone studied in recentworks (Coombes
and Byrne 2019; Byrne et al. 2020, 2022). The model
naturally links the dynamical firing rate dynamics derived
by Montbrió et al. (2015) with the typical linear filtering
representing synaptic transmission that is used in heuris-
tic NMMs. Following Ermentrout (1994) and Devalle et al.

123



14 Biological Cybernetics (2023) 117:5–19

(a) (b) (c)

(d) (e) (f)

Fig. 4 Effects of tACs stimulation, Eq. (23), in a population pyramidal
neurons given by NMM2 (13). a, b Heatmaps of the standard deviation
of r displaying Arnold tongues for η = 1 (panel (a)) and η = 50 (panel
(b)). The rest of system parameters are J = 10, � = 1, τm = 15 ms,
and τs = 10 ms. c Normalized amplitude σ/A obtained by stimulat-
ing the population at its resonant frequency ν, for increasing values of
the coupling strength. Continuous lines correspond to analytical results
(Eq. (24)), and circles correspond to numerical simulations. d, e Nor-
malized amplification σ/A corresponding to the same parameters of

panels (a) and (b), respectively. Symbols correspond to the numer-
ical simulations reported in (a) and (b). The black continuous lines
correspond to Eq. (24). f Normalized amplitude σ/A at the resonant
frequency ν upon increasing the external input η. Lines correspond to
Eq. (24) and symbols to numerical simulations. In all panels, periodic
stimulation has been simulated for 2 seconds after letting the system
relax to the fixed point for 1 second. The reported values for the stan-
dard deviation σ correspond only to the last 1 s of stimulation, in order
to avoid capturing transient effects

(2017), we show that, in the slow-synapse limit and in the
absence of time-varying inputs, the exact model can be for-
mally mapped to a simpler formalism with a static transfer
function. However, we find that the range of validity of this
relationship is beyond the physiological values of the model
parameters. An analysis of the dynamics using realistic val-
ues of the time constants illustrates the fact that fundamental
properties, such as the resonant behavior of excitatory pop-
ulations and the interneuron-gamma oscillatory dynamics of
PV+ neurons, cannot be captured by a traditional formulation
of the model.

In the context of heuristic NMMs, some works proposed
to include additional adaptation variables to further fill the
gap betweenmesoscale and single-cell models (Camera et al.
2004; Augustin et al. 2017). In spite of increased similarity
with the underlying neuronal networks dynamics, the result-
ing equations remain steady-state approximations, and their
accuracy are model- and parameter-dependent. Interestingly,
analogous spike-adaptation mechanisms improve accuracy
of integrate-and-fire models in single-cell studies (Rauch
et al. 2003; Mensi et al. 2012); thus, similar mechanisms
have also been considered in the context of NMM2 (Gast
et al. 2020). Nonetheless, a systematic comparison of the
effect of adaptation in the two frameworks is missing.

Despite the exact mean-field theory leading to NMM2 is a
major step forward on the development of realisticmesoscale
models for neural activity, the QIF neuron is a simplified
model with some limitations. For instance, here we have
employed non-refractory neurons, for which increasing input
currents always lead to an increase of the firing rate. Future
studies should address the role of a refractive period on the
emerging rhythms and stimulation effects of exact NMMs.
This could lead to a more realistic saturating shape of the
QIF transfer function (Fig. 1). Additionally, further con-
siderations may need to be taken into account in order to
translate experimental observations to the model. In partic-
ular, the synapse time constants reported in Table 1 should
reflect the delay and filtering associated with current trans-
mission from input site to soma. This is not trivial to measure
experimentally, and it can change considerably depending on
synapse location, morphology, the number of simultaneously
activated spine synapses (Eyal et al. 2018), and electrical
properties (Koch and Segev 2003), which are not accounted
by the QIF neuron, but can be estimated using realistic com-
partmentmodels (Agmon-Snir and Segev 1993). Besides, the
QIF model is an approximation of type-I excitable neurons,
with type-II having a completely different firing pattern and
f -I curve.
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An important application of the exact mean-field theory
is in the context of transcranial electrical stimulation. Sev-
eral decades of research suggest that weak electric fields
influence neural processing (Ruffini et al. 2020). In tES, the
electric field generated on the cortex is of the order of 1 V/m,
which is known to produce a sub-mVmembrane perturbation
(Bikson et al. 2004; Ruffini et al. 2013; Aberra et al. 2018).
Yet, the applied field is mesoscopic in nature and is applied
during long periods, with a spatial scale of several centime-
ters and temporal scales of thousands of seconds. Hence, a
long-standing question in the field is how networks of neu-
rons process spatially uniform weak inputs that barely affect
a single neuron, but produce measurable effects in popula-
tion recordings. By means of the exact mean-field model, we
have shown that the sensitivity of the single population to
such a weak alternating electric field can be modulated by
the intrinsic self-connectivity and the external tonic input of
the neural population in a population of excitatory neurons.
Importantly, such resonant behavior cannot be captured by
heuristic NMMs with static transfer functions.

For the physiologically inspired parameter values chosen
in this study, the amplification effects on excitatory neurons
appear to be weaker than those observed experimentally. We
may conjecture that certain neuronal populations may be
in states near criticality, i.e., close to the bifurcation points
in the NMM2 model (Chialvo 2004; Carhart-Harris 2018;
Vázquez-Rodríguez et al 2017; Zimmern 2020;Kōksal Ersōz
and Wendling 2021; Ruffini and Lopez-Sola 2022). This
would apply, for example, to inhibitory populations, which
display aHopf bifurcationwhere a state near the critical point
will display arbitrarily large amplified sensitivity to weak but
uniform perturbations applied over long time scales. Since
electric fields are expected to couple more strongly to exci-
tatory cells, this case should be studied in the context of a
multi-population NMM2, with excitatory cells relaying the
electric field perturbation. Exact NMMs provide an appro-
priate tool to investigate this behavior, as well as the effects
of non-homogeneous electrical fields—which we leave to
future studies.
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Appendix A Parameter reduction in NMM1
and NMM2

Acommonway to simplify the analysis of dynamical systems
such as NMM1 (Eq. 4) and NMM2 (Eqs. 11,13) is through
parameter reduction. While this can be achieved in different
ways, here we choose, following Montbrió et al. (2015), to
rescale the system parameters as follows:

η̃ = η

�
, J̃ = J√

�
, β = τs

√
�

τm
(A1)

We then define the new variables

t̃ =
√

�

τm
t, r̃ = τm√

�
r , ṽ = v√

�
,

s̃ = τm√
�
s, z̃ = τm

�
z .

(A2)

With these definitions, and togetherwith the equivalence rela-
tion (18), NMM1 takes the form:

β
ds̃

dt̃
= z̃

β
dz̃

dt̃
= �1[η̃ + J̃ s̃] − 2z̃ − s̃ .

(A3)
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Similarly, the NMM2 model (Eqs. 11,13) becomes

dr̃

dt̃
= 1

π
+ 2r̃ ṽ

d ṽ

dt̃
= η̃ − (π r̃)2 + ṽ2 + J̃ s̃

β
ds̃

dt̃
= z̃

β
dz̃

dt̃
= r̃ − 2z̃ − s̃ .

(A4)

These reduced systems reveal that the dynamics of bothmod-
els are controlled only by the three effective parameters η̃, J̃ ,
andβ. In particular, the effects of changing� in the attractors
of the system can be achieved by appropriatelymodifying the
other parameters. Also, this reduction makes explicit that the
bifurcations of the system do not depend on specific val-
ues of τm and τs , but only on their ratio. Notice, however,
that in (A4) all parameters and variables, including time,
become adimensional. This contrasts with the formulation
used throughout the paper (Eqs. (13)), where time has units
of milliseconds.

Appendix B Analysis of a weakly periodically
forced system

Here we present the results on weakly periodically perturbed
systems used to investigate the response of NMM2 to peri-
odic stimulation in Sect. 4.3. Although we have a specific
system in mind, we consider a general setup for simplicity.
Let x(t) ∈ R

n be an n-dimensional state vector, with time
evolution given by the autonomous nonlinear system

ẋ = F(x) . (B5)

In NMM2, F follows Eqs. (11,13), and the state vector reads
x = (r , v, s, z)T . Let x(0) be a stablefixedpoint of the system
and J = J(x(0)) the corresponding Jacobian. We consider
a periodic forcing acting on Eq. (B5),

ẋ = F(x) + εa sin(ωt)

where ε is a weak coupling 0 < ε 	 1 and a ∈ R
n is a

normalized vector for the distribution of the forcing across
the system variables. For instance, in the case considered in
the paper a = (0, 1, 0, 0)T , since the periodic driving acts
only on the mean membrane potential.

Let x = x(0) + εδx. Since ε 	 1 we can linearize close
to the fixed point, x(0), to obtain

δ̇x = Jδx + a sin(ωt) .

Let S be the matrix of eigenvectors of J , and � the diagonal
matrix of eigenvalues, so that S−1 J S = �. The coordinates
of the perturbation vector in the basis defined by the Jacobian
eigenvalues read α := S−1δx. Therefore,

α̇ = S−1δ̇x

= S−1 J SS−1δx + S−1a sin(ωt)

= �α + b sin(ωt)

(B6)

where b := S−1a, i.e., the coordinates of a in the basis
defined by S.

Since � is a diagonal matrix, Eq. (B6) can be written in
scalar form for each α j in complex space as

α̇ j = λ jα j + b j sin(ωt) , for j = 1, . . . , n .

In what follows we drop the subindices j for simplicity. The
solution of each of the linear systems for α read

α(t) = −b
ω sin(ωt) + λ cos(ωt)

λ2 + ω2 + keλt .

with k ∈ R a free constant. Since the fixed point is stable,
the last term vanishes in the long term. Let λ = μ + iν.
The behavior of α greatly changes depending on whether ν

is zero or not, i.e., whether the fixed point is a stable node or
a stable focus. Let us start for the simple case, ν = 0. Then,
at t → ∞,

α(t) = b
sin(ωt + φ)√

μ2 + ω2

where φ = arctan(μ/ω). Therefore, these types of compo-
nents always oscillate, but the amplitude of the oscillations
decays as 1/

√
μ2 + ω2.Hence, if the forcing frequency is too

fast, or the stability too strong, then the induced oscillatory
component becomes negligible.

Let’s turn now to the more interesting case of ν �= 0.
Since we are considering a real system, there is always a pair
of complex eigenvalues such that λ± = μ ± iν associated
with complex conjugate eigenvectors α± (conjugate root the-
orem for polynomials with real coefficients). Therefore, the
dynamics of the real system is given by the real part of α±.
We find that (for t → ∞),

α(t) + α∗(t)
2

= εA(ω;μ, ν) sin(ωt + φ)

where

A(ω;μ, ν) =
√
P2 + Q2

D
(B7)
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and φ = arctan(Q/P), with

P := (ω2 + μ2 − ν2)(νbi − μbr) − 2μν(νbr + μbi) ,

Q := ω[−2biμν − br(ω
2 + μ2 − ν2)] ,

D := (ω2 + μ2 − ν2)2 + 4μ2ν2 ,

which corresponds to Eq. (24) in the main text.
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