| | | | | | |
  当前位置:首页 > 团队科研成果 

Codimension-two bifurcation analysis in two-dimens
作者:数学建模与神经计算 发布日期:2019-2-23
 点击:1139
关键词:-

Codimension-two bifurcation analysis in two-dimensional Hindmarsh–Rose model
Xuanliang Liu· Shenquan Liu

In this paper, we analyze the codimension-2 bifurcations of equilibria of a two-dimensional Hind-marsh–Rose model. By using the bifurcation methods and techniques, we give a rigorous mathematical anal-ysis of Bautin bifurcation. The main result is that no more than two limit cycles can be bifurcated from the equilibrium via Hopf bifurcation; sufficient conditions for the existence of one or two limit cycles are ob-tained. This paper also shows that the model under-goes a Bogdanov–Takens bifurcation which includes a saddle-node bifurcation, an Andronov–Hopf bifurca-tion, and a homoclinic bifurcation. In some case, the globally asymptotical stability is discussed.

 /Uploads/file/20190223/2019022321020848848.pdf

收 藏 推 荐 打 印 关 闭
上一篇:The root of a polynomial in new notation 下一篇:Neural circuit and its functional roles in cerebel
   关于我们
s
s
   推荐产品
   图片文章
   最新资讯
二次整合和放电神经元网络中的跨尺度兴奋性
具有二阶突触的精确和启发式神经质量模型...
一个具有突触延迟的大的峰值神经元系统的...
具有短期突触可塑性的峰值神经元网络的平...
排斥抑制在兴奋网络同步中的协同效应
具有双峰异质性的二次整合-触发神经元网...
 
友情链接: 神经计算   国家自然科学基   华南理工大学   全国大学生数学   美国数学建模竞   MATLAB  
咨询热线:刘教授 13650823684 邮箱:liushenat@sohu.com 备案编号:豫ICP备18005949号
地址:广州市番禺区广州大学城 邮编:510006  技术支持:郑州建网站 本站域名:mashqliu.com
Copyright © 2018-2024 数学建模与神经计算 Inc, All Rights Reserved.
在线客服
刘教授 13650823684
客服代表
点击这里给我发消息