| | | | | | |
  当前位置:首页 > 神经计算原理 

Random dynamics of the Morris–Lecar neural model
作者:数学建模与神经计算 发布日期:2019-2-28
 点击:1408
关键词:-

Random dynamics of the Morris–Lecar neural model

Takashi Tateno,

Khashayar Pakdaman

Determining the response characteristics of neurons to fluctuating noise-like inputs similar to realistic stimuli is essential for understanding neuronal coding. This study addresses this issue by providing a random dynamical system analysis of the Morris–Lecar neural model driven by a white Gaussian noise current. Depending on parameter selections, the deterministic Morris–Lecar model can be considered as a canonical prototype for widely encountered classes of neuronal membranes, referred to as class I and class II membranes. In both the transitions from excitable to oscillating regimes are associated with different bifurcation scenarios. This work examines how random perturbations affect these two bifurcation scenarios. It is first numerically shown that the Morris–Lecar model driven by white Gaussian noise current tends to have a unique stationary distribution in the phase space. Numerical evaluations also reveal quantitative and qualitative changes in this distribution in the vicinity of the bifurcations of the deterministic system. However, these changes notwithstanding, our numerical simulations show that the Lyapunov exponents of the system remain negative in these parameter regions, indicating that no dynamical stochastic bifurcations take place.Moreover, our numerical simulations confirm that, regardless of the asymptotic dynamics of the deterministic system, the random Morris–Lecar model stabilizes at a unique stationary stochastic process. In terms of random dynamical system theory, our analysis shows that additive noise destroys the above-mentioned bifurcation sequences that characterize class I and class II regimes in the Morris–Lecar model. The interpretation of this result in terms of neuronal coding is that, despite the differences in the deterministic dynamics of class I and class II membranes, their responses to noise-like stimuli present a reliable feature.


Random dynamics of the Morris–Lecar neural model.pdf

收 藏 推 荐 打 印 关 闭
上一篇:循环回路中的感知决策综述 下一篇:Morris-Lecar神经元模型中的分岔
   关于我们
s
s
   推荐产品
   图片文章
   最新资讯
神经动力学中的庞加莱回归图:三个例子
动力系统快-慢分解的自然扩展
局部分离的稳定流形与簇周期轨道之间的相...
弱耦合鸭解振荡器的同步
Leonid Shilnikov 和动力学混沌的数学理论
多时间尺度系统和快-慢分析
 
友情链接: 神经计算   国家自然科学基   华南理工大学   全国大学生数学   美国数学建模竞   MATLAB  
咨询热线:刘教授 13650823684 邮箱:liushenat@sohu.com 备案编号:豫ICP备18005949号
地址:广州市番禺区广州大学城 邮编:510006  技术支持:郑州建网站 本站域名:mashqliu.com
Copyright © 2018-2024 数学建模与神经计算 Inc, All Rights Reserved.
在线客服
刘教授 13650823684
客服代表
点击这里给我发消息