| | | | | | |
  当前位置:首页 > 神经计算原理 

Canard Theory and Excitability
作者:数学建模与神经计算 发布日期:2019-2-28
 点击:1347
关键词:-Canards,Geometric singular perturbation theory,Excitability,Neural dynamics,Firing threshol

Canard Theory and Excitability

Martin Wechselberger, John Mitry, and John Rinzel

Abstract An important feature of many physiological systems is that they evolve on multiple scales. From a mathematical point of view, these systems are modeled as singular perturbation problems. It is the interplay of the dynamics on different temporal and spatial scales that creates complicated patterns and rhythms. Many important physiological functions are linked to time-dependent changes in the forcing which leads to nonautonomous behaviour of the cells under consideration. Transient dynamics observed in models of excitability are a prime example. Recent developments in canard theory have provided a new direction for understanding these transient dynamics. The key observation is that canards are still well defined in nonautonomous multiple scales dynamical systems, while equilibria of an autonomous system do, in general, not persist in the corresponding driven, nonautonomous system. Thus canards have the potential to significantly shape the nature of solutions in nonautonomous multiple scales systems. In the context of neuronal excitability, we identify canards of folded saddle type as firing threshold manifolds. It is remarkable that dynamic information such as the temporal evolution of an external drive is encoded in the location of an invariant manifold—the canard.


翻译原文


鸭解理论与兴奋性
Martin Wechselberger 和 John Mitry
摘要:许多生理系统的一个重要特征是它们在多个尺度上进化。从数学的角度看,这些系统被建模为奇异摄动问题。正是不同时空尺度上动力学的相互作用,创造了复杂的模式和节律。许多重要的生理功能与强迫的时间依赖性变化有关,这种变化导致所考虑的细胞的非自主性行为。在兴奋性模型中观察到的瞬态动力学就是一个很好的例子。鸭解理论的最新发展为理解这些瞬态动力学提供了一个新的方向。关键的观察结果是,鸭解在非自治多尺度动力系统中仍然是良定义的,而自治系统的平衡点一般情况下并不存在于相应的驱动的非自治系统中。因此,在非自治多尺度系统中,鸭解有可能显著地影响解的性质。在神经兴奋性的背景下,我们将折鞍型鸭解识别为发放阈值流形。值得注意的是,诸如外部驱动的时间演化等动态信息被编码在不变流形的位置—鸭解。
关键词:鸭解;几何奇异摄动理论;兴奋性;神经动力学;发放阈值流行;分界线;瞬态吸引子。


翻译稿件


收 藏 推 荐 打 印 关 闭
上一篇:Bifurcations in Morris–Lecar neuron model 下一篇:传递性,灵活性,联合认知和海马体的关联
   关于我们
s
s
   推荐产品
   图片文章
   最新资讯
神经动力学中的庞加莱回归图:三个例子
动力系统快-慢分解的自然扩展
局部分离的稳定流形与簇周期轨道之间的相...
弱耦合鸭解振荡器的同步
Leonid Shilnikov 和动力学混沌的数学理论
多时间尺度系统和快-慢分析
 
友情链接: 神经计算   国家自然科学基   华南理工大学   全国大学生数学   美国数学建模竞   MATLAB  
咨询热线:刘教授 13650823684 邮箱:liushenat@sohu.com 备案编号:豫ICP备18005949号
地址:广州市番禺区广州大学城 邮编:510006  技术支持:郑州建网站 本站域名:mashqliu.com
Copyright © 2018-2024 数学建模与神经计算 Inc, All Rights Reserved.
在线客服
刘教授 13650823684
客服代表
点击这里给我发消息